OpenCores
URL https://opencores.org/ocsvn/or1k_soc_on_altera_embedded_dev_kit/or1k_soc_on_altera_embedded_dev_kit/trunk

Subversion Repositories or1k_soc_on_altera_embedded_dev_kit

[/] [or1k_soc_on_altera_embedded_dev_kit/] [trunk/] [linux-2.6/] [linux-2.6.24/] [arch/] [powerpc/] [kernel/] [time.c] - Blame information for rev 17

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 3 xianfeng
/*
2
 * Common time routines among all ppc machines.
3
 *
4
 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5
 * Paul Mackerras' version and mine for PReP and Pmac.
6
 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7
 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8
 *
9
 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10
 * to make clock more stable (2.4.0-test5). The only thing
11
 * that this code assumes is that the timebases have been synchronized
12
 * by firmware on SMP and are never stopped (never do sleep
13
 * on SMP then, nap and doze are OK).
14
 *
15
 * Speeded up do_gettimeofday by getting rid of references to
16
 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17
 *
18
 * TODO (not necessarily in this file):
19
 * - improve precision and reproducibility of timebase frequency
20
 * measurement at boot time. (for iSeries, we calibrate the timebase
21
 * against the Titan chip's clock.)
22
 * - for astronomical applications: add a new function to get
23
 * non ambiguous timestamps even around leap seconds. This needs
24
 * a new timestamp format and a good name.
25
 *
26
 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
27
 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
28
 *
29
 *      This program is free software; you can redistribute it and/or
30
 *      modify it under the terms of the GNU General Public License
31
 *      as published by the Free Software Foundation; either version
32
 *      2 of the License, or (at your option) any later version.
33
 */
34
 
35
#include <linux/errno.h>
36
#include <linux/module.h>
37
#include <linux/sched.h>
38
#include <linux/kernel.h>
39
#include <linux/param.h>
40
#include <linux/string.h>
41
#include <linux/mm.h>
42
#include <linux/interrupt.h>
43
#include <linux/timex.h>
44
#include <linux/kernel_stat.h>
45
#include <linux/time.h>
46
#include <linux/init.h>
47
#include <linux/profile.h>
48
#include <linux/cpu.h>
49
#include <linux/security.h>
50
#include <linux/percpu.h>
51
#include <linux/rtc.h>
52
#include <linux/jiffies.h>
53
#include <linux/posix-timers.h>
54
#include <linux/irq.h>
55
 
56
#include <asm/io.h>
57
#include <asm/processor.h>
58
#include <asm/nvram.h>
59
#include <asm/cache.h>
60
#include <asm/machdep.h>
61
#include <asm/uaccess.h>
62
#include <asm/time.h>
63
#include <asm/prom.h>
64
#include <asm/irq.h>
65
#include <asm/div64.h>
66
#include <asm/smp.h>
67
#include <asm/vdso_datapage.h>
68
#include <asm/firmware.h>
69
#ifdef CONFIG_PPC_ISERIES
70
#include <asm/iseries/it_lp_queue.h>
71
#include <asm/iseries/hv_call_xm.h>
72
#endif
73
 
74
/* powerpc clocksource/clockevent code */
75
 
76
#include <linux/clockchips.h>
77
#include <linux/clocksource.h>
78
 
79
static cycle_t rtc_read(void);
80
static struct clocksource clocksource_rtc = {
81
        .name         = "rtc",
82
        .rating       = 400,
83
        .flags        = CLOCK_SOURCE_IS_CONTINUOUS,
84
        .mask         = CLOCKSOURCE_MASK(64),
85
        .shift        = 22,
86
        .mult         = 0,       /* To be filled in */
87
        .read         = rtc_read,
88
};
89
 
90
static cycle_t timebase_read(void);
91
static struct clocksource clocksource_timebase = {
92
        .name         = "timebase",
93
        .rating       = 400,
94
        .flags        = CLOCK_SOURCE_IS_CONTINUOUS,
95
        .mask         = CLOCKSOURCE_MASK(64),
96
        .shift        = 22,
97
        .mult         = 0,       /* To be filled in */
98
        .read         = timebase_read,
99
};
100
 
