OpenCores
URL https://opencores.org/ocsvn/or1k_soc_on_altera_embedded_dev_kit/or1k_soc_on_altera_embedded_dev_kit/trunk

Subversion Repositories or1k_soc_on_altera_embedded_dev_kit

[/] [or1k_soc_on_altera_embedded_dev_kit/] [trunk/] [linux-2.6/] [linux-2.6.24/] [arch/] [powerpc/] [kernel/] [kprobes.c] - Blame information for rev 3

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 3 xianfeng
/*
2
 *  Kernel Probes (KProbes)
3
 *
4
 * This program is free software; you can redistribute it and/or modify
5
 * it under the terms of the GNU General Public License as published by
6
 * the Free Software Foundation; either version 2 of the License, or
7
 * (at your option) any later version.
8
 *
9
 * This program is distributed in the hope that it will be useful,
10
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12
 * GNU General Public License for more details.
13
 *
14
 * You should have received a copy of the GNU General Public License
15
 * along with this program; if not, write to the Free Software
16
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17
 *
18
 * Copyright (C) IBM Corporation, 2002, 2004
19
 *
20
 * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21
 *              Probes initial implementation ( includes contributions from
22
 *              Rusty Russell).
23
 * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24
 *              interface to access function arguments.
25
 * 2004-Nov     Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
26
 *              for PPC64
27
 */
28
 
29
#include <linux/kprobes.h>
30
#include <linux/ptrace.h>
31
#include <linux/preempt.h>
32
#include <linux/module.h>
33
#include <linux/kdebug.h>
34
#include <asm/cacheflush.h>
35
#include <asm/sstep.h>
36
#include <asm/uaccess.h>
37
 
38
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
39
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
40
 
41
struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
42
 
43
int __kprobes arch_prepare_kprobe(struct kprobe *p)
44
{
45
        int ret = 0;
46
        kprobe_opcode_t insn = *p->addr;
47
 
48
        if ((unsigned long)p->addr & 0x03) {
49
                printk("Attempt to register kprobe at an unaligned address\n");
50
                ret = -EINVAL;
51
        } else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) {
52
                printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n");
53
                ret = -EINVAL;
54
        }
55
 
56
        /* insn must be on a special executable page on ppc64 */
57
        if (!ret) {
58
                p->ainsn.insn = get_insn_slot();
59
                if (!p->ainsn.insn)
60
                        ret = -ENOMEM;
61
        }
62
 
63
        if (!ret) {
64
                memcpy(p->ainsn.insn, p->addr,
65
                                MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
66
                p->opcode = *p->addr;
67
                flush_icache_range((unsigned long)p->ainsn.insn,
68
                        (unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
69
        }
70
 
71
        p->ainsn.boostable = 0;
72
        return ret;
73
}
74
 
75
void __kprobes arch_arm_kprobe(struct kprobe *p)
76
{
77
        *p->addr = BREAKPOINT_INSTRUCTION;
78
        flush_icache_range((unsigned long) p->addr,
79
                           (unsigned long) p->addr + sizeof(kprobe_opcode_t));
80
}
81
 
82
void __kprobes arch_disarm_kprobe(struct kprobe *p)
83
{
84
        *p->addr = p->opcode;
85
        flush_icache_range((unsigned long) p->addr,
86
                           (unsigned long) p->addr + sizeof(kprobe_opcode_t));
87
}
88
 
89
void __kprobes arch_remove_kprobe(struct kprobe *p)
90
{
91
        mutex_lock(&kprobe_mutex);
92
        free_insn_slot(p->ainsn.insn, 0);
93
        mutex_unlock(&kprobe_mutex);
94
}
95
 
96
static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
97
{
98
        regs->msr |= MSR_SE;
99
 
100
        /*
101
         * On powerpc we should single step on the original
102
         * instruction even if the probed insn is a trap
103
         * variant as values in regs could play a part in
104
         * if the trap is taken or not
105
         */
106
        regs->nip = (unsigned long)p->ainsn.insn;
107
}
108
 
109
static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
110
{
111
        kcb->prev_kprobe.kp = kprobe_running();
112
        kcb->prev_kprobe.status = kcb->kprobe_status;
113
        kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
114
}
115
 
116
static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
117
{
118
        __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
119
        kcb->kprobe_status = kcb->prev_kprobe.status;
120
        kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
121
}
122
 
123
static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
124
                                struct kprobe_ctlblk *kcb)
125
{
126
        __get_cpu_var(current_kprobe) = p;
127
        kcb->kprobe_saved_msr = regs->msr;
128
}
129
 
130
/* Called with kretprobe_lock held */
131
void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
132
                                      struct pt_regs *regs)
133
{
134
        ri->ret_addr = (kprobe_opcode_t *)regs->link;
135
 
