OpenCores
URL https://opencores.org/ocsvn/or1k_soc_on_altera_embedded_dev_kit/or1k_soc_on_altera_embedded_dev_kit/trunk

Subversion Repositories or1k_soc_on_altera_embedded_dev_kit

[/] [or1k_soc_on_altera_embedded_dev_kit/] [trunk/] [linux-2.6/] [linux-2.6.24/] [arch/] [arm/] [mm/] [fault-armv.c] - Blame information for rev 3

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 3 xianfeng
/*
2
 *  linux/arch/arm/mm/fault-armv.c
3
 *
4
 *  Copyright (C) 1995  Linus Torvalds
5
 *  Modifications for ARM processor (c) 1995-2002 Russell King
6
 *
7
 * This program is free software; you can redistribute it and/or modify
8
 * it under the terms of the GNU General Public License version 2 as
9
 * published by the Free Software Foundation.
10
 */
11
#include <linux/module.h>
12
#include <linux/sched.h>
13
#include <linux/kernel.h>
14
#include <linux/mm.h>
15
#include <linux/bitops.h>
16
#include <linux/vmalloc.h>
17
#include <linux/init.h>
18
#include <linux/pagemap.h>
19
 
20
#include <asm/cacheflush.h>
21
#include <asm/pgtable.h>
22
#include <asm/tlbflush.h>
23
 
24
static unsigned long shared_pte_mask = L_PTE_CACHEABLE;
25
 
26
/*
27
 * We take the easy way out of this problem - we make the
28
 * PTE uncacheable.  However, we leave the write buffer on.
29
 *
30
 * Note that the pte lock held when calling update_mmu_cache must also
31
 * guard the pte (somewhere else in the same mm) that we modify here.
32
 * Therefore those configurations which might call adjust_pte (those
33
 * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
34
 */
35
static int adjust_pte(struct vm_area_struct *vma, unsigned long address)
36
{
37
        pgd_t *pgd;
38
        pmd_t *pmd;
39
        pte_t *pte, entry;
40
        int ret = 0;
41
 
42
        pgd = pgd_offset(vma->vm_mm, address);
43
        if (pgd_none(*pgd))
44
                goto no_pgd;
45
        if (pgd_bad(*pgd))
46
                goto bad_pgd;
47
 
48
        pmd = pmd_offset(pgd, address);
49
        if (pmd_none(*pmd))
50
                goto no_pmd;
51
        if (pmd_bad(*pmd))
52
                goto bad_pmd;
53
 
54
        pte = pte_offset_map(pmd, address);
55
        entry = *pte;
56
 
57
        /*
58
         * If this page isn't present, or is already setup to
59
         * fault (ie, is old), we can safely ignore any issues.
60
         */
61
        if (pte_present(entry) && pte_val(entry) & shared_pte_mask) {
62
                flush_cache_page(vma, address, pte_pfn(entry));
63
                pte_val(entry) &= ~shared_pte_mask;
64
                set_pte_at(vma->vm_mm, address, pte, entry);
65
                flush_tlb_page(vma, address);
66
                ret = 1;
67
        }
68
        pte_unmap(pte);
69
        return ret;
70
 
71
bad_pgd:
72
        pgd_ERROR(*pgd);
73
        pgd_clear(pgd);
74
no_pgd:
75
        return 0;
76
 
77
bad_pmd:
78
        pmd_ERROR(*pmd);
79
        pmd_clear(pmd);
80
no_pmd:
81
        return 0;
82
}
83
 
84
static void
85
make_coherent(struct address_space *mapping, struct vm_area_struct *vma, unsigned long addr, unsigned long pfn)
86
{
87
        struct mm_struct *mm = vma->vm_mm;
88
        struct vm_area_struct *mpnt;
89
        struct prio_tree_iter iter;
90
        unsigned long offset;
91
        pgoff_t pgoff;
92
        int aliases = 0;
93
 