101
#define DECREMENTER_MAX 0x7fffffff
102
 
103
static int decrementer_set_next_event(unsigned long evt,
104
                                      struct clock_event_device *dev);
105
static void decrementer_set_mode(enum clock_event_mode mode,
106
                                 struct clock_event_device *dev);
107
 
108
static struct clock_event_device decrementer_clockevent = {
109
       .name           = "decrementer",
110
       .rating         = 200,
111
       .shift          = 16,
112
       .mult           = 0,      /* To be filled in */
113
       .irq            = 0,
114
       .set_next_event = decrementer_set_next_event,
115
       .set_mode       = decrementer_set_mode,
116
       .features       = CLOCK_EVT_FEAT_ONESHOT,
117
};
118
 
119
static DEFINE_PER_CPU(struct clock_event_device, decrementers);
120
void init_decrementer_clockevent(void);
121
static DEFINE_PER_CPU(u64, decrementer_next_tb);
122
 
123
#ifdef CONFIG_PPC_ISERIES
124
static unsigned long __initdata iSeries_recal_titan;
125
static signed long __initdata iSeries_recal_tb;
126
 
127
/* Forward declaration is only needed for iSereis compiles */
128
void __init clocksource_init(void);
129
#endif
130
 
131
#define XSEC_PER_SEC (1024*1024)
132
 
133
#ifdef CONFIG_PPC64
134
#define SCALE_XSEC(xsec, max)   (((xsec) * max) / XSEC_PER_SEC)
135
#else
136
/* compute ((xsec << 12) * max) >> 32 */
137
#define SCALE_XSEC(xsec, max)   mulhwu((xsec) << 12, max)
138
#endif
139
 
140
unsigned long tb_ticks_per_jiffy;
141
unsigned long tb_ticks_per_usec = 100; /* sane default */
142
EXPORT_SYMBOL(tb_ticks_per_usec);
143
unsigned long tb_ticks_per_sec;
144
EXPORT_SYMBOL(tb_ticks_per_sec);        /* for cputime_t conversions */
145
u64 tb_to_xs;
146
unsigned tb_to_us;
147
 
148
#define TICKLEN_SCALE   TICK_LENGTH_SHIFT
149
u64 last_tick_len;      /* units are ns / 2^TICKLEN_SCALE */
150
u64 ticklen_to_xs;      /* 0.64 fraction */
151
 
152
/* If last_tick_len corresponds to about 1/HZ seconds, then
153
   last_tick_len << TICKLEN_SHIFT will be about 2^63. */
154
#define TICKLEN_SHIFT   (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
155
 
156
DEFINE_SPINLOCK(rtc_lock);
157
EXPORT_SYMBOL_GPL(rtc_lock);
158
 
159
static u64 tb_to_ns_scale __read_mostly;
160
static unsigned tb_to_ns_shift __read_mostly;
161
static unsigned long boot_tb __read_mostly;
162
 
163
struct gettimeofday_struct do_gtod;
164
 
165
extern struct timezone sys_tz;
166
static long timezone_offset;
167
 
168
unsigned long ppc_proc_freq;
169
EXPORT_SYMBOL(ppc_proc_freq);
170
unsigned long ppc_tb_freq;
171
 
172
static u64 tb_last_jiffy __cacheline_aligned_in_smp;
173
static DEFINE_PER_CPU(u64, last_jiffy);
174
 
175
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
176
/*
177
 * Factors for converting from cputime_t (timebase ticks) to
178
 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
179
 * These are all stored as 0.64 fixed-point binary fractions.
180
 */
181
u64 __cputime_jiffies_factor;
182
EXPORT_SYMBOL(__cputime_jiffies_factor);
183
u64 __cputime_msec_factor;
184
EXPORT_SYMBOL(__cputime_msec_factor);
185
u64 __cputime_sec_factor;
186
EXPORT_SYMBOL(__cputime_sec_factor);
187
u64 __cputime_clockt_factor;
188
EXPORT_SYMBOL(__cputime_clockt_factor);
189
 
190
static void calc_cputime_factors(void)
191
{
192
        struct div_result res;
193
 
