OpenCores
URL https://opencores.org/ocsvn/or1k_soc_on_altera_embedded_dev_kit/or1k_soc_on_altera_embedded_dev_kit/trunk

Subversion Repositories or1k_soc_on_altera_embedded_dev_kit

[/] [or1k_soc_on_altera_embedded_dev_kit/] [trunk/] [linux-2.6/] [linux-2.6.24/] [arch/] [mips/] [kernel/] [setup.c] - Blame information for rev 3

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 3 xianfeng
/*
2
 * This file is subject to the terms and conditions of the GNU General Public
3
 * License.  See the file "COPYING" in the main directory of this archive
4
 * for more details.
5
 *
6
 * Copyright (C) 1995 Linus Torvalds
7
 * Copyright (C) 1995 Waldorf Electronics
8
 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
9
 * Copyright (C) 1996 Stoned Elipot
10
 * Copyright (C) 1999 Silicon Graphics, Inc.
11
 * Copyright (C) 2000 2001, 2002  Maciej W. Rozycki
12
 */
13
#include <linux/init.h>
14
#include <linux/ioport.h>
15
#include <linux/module.h>
16
#include <linux/screen_info.h>
17
#include <linux/bootmem.h>
18
#include <linux/initrd.h>
19
#include <linux/root_dev.h>
20
#include <linux/highmem.h>
21
#include <linux/console.h>
22
#include <linux/pfn.h>
23
#include <linux/debugfs.h>
24
 
25
#include <asm/addrspace.h>
26
#include <asm/bootinfo.h>
27
#include <asm/cache.h>
28
#include <asm/cpu.h>
29
#include <asm/sections.h>
30
#include <asm/setup.h>
31
#include <asm/system.h>
32
 
33
struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
34
 
35
EXPORT_SYMBOL(cpu_data);
36
 
37
#ifdef CONFIG_VT
38
struct screen_info screen_info;
39
#endif
40
 
41
/*
42
 * Despite it's name this variable is even if we don't have PCI
43
 */
44
unsigned int PCI_DMA_BUS_IS_PHYS;
45
 
46
EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
47
 
48
/*
49
 * Setup information
50
 *
51
 * These are initialized so they are in the .data section
52
 */
53
unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
54
 
55
EXPORT_SYMBOL(mips_machtype);
56
 
57
struct boot_mem_map boot_mem_map;
58
 
59
static char command_line[CL_SIZE];
60
       char arcs_cmdline[CL_SIZE]=CONFIG_CMDLINE;
61
 
62
/*
63
 * mips_io_port_base is the begin of the address space to which x86 style
64
 * I/O ports are mapped.
65
 */
66
const unsigned long mips_io_port_base __read_mostly = -1;
67
EXPORT_SYMBOL(mips_io_port_base);
68
 
69
/*
70
 * isa_slot_offset is the address where E(ISA) busaddress 0 is mapped
71
 * for the processor.
72
 */
73
unsigned long isa_slot_offset;
74
EXPORT_SYMBOL(isa_slot_offset);
75
 
76
static struct resource code_resource = { .name = "Kernel code", };
77
static struct resource data_resource = { .name = "Kernel data", };
78
 
79
void __init add_memory_region(phys_t start, phys_t size, long type)
80
{
81
        int x = boot_mem_map.nr_map;
82
        struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1;
83
 
84
        /* Sanity check */
85
        if (start + size < start) {
86
                printk("Trying to add an invalid memory region, skipped\n");
87
                return;
88
        }
89
 
90
        /*
91
         * Try to merge with previous entry if any.  This is far less than
92
         * perfect but is sufficient for most real world cases.
93
         */
94
        if (x && prev->addr + prev->size == start && prev->type == type) {
95
                prev->size += size;
96
                return;
97
        }
98
 
99
        if (x == BOOT_MEM_MAP_MAX) {
100
                printk("Ooops! Too many entries in the memory map!\n");
101
                return;
102
        }
103
 
104
        boot_mem_map.map[x].addr = start;
105
        boot_mem_map.map[x].size = size;
106
        boot_mem_map.map[x].type = type;
107
        boot_mem_map.nr_map++;
108
}
109
 
