OpenCores
URL https://opencores.org/ocsvn/or1k_soc_on_altera_embedded_dev_kit/or1k_soc_on_altera_embedded_dev_kit/trunk

Subversion Repositories or1k_soc_on_altera_embedded_dev_kit

[/] [or1k_soc_on_altera_embedded_dev_kit/] [trunk/] [linux-2.6/] [linux-2.6.24/] [arch/] [mips/] [sgi-ip27/] [ip27-irq.c] - Blame information for rev 3

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 3 xianfeng
/*
2
 * ip27-irq.c: Highlevel interrupt handling for IP27 architecture.
3
 *
4
 * Copyright (C) 1999, 2000 Ralf Baechle (ralf@gnu.org)
5
 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
6
 * Copyright (C) 1999 - 2001 Kanoj Sarcar
7
 */
8
 
9
#undef DEBUG
10
 
11
#include <linux/init.h>
12
#include <linux/irq.h>
13
#include <linux/errno.h>
14
#include <linux/signal.h>
15
#include <linux/sched.h>
16
#include <linux/types.h>
17
#include <linux/interrupt.h>
18
#include <linux/ioport.h>
19
#include <linux/timex.h>
20
#include <linux/slab.h>
21
#include <linux/random.h>
22
#include <linux/kernel.h>
23
#include <linux/kernel_stat.h>
24
#include <linux/delay.h>
25
#include <linux/bitops.h>
26
 
27
#include <asm/bootinfo.h>
28
#include <asm/io.h>
29
#include <asm/mipsregs.h>
30
#include <asm/system.h>
31
 
32
#include <asm/processor.h>
33
#include <asm/pci/bridge.h>
34
#include <asm/sn/addrs.h>
35
#include <asm/sn/agent.h>
36
#include <asm/sn/arch.h>
37
#include <asm/sn/hub.h>
38
#include <asm/sn/intr.h>
39
 
40
/*
41
 * Linux has a controller-independent x86 interrupt architecture.
42
 * every controller has a 'controller-template', that is used
43
 * by the main code to do the right thing. Each driver-visible
44
 * interrupt source is transparently wired to the apropriate
45
 * controller. Thus drivers need not be aware of the
46
 * interrupt-controller.
47
 *
48
 * Various interrupt controllers we handle: 8259 PIC, SMP IO-APIC,
49
 * PIIX4's internal 8259 PIC and SGI's Visual Workstation Cobalt (IO-)APIC.
50
 * (IO-APICs assumed to be messaging to Pentium local-APICs)
51
 *
52
 * the code is designed to be easily extended with new/different
53
 * interrupt controllers, without having to do assembly magic.
54
 */
55
 
56
extern asmlinkage void ip27_irq(void);
57
 
58
extern struct bridge_controller *irq_to_bridge[];
59
extern int irq_to_slot[];
60
 
61
/*
62
 * use these macros to get the encoded nasid and widget id
63
 * from the irq value
64
 */
65
#define IRQ_TO_BRIDGE(i)                irq_to_bridge[(i)]
66
#define SLOT_FROM_PCI_IRQ(i)            irq_to_slot[i]
67
 
68
static inline int alloc_level(int cpu, int irq)
69
{
70
        struct hub_data *hub = hub_data(cpu_to_node(cpu));
71
        struct slice_data *si = cpu_data[cpu].data;
72
        int level;
73
 
74
        level = find_first_zero_bit(hub->irq_alloc_mask, LEVELS_PER_SLICE);
75
        if (level >= LEVELS_PER_SLICE)
76
                panic("Cpu %d flooded with devices\n", cpu);
77
 
78
        __set_bit(level, hub->irq_alloc_mask);
79
        si->level_to_irq[level] = irq;
80
 
81
        return level;
82
}
83
 
84
static inline int find_level(cpuid_t *cpunum, int irq)
85
{
86
        int cpu, i;
87
 
88
        for_each_online_cpu(cpu) {
89
                struct slice_data *si = cpu_data[cpu].data;
90
 
91
                for (i = BASE_PCI_IRQ; i < LEVELS_PER_SLICE; i++)
92
                        if (si->level_to_irq[i] == irq) {
93
                                *cpunum = cpu;
94
 
95
                                return i;
96
                        }
97
        }
98
 
99
        panic("Could not identify cpu/level for irq %d\n", irq);
100
}
101
 
102
/*
103
 * Find first bit set
104
 */
105
static int ms1bit(unsigned long x)
106
{
107
        int b = 0, s;
108
 