136
        /* Replace the return addr with trampoline addr */
137
        regs->link = (unsigned long)kretprobe_trampoline;
138
}
139
 
140
static int __kprobes kprobe_handler(struct pt_regs *regs)
141
{
142
        struct kprobe *p;
143
        int ret = 0;
144
        unsigned int *addr = (unsigned int *)regs->nip;
145
        struct kprobe_ctlblk *kcb;
146
 
147
        /*
148
         * We don't want to be preempted for the entire
149
         * duration of kprobe processing
150
         */
151
        preempt_disable();
152
        kcb = get_kprobe_ctlblk();
153
 
154
        /* Check we're not actually recursing */
155
        if (kprobe_running()) {
156
                p = get_kprobe(addr);
157
                if (p) {
158
                        kprobe_opcode_t insn = *p->ainsn.insn;
159
                        if (kcb->kprobe_status == KPROBE_HIT_SS &&
160
                                        is_trap(insn)) {
161
                                regs->msr &= ~MSR_SE;
162
                                regs->msr |= kcb->kprobe_saved_msr;
163
                                goto no_kprobe;
164
                        }
165
                        /* We have reentered the kprobe_handler(), since
166
                         * another probe was hit while within the handler.
167
                         * We here save the original kprobes variables and
168
                         * just single step on the instruction of the new probe
169
                         * without calling any user handlers.
170
                         */
171
                        save_previous_kprobe(kcb);
172
                        set_current_kprobe(p, regs, kcb);
173
                        kcb->kprobe_saved_msr = regs->msr;
174
                        kprobes_inc_nmissed_count(p);
175
                        prepare_singlestep(p, regs);
176
                        kcb->kprobe_status = KPROBE_REENTER;
177
                        return 1;
178
                } else {
179
                        if (*addr != BREAKPOINT_INSTRUCTION) {
180
                                /* If trap variant, then it belongs not to us */
181
                                kprobe_opcode_t cur_insn = *addr;
182
                                if (is_trap(cur_insn))
183
                                        goto no_kprobe;
184
                                /* The breakpoint instruction was removed by
185
                                 * another cpu right after we hit, no further
186
                                 * handling of this interrupt is appropriate
187
                                 */
188
                                ret = 1;
189
                                goto no_kprobe;
190
                        }
191
                        p = __get_cpu_var(current_kprobe);
192
                        if (p->break_handler && p->break_handler(p, regs)) {
193
                                goto ss_probe;
194
                        }
195
                }
196
                goto no_kprobe;
197
        }
198
 
199
        p = get_kprobe(addr);
200
        if (!p) {
201
                if (*addr != BREAKPOINT_INSTRUCTION) {
202
                        /*
203
                         * PowerPC has multiple variants of the "trap"
204
                         * instruction. If the current instruction is a
205
                         * trap variant, it could belong to someone else
206
                         */
207
                        kprobe_opcode_t cur_insn = *addr;
208
                        if (is_trap(cur_insn))
209
                                goto no_kprobe;
210
                        /*
211
                         * The breakpoint instruction was removed right
212
                         * after we hit it.  Another cpu has removed
213
                         * either a probepoint or a debugger breakpoint
214
                         * at this address.  In either case, no further
215
                         * handling of this interrupt is appropriate.
216
                         */
217
                        ret = 1;
218
                }
219
                /* Not one of ours: let kernel handle it */
220
                goto no_kprobe;
221
        }
222
 
223
        kcb->kprobe_status = KPROBE_HIT_ACTIVE;
224
        set_current_kprobe(p, regs, kcb);
225
        if (p->pre_handler && p->pre_handler(p, regs))
226
                /* handler has already set things up, so skip ss setup */
227
                return 1;
228
 
229
ss_probe:
230
        if (p->ainsn.boostable >= 0) {
231
                unsigned int insn = *p->ainsn.insn;
232
 
233
                /* regs->nip is also adjusted if emulate_step returns 1 */
234
                ret = emulate_step(regs, insn);
235
                if (ret > 0) {
236
                        /*
237
                         * Once this instruction has been boosted
238
                         * successfully, set the boostable flag
239
                         */
240
                        if (unlikely(p->ainsn.boostable == 0))
241
                                p->ainsn.boostable = 1;
242
 
243
                        if (p->post_handler)
244
                                p->post_handler(p, regs, 0);
245
 
246
                        kcb->kprobe_status = KPROBE_HIT_SSDONE;
247
                        reset_current_kprobe();
248
                        preempt_enable_no_resched();
249
                        return 1;
250
                } else if (ret < 0) {
251
                        /*
252
                         * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
253
                         * So, we should never get here... but, its still
254
                         * good to catch them, just in case...
255
                         */
256
                        printk("Can't step on instruction %x\n", insn);
257
                        BUG();
258
                } else if (ret == 0)
259
                        /* This instruction can't be boosted */
260
                        p->ainsn.boostable = -1;
261
        }
262
        prepare_singlestep(p, regs);
263
        kcb->kprobe_status = KPROBE_HIT_SS;
264
        return 1;
265
 