110
static void __init print_memory_map(void)
111
{
112
        int i;
113
        const int field = 2 * sizeof(unsigned long);
114
 
115
        for (i = 0; i < boot_mem_map.nr_map; i++) {
116
                printk(" memory: %0*Lx @ %0*Lx ",
117
                       field, (unsigned long long) boot_mem_map.map[i].size,
118
                       field, (unsigned long long) boot_mem_map.map[i].addr);
119
 
120
                switch (boot_mem_map.map[i].type) {
121
                case BOOT_MEM_RAM:
122
                        printk("(usable)\n");
123
                        break;
124
                case BOOT_MEM_ROM_DATA:
125
                        printk("(ROM data)\n");
126
                        break;
127
                case BOOT_MEM_RESERVED:
128
                        printk("(reserved)\n");
129
                        break;
130
                default:
131
                        printk("type %lu\n", boot_mem_map.map[i].type);
132
                        break;
133
                }
134
        }
135
}
136
 
137
/*
138
 * Manage initrd
139
 */
140
#ifdef CONFIG_BLK_DEV_INITRD
141
 
142
static int __init rd_start_early(char *p)
143
{
144
        unsigned long start = memparse(p, &p);
145
 
146
#ifdef CONFIG_64BIT
147
        /* Guess if the sign extension was forgotten by bootloader */
148
        if (start < XKPHYS)
149
                start = (int)start;
150
#endif
151
        initrd_start = start;
152
        initrd_end += start;
153
        return 0;
154
}
155
early_param("rd_start", rd_start_early);
156
 
157
static int __init rd_size_early(char *p)
158
{
159
        initrd_end += memparse(p, &p);
160
        return 0;
161
}
162
early_param("rd_size", rd_size_early);
163
 
164
/* it returns the next free pfn after initrd */
165
static unsigned long __init init_initrd(void)
166
{
167
        unsigned long end;
168
        u32 *initrd_header;
169
 
170
        /*
171
         * Board specific code or command line parser should have
172
         * already set up initrd_start and initrd_end. In these cases
173
         * perfom sanity checks and use them if all looks good.
174
         */
175
        if (initrd_start && initrd_end > initrd_start)
176
                goto sanitize;
177
 
178
        /*
179
         * See if initrd has been added to the kernel image by
180
         * arch/mips/boot/addinitrd.c. In that case a header is
181
         * prepended to initrd and is made up by 8 bytes. The fisrt
182
         * word is a magic number and the second one is the size of
183
         * initrd.  Initrd start must be page aligned in any cases.
184
         */
185
        initrd_header = __va(PAGE_ALIGN(__pa_symbol(&_end) + 8)) - 8;
186
        if (initrd_header[0] != 0x494E5244)
187
                goto disable;
188
        initrd_start = (unsigned long)(initrd_header + 2);
189
        initrd_end = initrd_start + initrd_header[1];
190
 
191
sanitize:
192
        if (initrd_start & ~PAGE_MASK) {
193
                printk(KERN_ERR "initrd start must be page aligned\n");
194
                goto disable;
195
        }
196
        if (initrd_start < PAGE_OFFSET) {
197
                printk(KERN_ERR "initrd start < PAGE_OFFSET\n");
198
                goto disable;
199
        }
200
 
201
        /*
202
         * Sanitize initrd addresses. For example firmware
203
         * can't guess if they need to pass them through
204
         * 64-bits values if the kernel has been built in pure
205
         * 32-bit. We need also to switch from KSEG0 to XKPHYS
206
         * addresses now, so the code can now safely use __pa().
207
         */
208
        end = __pa(initrd_end);
209
        initrd_end = (unsigned long)__va(end);
210
        initrd_start = (unsigned long)__va(__pa(initrd_start));
211
 
212
        ROOT_DEV = Root_RAM0;
213
        return PFN_UP(end);
214
disable:
215
        initrd_start = 0;
216
        initrd_end = 0;
217
        return 0;
218
}
219
 
220
static void __init finalize_initrd(void)
221
{
222
        unsigned long size = initrd_end - initrd_start;
223
 