109
        s = 16; if (x >> 16 == 0) s = 0; b += s; x >>= s;
110
        s =  8; if (x >>  8 == 0) s = 0; b += s; x >>= s;
111
        s =  4; if (x >>  4 == 0) s = 0; b += s; x >>= s;
112
        s =  2; if (x >>  2 == 0) s = 0; b += s; x >>= s;
113
        s =  1; if (x >>  1 == 0) s = 0; b += s;
114
 
115
        return b;
116
}
117
 
118
/*
119
 * This code is unnecessarily complex, because we do IRQF_DISABLED
120
 * intr enabling. Basically, once we grab the set of intrs we need
121
 * to service, we must mask _all_ these interrupts; firstly, to make
122
 * sure the same intr does not intr again, causing recursion that
123
 * can lead to stack overflow. Secondly, we can not just mask the
124
 * one intr we are do_IRQing, because the non-masked intrs in the
125
 * first set might intr again, causing multiple servicings of the
126
 * same intr. This effect is mostly seen for intercpu intrs.
127
 * Kanoj 05.13.00
128
 */
129
 
130
static void ip27_do_irq_mask0(void)
131
{
132
        int irq, swlevel;
133
        hubreg_t pend0, mask0;
134
        cpuid_t cpu = smp_processor_id();
135
        int pi_int_mask0 =
136
                (cputoslice(cpu) == 0) ?  PI_INT_MASK0_A : PI_INT_MASK0_B;
137
 
138
        /* copied from Irix intpend0() */
139
        pend0 = LOCAL_HUB_L(PI_INT_PEND0);
140
        mask0 = LOCAL_HUB_L(pi_int_mask0);
141
 
142
        pend0 &= mask0;         /* Pick intrs we should look at */
143
        if (!pend0)
144
                return;
145
 
146
        swlevel = ms1bit(pend0);
147
#ifdef CONFIG_SMP
148
        if (pend0 & (1UL << CPU_RESCHED_A_IRQ)) {
149
                LOCAL_HUB_CLR_INTR(CPU_RESCHED_A_IRQ);
150
        } else if (pend0 & (1UL << CPU_RESCHED_B_IRQ)) {
151
                LOCAL_HUB_CLR_INTR(CPU_RESCHED_B_IRQ);
152
        } else if (pend0 & (1UL << CPU_CALL_A_IRQ)) {
153
                LOCAL_HUB_CLR_INTR(CPU_CALL_A_IRQ);
154
                smp_call_function_interrupt();
155
        } else if (pend0 & (1UL << CPU_CALL_B_IRQ)) {
156
                LOCAL_HUB_CLR_INTR(CPU_CALL_B_IRQ);
157
                smp_call_function_interrupt();
158
        } else
159
#endif
160
        {
161
                /* "map" swlevel to irq */
162
                struct slice_data *si = cpu_data[cpu].data;
163
 
164
                irq = si->level_to_irq[swlevel];
165
                do_IRQ(irq);
166
        }
167
 
168
        LOCAL_HUB_L(PI_INT_PEND0);
169
}
170
 
171
static void ip27_do_irq_mask1(void)
172
{
173
        int irq, swlevel;
174
        hubreg_t pend1, mask1;
175
        cpuid_t cpu = smp_processor_id();
176
        int pi_int_mask1 = (cputoslice(cpu) == 0) ?  PI_INT_MASK1_A : PI_INT_MASK1_B;
177
        struct slice_data *si = cpu_data[cpu].data;
178
 
179
        /* copied from Irix intpend0() */
180
        pend1 = LOCAL_HUB_L(PI_INT_PEND1);
181
        mask1 = LOCAL_HUB_L(pi_int_mask1);
182
 
183
        pend1 &= mask1;         /* Pick intrs we should look at */
184
        if (!pend1)
185
                return;
186
 
187
        swlevel = ms1bit(pend1);
188
        /* "map" swlevel to irq */
189
        irq = si->level_to_irq[swlevel];
190
        LOCAL_HUB_CLR_INTR(swlevel);
191
        do_IRQ(irq);
192
 
193
        LOCAL_HUB_L(PI_INT_PEND1);
194
}
195
 
196
static void ip27_prof_timer(void)
197
{
198
        panic("CPU %d got a profiling interrupt", smp_processor_id());
199
}
200
 
201
static void ip27_hub_error(void)
202
{
203
        panic("CPU %d got a hub error interrupt", smp_processor_id());
204
}
205
 