194
        div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
195
        __cputime_jiffies_factor = res.result_low;
196
        div128_by_32(1000, 0, tb_ticks_per_sec, &res);
197
        __cputime_msec_factor = res.result_low;
198
        div128_by_32(1, 0, tb_ticks_per_sec, &res);
199
        __cputime_sec_factor = res.result_low;
200
        div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
201
        __cputime_clockt_factor = res.result_low;
202
}
203
 
204
/*
205
 * Read the PURR on systems that have it, otherwise the timebase.
206
 */
207
static u64 read_purr(void)
208
{
209
        if (cpu_has_feature(CPU_FTR_PURR))
210
                return mfspr(SPRN_PURR);
211
        return mftb();
212
}
213
 
214
/*
215
 * Read the SPURR on systems that have it, otherwise the purr
216
 */
217
static u64 read_spurr(u64 purr)
218
{
219
        if (cpu_has_feature(CPU_FTR_SPURR))
220
                return mfspr(SPRN_SPURR);
221
        return purr;
222
}
223
 
224
/*
225
 * Account time for a transition between system, hard irq
226
 * or soft irq state.
227
 */
228
void account_system_vtime(struct task_struct *tsk)
229
{
230
        u64 now, nowscaled, delta, deltascaled;
231
        unsigned long flags;
232
 
233
        local_irq_save(flags);
234
        now = read_purr();
235
        delta = now - get_paca()->startpurr;
236
        get_paca()->startpurr = now;
237
        nowscaled = read_spurr(now);
238
        deltascaled = nowscaled - get_paca()->startspurr;
239
        get_paca()->startspurr = nowscaled;
240
        if (!in_interrupt()) {
241
                /* deltascaled includes both user and system time.
242
                 * Hence scale it based on the purr ratio to estimate
243
                 * the system time */
244
                if (get_paca()->user_time)
245
                        deltascaled = deltascaled * get_paca()->system_time /
246
                             (get_paca()->system_time + get_paca()->user_time);
247
                delta += get_paca()->system_time;
248
                get_paca()->system_time = 0;
249
        }
250
        account_system_time(tsk, 0, delta);
251
        get_paca()->purrdelta = delta;
252
        account_system_time_scaled(tsk, deltascaled);
253
        get_paca()->spurrdelta = deltascaled;
254
        local_irq_restore(flags);
255
}
256
 
257
/*
258
 * Transfer the user and system times accumulated in the paca
259
 * by the exception entry and exit code to the generic process
260
 * user and system time records.
261
 * Must be called with interrupts disabled.
262
 */
263
void account_process_tick(struct task_struct *tsk, int user_tick)
264
{
265
        cputime_t utime, utimescaled;
266
 
267
        utime = get_paca()->user_time;
268
        get_paca()->user_time = 0;
269
        account_user_time(tsk, utime);
270
 
271
        /* Estimate the scaled utime by scaling the real utime based
272
         * on the last spurr to purr ratio */
273
        utimescaled = utime * get_paca()->spurrdelta / get_paca()->purrdelta;
274
        get_paca()->spurrdelta = get_paca()->purrdelta = 0;
275
        account_user_time_scaled(tsk, utimescaled);
276
}
277
 
278
/*
279
 * Stuff for accounting stolen time.
280
 */
281
struct cpu_purr_data {
282
        int     initialized;                    /* thread is running */
283
        u64     tb;                     /* last TB value read */
284
        u64     purr;                   /* last PURR value read */
285
        u64     spurr;                  /* last SPURR value read */
286
};
287
 
288
/*
289
 * Each entry in the cpu_purr_data array is manipulated only by its
290
 * "owner" cpu -- usually in the timer interrupt but also occasionally
291
 * in process context for cpu online.  As long as cpus do not touch
292
 * each others' cpu_purr_data, disabling local interrupts is
293
 * sufficient to serialize accesses.
294
 */
295
static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
296
 
297
static void snapshot_tb_and_purr(void *data)
298
{
299
        unsigned long flags;
300
        struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
301
 