224
        if (size == 0) {
225
                printk(KERN_INFO "Initrd not found or empty");
226
                goto disable;
227
        }
228
        if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
229
                printk("Initrd extends beyond end of memory");
230
                goto disable;
231
        }
232
 
233
        reserve_bootmem(__pa(initrd_start), size);
234
        initrd_below_start_ok = 1;
235
 
236
        printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
237
               initrd_start, size);
238
        return;
239
disable:
240
        printk(" - disabling initrd\n");
241
        initrd_start = 0;
242
        initrd_end = 0;
243
}
244
 
245
#else  /* !CONFIG_BLK_DEV_INITRD */
246
 
247
static unsigned long __init init_initrd(void)
248
{
249
        return 0;
250
}
251
 
252
#define finalize_initrd()       do {} while (0)
253
 
254
#endif
255
 
256
/*
257
 * Initialize the bootmem allocator. It also setup initrd related data
258
 * if needed.
259
 */
260
#ifdef CONFIG_SGI_IP27
261
 
262
static void __init bootmem_init(void)
263
{
264
        init_initrd();
265
        finalize_initrd();
266
}
267
 
268
#else  /* !CONFIG_SGI_IP27 */
269
 
270
static void __init bootmem_init(void)
271
{
272
        unsigned long reserved_end;
273
        unsigned long mapstart = ~0UL;
274
        unsigned long bootmap_size;
275
        int i;
276
 
277
        /*
278
         * Init any data related to initrd. It's a nop if INITRD is
279
         * not selected. Once that done we can determine the low bound
280
         * of usable memory.
281
         */
282
        reserved_end = max(init_initrd(), PFN_UP(__pa_symbol(&_end)));
283
 
284
        /*
285
         * max_low_pfn is not a number of pages. The number of pages
286
         * of the system is given by 'max_low_pfn - min_low_pfn'.
287
         */
288
        min_low_pfn = ~0UL;
289
        max_low_pfn = 0;
290
 
291
        /*
292
         * Find the highest page frame number we have available.
293
         */
294
        for (i = 0; i < boot_mem_map.nr_map; i++) {
295
                unsigned long start, end;
296
 
297
                if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
298
                        continue;
299
 
300
                start = PFN_UP(boot_mem_map.map[i].addr);
301
                end = PFN_DOWN(boot_mem_map.map[i].addr
302
                                + boot_mem_map.map[i].size);
303
 
304
                if (end > max_low_pfn)
305
                        max_low_pfn = end;
306
                if (start < min_low_pfn)
307
                        min_low_pfn = start;
308
                if (end <= reserved_end)
309
                        continue;
310
                if (start >= mapstart)
311
                        continue;
312
                mapstart = max(reserved_end, start);
313
        }
314
 
315
        if (min_low_pfn >= max_low_pfn)
316
                panic("Incorrect memory mapping !!!");
317
        if (min_low_pfn > ARCH_PFN_OFFSET) {
318
                printk(KERN_INFO
319
                       "Wasting %lu bytes for tracking %lu unused pages\n",
320
                       (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
321
                       min_low_pfn - ARCH_PFN_OFFSET);
322
        } else if (min_low_pfn < ARCH_PFN_OFFSET) {
323
                printk(KERN_INFO
324
                       "%lu free pages won't be used\n",
325
                       ARCH_PFN_OFFSET - min_low_pfn);
326
        }
327
        min_low_pfn = ARCH_PFN_OFFSET;
328
 
329
        /*
330
         * Determine low and high memory ranges
331
         */
332
        if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
333
#ifdef CONFIG_HIGHMEM
334
                highstart_pfn = PFN_DOWN(HIGHMEM_START);
335
                highend_pfn = max_low_pfn;
336
#endif
337
                max_low_pfn = PFN_DOWN(HIGHMEM_START);
338
        }
339
 
340
        /*
341
         * Initialize the boot-time allocator with low memory only.
342
         */
343
        bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
344
                                         min_low_pfn, max_low_pfn);
345
 
346
 
347
        for (i = 0; i < boot_mem_map.nr_map; i++) {
348
                unsigned long start, end;
349
 