266
no_kprobe:
267
        preempt_enable_no_resched();
268
        return ret;
269
}
270
 
271
/*
272
 * Function return probe trampoline:
273
 *      - init_kprobes() establishes a probepoint here
274
 *      - When the probed function returns, this probe
275
 *              causes the handlers to fire
276
 */
277
void kretprobe_trampoline_holder(void)
278
{
279
        asm volatile(".global kretprobe_trampoline\n"
280
                        "kretprobe_trampoline:\n"
281
                        "nop\n");
282
}
283
 
284
/*
285
 * Called when the probe at kretprobe trampoline is hit
286
 */
287
int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
288
{
289
        struct kretprobe_instance *ri = NULL;
290
        struct hlist_head *head, empty_rp;
291
        struct hlist_node *node, *tmp;
292
        unsigned long flags, orig_ret_address = 0;
293
        unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
294
 
295
        INIT_HLIST_HEAD(&empty_rp);
296
        spin_lock_irqsave(&kretprobe_lock, flags);
297
        head = kretprobe_inst_table_head(current);
298
 
299
        /*
300
         * It is possible to have multiple instances associated with a given
301
         * task either because an multiple functions in the call path
302
         * have a return probe installed on them, and/or more then one return
303
         * return probe was registered for a target function.
304
         *
305
         * We can handle this because:
306
         *     - instances are always inserted at the head of the list
307
         *     - when multiple return probes are registered for the same
308
         *       function, the first instance's ret_addr will point to the
309
         *       real return address, and all the rest will point to
310
         *       kretprobe_trampoline
311
         */
312
        hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
313
                if (ri->task != current)
314
                        /* another task is sharing our hash bucket */
315
                        continue;
316
 
317
                if (ri->rp && ri->rp->handler)
318
                        ri->rp->handler(ri, regs);
319
 
320
                orig_ret_address = (unsigned long)ri->ret_addr;
321
                recycle_rp_inst(ri, &empty_rp);
322
 
323
                if (orig_ret_address != trampoline_address)
324
                        /*
325
                         * This is the real return address. Any other
326
                         * instances associated with this task are for
327
                         * other calls deeper on the call stack
328
                         */
329
                        break;
330
        }
331
 
332
        kretprobe_assert(ri, orig_ret_address, trampoline_address);
333
        regs->nip = orig_ret_address;
334
 
335
        reset_current_kprobe();
336
        spin_unlock_irqrestore(&kretprobe_lock, flags);
337
        preempt_enable_no_resched();
338
 
339
        hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
340
                hlist_del(&ri->hlist);
341
                kfree(ri);
342
        }
343
        /*
344
         * By returning a non-zero value, we are telling
345
         * kprobe_handler() that we don't want the post_handler
346
         * to run (and have re-enabled preemption)
347
         */
348
        return 1;
349
}
350
 
351
/*
352
 * Called after single-stepping.  p->addr is the address of the
353
 * instruction whose first byte has been replaced by the "breakpoint"
354
 * instruction.  To avoid the SMP problems that can occur when we
355
 * temporarily put back the original opcode to single-step, we
356
 * single-stepped a copy of the instruction.  The address of this
357
 * copy is p->ainsn.insn.
358
 */
359
static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
360
{
361
        int ret;
362
        unsigned int insn = *p->ainsn.insn;
363
 
364
        regs->nip = (unsigned long)p->addr;
365
        ret = emulate_step(regs, insn);
366
        if (ret == 0)
367
                regs->nip = (unsigned long)p->addr + 4;
368
}
369
 
370
static int __kprobes post_kprobe_handler(struct pt_regs *regs)
371
{
372
        struct kprobe *cur = kprobe_running();
373
        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
374
 
375
        if (!cur)
376
                return 0;
377
 
378
        if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
379
                kcb->kprobe_status = KPROBE_HIT_SSDONE;
380
                cur->post_handler(cur, regs, 0);
381
        }
382
 
383
        resume_execution(cur, regs);
384
        regs->msr |= kcb->kprobe_saved_msr;
385
 
386
        /*Restore back the original saved kprobes variables and continue. */
387
        if (kcb->kprobe_status == KPROBE_REENTER) {
388
                restore_previous_kprobe(kcb);
389
                goto out;
390
        }
391
        reset_current_kprobe();
392
out:
393
        preempt_enable_no_resched();
394
 