302
        local_irq_save(flags);
303
        p->tb = get_tb_or_rtc();
304
        p->purr = mfspr(SPRN_PURR);
305
        wmb();
306
        p->initialized = 1;
307
        local_irq_restore(flags);
308
}
309
 
310
/*
311
 * Called during boot when all cpus have come up.
312
 */
313
void snapshot_timebases(void)
314
{
315
        if (!cpu_has_feature(CPU_FTR_PURR))
316
                return;
317
        on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
318
}
319
 
320
/*
321
 * Must be called with interrupts disabled.
322
 */
323
void calculate_steal_time(void)
324
{
325
        u64 tb, purr;
326
        s64 stolen;
327
        struct cpu_purr_data *pme;
328
 
329
        if (!cpu_has_feature(CPU_FTR_PURR))
330
                return;
331
        pme = &per_cpu(cpu_purr_data, smp_processor_id());
332
        if (!pme->initialized)
333
                return;         /* this can happen in early boot */
334
        tb = mftb();
335
        purr = mfspr(SPRN_PURR);
336
        stolen = (tb - pme->tb) - (purr - pme->purr);
337
        if (stolen > 0)
338
                account_steal_time(current, stolen);
339
        pme->tb = tb;
340
        pme->purr = purr;
341
}
342
 
343
#ifdef CONFIG_PPC_SPLPAR
344
/*
345
 * Must be called before the cpu is added to the online map when
346
 * a cpu is being brought up at runtime.
347
 */
348
static void snapshot_purr(void)
349
{
350
        struct cpu_purr_data *pme;
351
        unsigned long flags;
352
 
353
        if (!cpu_has_feature(CPU_FTR_PURR))
354
                return;
355
        local_irq_save(flags);
356
        pme = &per_cpu(cpu_purr_data, smp_processor_id());
357
        pme->tb = mftb();
358
        pme->purr = mfspr(SPRN_PURR);
359
        pme->initialized = 1;
360
        local_irq_restore(flags);
361
}
362
 
363
#endif /* CONFIG_PPC_SPLPAR */
364
 
365
#else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
366
#define calc_cputime_factors()
367
#define calculate_steal_time()          do { } while (0)
368
#endif
369
 
370
#if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
371
#define snapshot_purr()                 do { } while (0)
372
#endif
373
 
374
/*
375
 * Called when a cpu comes up after the system has finished booting,
376
 * i.e. as a result of a hotplug cpu action.
377
 */
378
void snapshot_timebase(void)
379
{
380
        __get_cpu_var(last_jiffy) = get_tb_or_rtc();
381
        snapshot_purr();
382
}
383
 
384
void __delay(unsigned long loops)
385
{
386
        unsigned long start;
387
        int diff;
388
 
389
        if (__USE_RTC()) {
390
                start = get_rtcl();
391
                do {
392
                        /* the RTCL register wraps at 1000000000 */
393
                        diff = get_rtcl() - start;
394
                        if (diff < 0)
395
                                diff += 1000000000;
396
                } while (diff < loops);
397
        } else {
398
                start = get_tbl();
399
                while (get_tbl() - start < loops)
400
                        HMT_low();
401
                HMT_medium();
402
        }
403
}
404
EXPORT_SYMBOL(__delay);
405
 
406
void udelay(unsigned long usecs)
407
{
408
        __delay(tb_ticks_per_usec * usecs);
409
}
410
EXPORT_SYMBOL(udelay);
411
 
412
 
413
/*
414
 * There are two copies of tb_to_xs and stamp_xsec so that no
415
 * lock is needed to access and use these values in
416
 * do_gettimeofday.  We alternate the copies and as long as a
417
 * reasonable time elapses between changes, there will never
418
 * be inconsistent values.  ntpd has a minimum of one minute
419
 * between updates.
420
 */
421
static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
422
                               u64 new_tb_to_xs)
423
{
424
        unsigned temp_idx;
425
        struct gettimeofday_vars *temp_varp;
426
 
427
        temp_idx = (do_gtod.var_idx == 0);
428
        temp_varp = &do_gtod.vars[temp_idx];
429
 