350
                start = PFN_UP(boot_mem_map.map[i].addr);
351
                end = PFN_DOWN(boot_mem_map.map[i].addr
352
                                + boot_mem_map.map[i].size);
353
 
354
                if (start <= min_low_pfn)
355
                        start = min_low_pfn;
356
                if (start >= end)
357
                        continue;
358
 
359
#ifndef CONFIG_HIGHMEM
360
                if (end > max_low_pfn)
361
                        end = max_low_pfn;
362
 
363
                /*
364
                 * ... finally, is the area going away?
365
                 */
366
                if (end <= start)
367
                        continue;
368
#endif
369
 
370
                add_active_range(0, start, end);
371
        }
372
 
373
        /*
374
         * Register fully available low RAM pages with the bootmem allocator.
375
         */
376
        for (i = 0; i < boot_mem_map.nr_map; i++) {
377
                unsigned long start, end, size;
378
 
379
                /*
380
                 * Reserve usable memory.
381
                 */
382
                if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
383
                        continue;
384
 
385
                start = PFN_UP(boot_mem_map.map[i].addr);
386
                end   = PFN_DOWN(boot_mem_map.map[i].addr
387
                                    + boot_mem_map.map[i].size);
388
                /*
389
                 * We are rounding up the start address of usable memory
390
                 * and at the end of the usable range downwards.
391
                 */
392
                if (start >= max_low_pfn)
393
                        continue;
394
                if (start < reserved_end)
395
                        start = reserved_end;
396
                if (end > max_low_pfn)
397
                        end = max_low_pfn;
398
 
399
                /*
400
                 * ... finally, is the area going away?
401
                 */
402
                if (end <= start)
403
                        continue;
404
                size = end - start;
405
 
406
                /* Register lowmem ranges */
407
                free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
408
                memory_present(0, start, end);
409
        }
410
 
411
        /*
412
         * Reserve the bootmap memory.
413
         */
414
        reserve_bootmem(PFN_PHYS(mapstart), bootmap_size);
415
 
416
        /*
417
         * Reserve initrd memory if needed.
418
         */
419
        finalize_initrd();
420
}
421
 
422
#endif  /* CONFIG_SGI_IP27 */
423
 
424
/*
425
 * arch_mem_init - initialize memory managment subsystem
426
 *
427
 *  o plat_mem_setup() detects the memory configuration and will record detected
428
 *    memory areas using add_memory_region.
429
 *
430
 * At this stage the memory configuration of the system is known to the
431
 * kernel but generic memory managment system is still entirely uninitialized.
432
 *
433
 *  o bootmem_init()
434
 *  o sparse_init()
435
 *  o paging_init()
436
 *
437
 * At this stage the bootmem allocator is ready to use.
438
 *
439
 * NOTE: historically plat_mem_setup did the entire platform initialization.
440
 *       This was rather impractical because it meant plat_mem_setup had to
441
 * get away without any kind of memory allocator.  To keep old code from
442
 * breaking plat_setup was just renamed to plat_setup and a second platform
443
 * initialization hook for anything else was introduced.
444
 */
445
 
446
static int usermem __initdata = 0;
447
 
448
static int __init early_parse_mem(char *p)
449
{
450
        unsigned long start, size;
451
 
452
        /*
453
         * If a user specifies memory size, we
454
         * blow away any automatically generated
455
         * size.
456
         */
457
        if (usermem == 0) {
458
                boot_mem_map.nr_map = 0;
459
                usermem = 1;
460
        }
461
        start = 0;
462
        size = memparse(p, &p);
463
        if (*p == '@')
464
                start = memparse(p + 1, &p);
465
 
466
        add_memory_region(start, size, BOOT_MEM_RAM);
467
        return 0;
468
}
469
early_param("mem", early_parse_mem);
470
 
471
static void __init arch_mem_init(char **cmdline_p)
472
{
473
        extern void plat_mem_setup(void);
474
 
475
        /* call board setup routine */
476
        plat_mem_setup();
477
 
478
        printk("Determined physical RAM map:\n");
479
        print_memory_map();
480
 