395
        /*
396
         * if somebody else is singlestepping across a probe point, msr
397
         * will have SE set, in which case, continue the remaining processing
398
         * of do_debug, as if this is not a probe hit.
399
         */
400
        if (regs->msr & MSR_SE)
401
                return 0;
402
 
403
        return 1;
404
}
405
 
406
int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
407
{
408
        struct kprobe *cur = kprobe_running();
409
        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
410
        const struct exception_table_entry *entry;
411
 
412
        switch(kcb->kprobe_status) {
413
        case KPROBE_HIT_SS:
414
        case KPROBE_REENTER:
415
                /*
416
                 * We are here because the instruction being single
417
                 * stepped caused a page fault. We reset the current
418
                 * kprobe and the nip points back to the probe address
419
                 * and allow the page fault handler to continue as a
420
                 * normal page fault.
421
                 */
422
                regs->nip = (unsigned long)cur->addr;
423
                regs->msr &= ~MSR_SE;
424
                regs->msr |= kcb->kprobe_saved_msr;
425
                if (kcb->kprobe_status == KPROBE_REENTER)
426
                        restore_previous_kprobe(kcb);
427
                else
428
                        reset_current_kprobe();
429
                preempt_enable_no_resched();
430
                break;
431
        case KPROBE_HIT_ACTIVE:
432
        case KPROBE_HIT_SSDONE:
433
                /*
434
                 * We increment the nmissed count for accounting,
435
                 * we can also use npre/npostfault count for accouting
436
                 * these specific fault cases.
437
                 */
438
                kprobes_inc_nmissed_count(cur);
439
 
440
                /*
441
                 * We come here because instructions in the pre/post
442
                 * handler caused the page_fault, this could happen
443
                 * if handler tries to access user space by
444
                 * copy_from_user(), get_user() etc. Let the
445
                 * user-specified handler try to fix it first.
446
                 */
447
                if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
448
                        return 1;
449
 
450
                /*
451
                 * In case the user-specified fault handler returned
452
                 * zero, try to fix up.
453
                 */
454
                if ((entry = search_exception_tables(regs->nip)) != NULL) {
455
                        regs->nip = entry->fixup;
456
                        return 1;
457
                }
458
 
459
                /*
460
                 * fixup_exception() could not handle it,
461
                 * Let do_page_fault() fix it.
462
                 */
463
                break;
464
        default:
465
                break;
466
        }
467
        return 0;
468
}
469
 
470
/*
471
 * Wrapper routine to for handling exceptions.
472
 */
473
int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
474
                                       unsigned long val, void *data)
475
{
476
        struct die_args *args = (struct die_args *)data;
477
        int ret = NOTIFY_DONE;
478
 
479
        if (args->regs && user_mode(args->regs))
480
                return ret;
481
 
482
        switch (val) {
483
        case DIE_BPT:
484
                if (kprobe_handler(args->regs))
485
                        ret = NOTIFY_STOP;
486
                break;
487
        case DIE_SSTEP:
488
                if (post_kprobe_handler(args->regs))
489
                        ret = NOTIFY_STOP;
490
                break;
491
        default:
492
                break;
493
        }
494
        return ret;
495
}
496
 
497
#ifdef CONFIG_PPC64
498
unsigned long arch_deref_entry_point(void *entry)
499
{
500
        return (unsigned long)(((func_descr_t *)entry)->entry);
501
}
502
#endif
503
 
504
int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
505
{
506
        struct jprobe *jp = container_of(p, struct jprobe, kp);
507
        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
508
 
509
        memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
510
 
511
        /* setup return addr to the jprobe handler routine */
512
        regs->nip = arch_deref_entry_point(jp->entry);
513
#ifdef CONFIG_PPC64
514
        regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc);
515
#endif
516
 
517
        return 1;
518
}
519
 
520
void __kprobes jprobe_return(void)
521
{
522
        asm volatile("trap" ::: "memory");
523
}
524
 
525
void __kprobes jprobe_return_end(void)
526
{
527
};
528
 
529
int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
530
{
531
        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
532
 
533
        /*
534
         * FIXME - we should ideally be validating that we got here 'cos
535
         * of the "trap" in jprobe_return() above, before restoring the
536
         * saved regs...
537
         */
538
        memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
539
        preempt_enable_no_resched();
540
        return 1;
541
}
542
 
543
static struct kprobe trampoline_p = {
544
        .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
545
        .pre_handler = trampoline_probe_handler
546
};
547
 
548
int __init arch_init_kprobes(void)
549
{
550
        return register_kprobe(&trampoline_p);
551
}
552
 
553
int __kprobes arch_trampoline_kprobe(struct kprobe *p)
554
{
555
        if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
556
                return 1;
557
 
558
        return 0;
559
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.