430
        temp_varp->tb_to_xs = new_tb_to_xs;
431
        temp_varp->tb_orig_stamp = new_tb_stamp;
432
        temp_varp->stamp_xsec = new_stamp_xsec;
433
        smp_mb();
434
        do_gtod.varp = temp_varp;
435
        do_gtod.var_idx = temp_idx;
436
 
437
        /*
438
         * tb_update_count is used to allow the userspace gettimeofday code
439
         * to assure itself that it sees a consistent view of the tb_to_xs and
440
         * stamp_xsec variables.  It reads the tb_update_count, then reads
441
         * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
442
         * the two values of tb_update_count match and are even then the
443
         * tb_to_xs and stamp_xsec values are consistent.  If not, then it
444
         * loops back and reads them again until this criteria is met.
445
         * We expect the caller to have done the first increment of
446
         * vdso_data->tb_update_count already.
447
         */
448
        vdso_data->tb_orig_stamp = new_tb_stamp;
449
        vdso_data->stamp_xsec = new_stamp_xsec;
450
        vdso_data->tb_to_xs = new_tb_to_xs;
451
        vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
452
        vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
453
        smp_wmb();
454
        ++(vdso_data->tb_update_count);
455
}
456
 
457
#ifdef CONFIG_SMP
458
unsigned long profile_pc(struct pt_regs *regs)
459
{
460
        unsigned long pc = instruction_pointer(regs);
461
 
462
        if (in_lock_functions(pc))
463
                return regs->link;
464
 
465
        return pc;
466
}
467
EXPORT_SYMBOL(profile_pc);
468
#endif
469
 
470
#ifdef CONFIG_PPC_ISERIES
471
 
472
/*
473
 * This function recalibrates the timebase based on the 49-bit time-of-day
474
 * value in the Titan chip.  The Titan is much more accurate than the value
475
 * returned by the service processor for the timebase frequency.
476
 */
477
 
478
static int __init iSeries_tb_recal(void)
479
{
480
        struct div_result divres;
481
        unsigned long titan, tb;
482
 
483
        /* Make sure we only run on iSeries */
484
        if (!firmware_has_feature(FW_FEATURE_ISERIES))
485
                return -ENODEV;
486
 
487
        tb = get_tb();
488
        titan = HvCallXm_loadTod();
489
        if ( iSeries_recal_titan ) {
490
                unsigned long tb_ticks = tb - iSeries_recal_tb;
491
                unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
492
                unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec;
493
                unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
494
                long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
495
                char sign = '+';
496
                /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
497
                new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
498
 
499
                if ( tick_diff < 0 ) {
500
                        tick_diff = -tick_diff;
501
                        sign = '-';
502
                }
503
                if ( tick_diff ) {
504
                        if ( tick_diff < tb_ticks_per_jiffy/25 ) {
505
                                printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
506
                                                new_tb_ticks_per_jiffy, sign, tick_diff );
507
                                tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
508
                                tb_ticks_per_sec   = new_tb_ticks_per_sec;
509
                                calc_cputime_factors();
510
                                div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
511
                                do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
512
                                tb_to_xs = divres.result_low;
513
                                do_gtod.varp->tb_to_xs = tb_to_xs;
514
                                vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
515
                                vdso_data->tb_to_xs = tb_to_xs;
516
                        }
517
                        else {
518
                                printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
519
                                        "                   new tb_ticks_per_jiffy = %lu\n"
520
                                        "                   old tb_ticks_per_jiffy = %lu\n",
521
                                        new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
522
                        }
523
                }
524
        }
525
        iSeries_recal_titan = titan;
526
        iSeries_recal_tb = tb;
527
 
528
        /* Called here as now we know accurate values for the timebase */
529
        clocksource_init();
530
        return 0;
531
}
532
late_initcall(iSeries_tb_recal);
533
 
534
/* Called from platform early init */
535
void __init iSeries_time_init_early(void)
536
{
537
        iSeries_recal_tb = get_tb();
538
        iSeries_recal_titan = HvCallXm_loadTod();
539
}
540
#endif /* CONFIG_PPC_ISERIES */
541
 