206
static int intr_connect_level(int cpu, int bit)
207
{
208
        nasid_t nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));
209
        struct slice_data *si = cpu_data[cpu].data;
210
 
211
        set_bit(bit, si->irq_enable_mask);
212
 
213
        if (!cputoslice(cpu)) {
214
                REMOTE_HUB_S(nasid, PI_INT_MASK0_A, si->irq_enable_mask[0]);
215
                REMOTE_HUB_S(nasid, PI_INT_MASK1_A, si->irq_enable_mask[1]);
216
        } else {
217
                REMOTE_HUB_S(nasid, PI_INT_MASK0_B, si->irq_enable_mask[0]);
218
                REMOTE_HUB_S(nasid, PI_INT_MASK1_B, si->irq_enable_mask[1]);
219
        }
220
 
221
        return 0;
222
}
223
 
224
static int intr_disconnect_level(int cpu, int bit)
225
{
226
        nasid_t nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));
227
        struct slice_data *si = cpu_data[cpu].data;
228
 
229
        clear_bit(bit, si->irq_enable_mask);
230
 
231
        if (!cputoslice(cpu)) {
232
                REMOTE_HUB_S(nasid, PI_INT_MASK0_A, si->irq_enable_mask[0]);
233
                REMOTE_HUB_S(nasid, PI_INT_MASK1_A, si->irq_enable_mask[1]);
234
        } else {
235
                REMOTE_HUB_S(nasid, PI_INT_MASK0_B, si->irq_enable_mask[0]);
236
                REMOTE_HUB_S(nasid, PI_INT_MASK1_B, si->irq_enable_mask[1]);
237
        }
238
 
239
        return 0;
240
}
241
 
242
/* Startup one of the (PCI ...) IRQs routes over a bridge.  */
243
static unsigned int startup_bridge_irq(unsigned int irq)
244
{
245
        struct bridge_controller *bc;
246
        bridgereg_t device;
247
        bridge_t *bridge;
248
        int pin, swlevel;
249
        cpuid_t cpu;
250
 
251
        pin = SLOT_FROM_PCI_IRQ(irq);
252
        bc = IRQ_TO_BRIDGE(irq);
253
        bridge = bc->base;
254
 
255
        pr_debug("bridge_startup(): irq= 0x%x  pin=%d\n", irq, pin);
256
        /*
257
         * "map" irq to a swlevel greater than 6 since the first 6 bits
258
         * of INT_PEND0 are taken
259
         */
260
        swlevel = find_level(&cpu, irq);
261
        bridge->b_int_addr[pin].addr = (0x20000 | swlevel | (bc->nasid << 8));
262
        bridge->b_int_enable |= (1 << pin);
263
        bridge->b_int_enable |= 0x7ffffe00;     /* more stuff in int_enable */
264
 
265
        /*
266
         * Enable sending of an interrupt clear packt to the hub on a high to
267
         * low transition of the interrupt pin.
268
         *
269
         * IRIX sets additional bits in the address which are documented as
270
         * reserved in the bridge docs.
271
         */
272
        bridge->b_int_mode |= (1UL << pin);
273
 
274
        /*
275
         * We assume the bridge to have a 1:1 mapping between devices
276
         * (slots) and intr pins.
277
         */
278
        device = bridge->b_int_device;
279
        device &= ~(7 << (pin*3));
280
        device |= (pin << (pin*3));
281
        bridge->b_int_device = device;
282
 
283
        bridge->b_wid_tflush;
284
 
285
        intr_connect_level(cpu, swlevel);
286
 
287
        return 0;       /* Never anything pending.  */
288
}
289
 
290
/* Shutdown one of the (PCI ...) IRQs routes over a bridge.  */
291
static void shutdown_bridge_irq(unsigned int irq)
292
{
293
        struct bridge_controller *bc = IRQ_TO_BRIDGE(irq);
294
        bridge_t *bridge = bc->base;
295
        int pin, swlevel;
296
        cpuid_t cpu;
297
 
298
        pr_debug("bridge_shutdown: irq 0x%x\n", irq);
299
        pin = SLOT_FROM_PCI_IRQ(irq);
300
 
301
        /*
302
         * map irq to a swlevel greater than 6 since the first 6 bits
303
         * of INT_PEND0 are taken
304
         */
305
        swlevel = find_level(&cpu, irq);
306
        intr_disconnect_level(cpu, swlevel);
307
 