481
        strlcpy(command_line, arcs_cmdline, sizeof(command_line));
482
        strlcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
483
 
484
        *cmdline_p = command_line;
485
 
486
        parse_early_param();
487
 
488
        if (usermem) {
489
                printk("User-defined physical RAM map:\n");
490
                print_memory_map();
491
        }
492
 
493
        bootmem_init();
494
        sparse_init();
495
        paging_init();
496
}
497
 
498
static void __init resource_init(void)
499
{
500
        int i;
501
 
502
        if (UNCAC_BASE != IO_BASE)
503
                return;
504
 
505
        code_resource.start = __pa_symbol(&_text);
506
        code_resource.end = __pa_symbol(&_etext) - 1;
507
        data_resource.start = __pa_symbol(&_etext);
508
        data_resource.end = __pa_symbol(&_edata) - 1;
509
 
510
        /*
511
         * Request address space for all standard RAM.
512
         */
513
        for (i = 0; i < boot_mem_map.nr_map; i++) {
514
                struct resource *res;
515
                unsigned long start, end;
516
 
517
                start = boot_mem_map.map[i].addr;
518
                end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
519
                if (start >= HIGHMEM_START)
520
                        continue;
521
                if (end >= HIGHMEM_START)
522
                        end = HIGHMEM_START - 1;
523
 
524
                res = alloc_bootmem(sizeof(struct resource));
525
                switch (boot_mem_map.map[i].type) {
526
                case BOOT_MEM_RAM:
527
                case BOOT_MEM_ROM_DATA:
528
                        res->name = "System RAM";
529
                        break;
530
                case BOOT_MEM_RESERVED:
531
                default:
532
                        res->name = "reserved";
533
                }
534
 
535
                res->start = start;
536
                res->end = end;
537
 
538
                res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
539
                request_resource(&iomem_resource, res);
540
 
541
                /*
542
                 *  We don't know which RAM region contains kernel data,
543
                 *  so we try it repeatedly and let the resource manager
544
                 *  test it.
545
                 */
546
                request_resource(res, &code_resource);
547
                request_resource(res, &data_resource);
548
        }
549
}
550
 
551
void __init setup_arch(char **cmdline_p)
552
{
553
        cpu_probe();
554
        prom_init();
555
 
556
#ifdef CONFIG_EARLY_PRINTK
557
        {
558
                extern void setup_early_printk(void);
559
 
560
                setup_early_printk();
561
        }
562
#endif
563
        cpu_report();
564
 
565
#if defined(CONFIG_VT)
566
#if defined(CONFIG_VGA_CONSOLE)
567
        conswitchp = &vga_con;
568
#elif defined(CONFIG_DUMMY_CONSOLE)
569
        conswitchp = &dummy_con;
570
#endif
571
#endif
572
 
573
        arch_mem_init(cmdline_p);
574
 
575
        resource_init();
576
#ifdef CONFIG_SMP
577
        plat_smp_setup();
578
#endif
579
}
580
 
581
static int __init fpu_disable(char *s)
582
{
583
        int i;
584
 
585
        for (i = 0; i < NR_CPUS; i++)
586
                cpu_data[i].options &= ~MIPS_CPU_FPU;
587
 
588
        return 1;
589
}
590
 
591
__setup("nofpu", fpu_disable);
592
 
593
static int __init dsp_disable(char *s)
594
{
595
        cpu_data[0].ases &= ~MIPS_ASE_DSP;
596
 
597
        return 1;
598
}
599
 
600
__setup("nodsp", dsp_disable);
601
 
602
unsigned long kernelsp[NR_CPUS];
603
unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
604
 
605
#ifdef CONFIG_DEBUG_FS
606
struct dentry *mips_debugfs_dir;
607
static int __init debugfs_mips(void)
608
{
609
        struct dentry *d;
610
 
611
        d = debugfs_create_dir("mips", NULL);
612
        if (IS_ERR(d))
613
                return PTR_ERR(d);
614
        mips_debugfs_dir = d;
615
        return 0;
616
}
617
arch_initcall(debugfs_mips);
618
#endif

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.