94
        pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
95
 
96
        /*
97
         * If we have any shared mappings that are in the same mm
98
         * space, then we need to handle them specially to maintain
99
         * cache coherency.
100
         */
101
        flush_dcache_mmap_lock(mapping);
102
        vma_prio_tree_foreach(mpnt, &iter, &mapping->i_mmap, pgoff, pgoff) {
103
                /*
104
                 * If this VMA is not in our MM, we can ignore it.
105
                 * Note that we intentionally mask out the VMA
106
                 * that we are fixing up.
107
                 */
108
                if (mpnt->vm_mm != mm || mpnt == vma)
109
                        continue;
110
                if (!(mpnt->vm_flags & VM_MAYSHARE))
111
                        continue;
112
                offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
113
                aliases += adjust_pte(mpnt, mpnt->vm_start + offset);
114
        }
115
        flush_dcache_mmap_unlock(mapping);
116
        if (aliases)
117
                adjust_pte(vma, addr);
118
        else
119
                flush_cache_page(vma, addr, pfn);
120
}
121
 
122
/*
123
 * Take care of architecture specific things when placing a new PTE into
124
 * a page table, or changing an existing PTE.  Basically, there are two
125
 * things that we need to take care of:
126
 *
127
 *  1. If PG_dcache_dirty is set for the page, we need to ensure
128
 *     that any cache entries for the kernels virtual memory
129
 *     range are written back to the page.
130
 *  2. If we have multiple shared mappings of the same space in
131
 *     an object, we need to deal with the cache aliasing issues.
132
 *
133
 * Note that the pte lock will be held.
134
 */
135
void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
136
{
137
        unsigned long pfn = pte_pfn(pte);
138
        struct address_space *mapping;
139
        struct page *page;
140
 
141
        if (!pfn_valid(pfn))
142
                return;
143
 
144
        page = pfn_to_page(pfn);
145
        mapping = page_mapping(page);
146
        if (mapping) {
147
                int dirty = test_and_clear_bit(PG_dcache_dirty, &page->flags);
148
 
149
                if (dirty)
150
                        __flush_dcache_page(mapping, page);
151
 
152
                if (cache_is_vivt())
153
                        make_coherent(mapping, vma, addr, pfn);
154
        }
155
}
156
 
157
/*
158
 * Check whether the write buffer has physical address aliasing
159
 * issues.  If it has, we need to avoid them for the case where
160
 * we have several shared mappings of the same object in user
161
 * space.
162
 */
163
static int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
164
{
165
        register unsigned long zero = 0, one = 1, val;
166
 
167
        local_irq_disable();
168
        mb();
169
        *p1 = one;
170
        mb();
171
        *p2 = zero;
172
        mb();
173
        val = *p1;
174
        mb();
175
        local_irq_enable();
176
        return val != zero;
177
}
178
 
179
void __init check_writebuffer_bugs(void)
180
{
181
        struct page *page;
182
        const char *reason;
183
        unsigned long v = 1;
184
 
185
        printk(KERN_INFO "CPU: Testing write buffer coherency: ");
186
 
187
        page = alloc_page(GFP_KERNEL);
188
        if (page) {
189
                unsigned long *p1, *p2;
190
                pgprot_t prot = __pgprot(L_PTE_PRESENT|L_PTE_YOUNG|
191
                                         L_PTE_DIRTY|L_PTE_WRITE|
192
                                         L_PTE_BUFFERABLE);
193
 
194
                p1 = vmap(&page, 1, VM_IOREMAP, prot);
195
                p2 = vmap(&page, 1, VM_IOREMAP, prot);
196
 
197
                if (p1 && p2) {
198
                        v = check_writebuffer(p1, p2);
199
                        reason = "enabling work-around";
200
                } else {
201
                        reason = "unable to map memory\n";
202
                }
203
 
204
                vunmap(p1);
205
                vunmap(p2);
206
                put_page(page);
207
        } else {
208
                reason = "unable to grab page\n";
209
        }
210
 
211
        if (v) {
212
                printk("failed, %s\n", reason);
213
                shared_pte_mask |= L_PTE_BUFFERABLE;
214
        } else {
215
                printk("ok\n");
216
        }
217
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.