308
        bridge->b_int_enable &= ~(1 << pin);
309
        bridge->b_wid_tflush;
310
}
311
 
312
static inline void enable_bridge_irq(unsigned int irq)
313
{
314
        cpuid_t cpu;
315
        int swlevel;
316
 
317
        swlevel = find_level(&cpu, irq);        /* Criminal offence */
318
        intr_connect_level(cpu, swlevel);
319
}
320
 
321
static inline void disable_bridge_irq(unsigned int irq)
322
{
323
        cpuid_t cpu;
324
        int swlevel;
325
 
326
        swlevel = find_level(&cpu, irq);        /* Criminal offence */
327
        intr_disconnect_level(cpu, swlevel);
328
}
329
 
330
static struct irq_chip bridge_irq_type = {
331
        .name           = "bridge",
332
        .startup        = startup_bridge_irq,
333
        .shutdown       = shutdown_bridge_irq,
334
        .ack            = disable_bridge_irq,
335
        .mask           = disable_bridge_irq,
336
        .mask_ack       = disable_bridge_irq,
337
        .unmask         = enable_bridge_irq,
338
};
339
 
340
void __devinit register_bridge_irq(unsigned int irq)
341
{
342
        set_irq_chip_and_handler(irq, &bridge_irq_type, handle_level_irq);
343
}
344
 
345
int __devinit request_bridge_irq(struct bridge_controller *bc)
346
{
347
        int irq = allocate_irqno();
348
        int swlevel, cpu;
349
        nasid_t nasid;
350
 
351
        if (irq < 0)
352
                return irq;
353
 
354
        /*
355
         * "map" irq to a swlevel greater than 6 since the first 6 bits
356
         * of INT_PEND0 are taken
357
         */
358
        cpu = bc->irq_cpu;
359
        swlevel = alloc_level(cpu, irq);
360
        if (unlikely(swlevel < 0)) {
361
                free_irqno(irq);
362
 
363
                return -EAGAIN;
364
        }
365
 
366
        /* Make sure it's not already pending when we connect it. */
367
        nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));
368
        REMOTE_HUB_CLR_INTR(nasid, swlevel);
369
 
370
        intr_connect_level(cpu, swlevel);
371
 
372
        register_bridge_irq(irq);
373
 
374
        return irq;
375
}
376
 
377
asmlinkage void plat_irq_dispatch(void)
378
{
379
        unsigned long pending = read_c0_cause() & read_c0_status();
380
        extern unsigned int rt_timer_irq;
381
 
382
        if (pending & CAUSEF_IP4)
383
                do_IRQ(rt_timer_irq);
384
        else if (pending & CAUSEF_IP2)  /* PI_INT_PEND_0 or CC_PEND_{A|B} */
385
                ip27_do_irq_mask0();
386
        else if (pending & CAUSEF_IP3)  /* PI_INT_PEND_1 */
387
                ip27_do_irq_mask1();
388
        else if (pending & CAUSEF_IP5)
389
                ip27_prof_timer();
390
        else if (pending & CAUSEF_IP6)
391
                ip27_hub_error();
392
}
393
 
394
void __init arch_init_irq(void)
395
{
396
}
397
 
398
void install_ipi(void)
399
{
400
        int slice = LOCAL_HUB_L(PI_CPU_NUM);
401
        int cpu = smp_processor_id();
402
        struct slice_data *si = cpu_data[cpu].data;
403
        struct hub_data *hub = hub_data(cpu_to_node(cpu));
404
        int resched, call;
405
 
406
        resched = CPU_RESCHED_A_IRQ + slice;
407
        __set_bit(resched, hub->irq_alloc_mask);
408
        __set_bit(resched, si->irq_enable_mask);
409
        LOCAL_HUB_CLR_INTR(resched);
410
 
411
        call = CPU_CALL_A_IRQ + slice;
412
        __set_bit(call, hub->irq_alloc_mask);
413
        __set_bit(call, si->irq_enable_mask);
414
        LOCAL_HUB_CLR_INTR(call);
415
 
416
        if (slice == 0) {
417
                LOCAL_HUB_S(PI_INT_MASK0_A, si->irq_enable_mask[0]);
418
                LOCAL_HUB_S(PI_INT_MASK1_A, si->irq_enable_mask[1]);
419
        } else {
420
                LOCAL_HUB_S(PI_INT_MASK0_B, si->irq_enable_mask[0]);
421
                LOCAL_HUB_S(PI_INT_MASK1_B, si->irq_enable_mask[1]);
422
        }
423
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.