542
/*
543
 * For iSeries shared processors, we have to let the hypervisor
544
 * set the hardware decrementer.  We set a virtual decrementer
545
 * in the lppaca and call the hypervisor if the virtual
546
 * decrementer is less than the current value in the hardware
547
 * decrementer. (almost always the new decrementer value will
548
 * be greater than the current hardware decementer so the hypervisor
549
 * call will not be needed)
550
 */
551
 
552
/*
553
 * timer_interrupt - gets called when the decrementer overflows,
554
 * with interrupts disabled.
555
 */
556
void timer_interrupt(struct pt_regs * regs)
557
{
558
        struct pt_regs *old_regs;
559
        int cpu = smp_processor_id();
560
        struct clock_event_device *evt = &per_cpu(decrementers, cpu);
561
        u64 now;
562
 
563
        /* Ensure a positive value is written to the decrementer, or else
564
         * some CPUs will continuue to take decrementer exceptions */
565
        set_dec(DECREMENTER_MAX);
566
 
567
#ifdef CONFIG_PPC32
568
        if (atomic_read(&ppc_n_lost_interrupts) != 0)
569
                do_IRQ(regs);
570
#endif
571
 
572
        now = get_tb_or_rtc();
573
        if (now < per_cpu(decrementer_next_tb, cpu)) {
574
                /* not time for this event yet */
575
                now = per_cpu(decrementer_next_tb, cpu) - now;
576
                if (now <= DECREMENTER_MAX)
577
                        set_dec((int)now);
578
                return;
579
        }
580
        old_regs = set_irq_regs(regs);
581
        irq_enter();
582
 
583
        calculate_steal_time();
584
 
585
#ifdef CONFIG_PPC_ISERIES
586
        if (firmware_has_feature(FW_FEATURE_ISERIES))
587
                get_lppaca()->int_dword.fields.decr_int = 0;
588
#endif
589
 
590
        if (evt->event_handler)
591
                evt->event_handler(evt);
592
 
593
#ifdef CONFIG_PPC_ISERIES
594
        if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
595
                process_hvlpevents();
596
#endif
597
 
598
#ifdef CONFIG_PPC64
599
        /* collect purr register values often, for accurate calculations */
600
        if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
601
                struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
602
                cu->current_tb = mfspr(SPRN_PURR);
603
        }
604
#endif
605
 
606
        irq_exit();
607
        set_irq_regs(old_regs);
608
}
609
 
610
void wakeup_decrementer(void)
611
{
612
        unsigned long ticks;
613
 
614
        /*
615
         * The timebase gets saved on sleep and restored on wakeup,
616
         * so all we need to do is to reset the decrementer.
617
         */
618
        ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
619
        if (ticks < tb_ticks_per_jiffy)
620
                ticks = tb_ticks_per_jiffy - ticks;
621
        else
622
                ticks = 1;
623
        set_dec(ticks);
624
}
625
 
626
#ifdef CONFIG_SMP
627
void __init smp_space_timers(unsigned int max_cpus)
628
{
629
        int i;
630
        u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
631
 
632
        /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
633
        previous_tb -= tb_ticks_per_jiffy;
634
 
635
        for_each_possible_cpu(i) {
636
                if (i == boot_cpuid)
637
                        continue;
638
                per_cpu(last_jiffy, i) = previous_tb;
639
        }
640
}
641
#endif
642
 
643
/*
644
 * Scheduler clock - returns current time in nanosec units.
645
 *
646
 * Note: mulhdu(a, b) (multiply high double unsigned) returns
647
 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
648
 * are 64-bit unsigned numbers.
649
 */
650
unsigned long long sched_clock(void)
651
{
652
        if (__USE_RTC())
653
                return get_rtc();
654
        return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
655
}
656
 
657
static int __init get_freq(char *name, int cells, unsigned long *val)
658
{
659
        struct device_node *cpu;
660
        const unsigned int *fp;
661
        int found = 0;
662
 
663
        /* The cpu node should have timebase and clock frequency properties */
664
        cpu = of_find_node_by_type(NULL, "cpu");
665
 
666
        if (cpu) {
667
                fp = of_get_property(cpu, name, NULL);
668
                if (fp) {
669
                        found = 1;
670
                        *val = of_read_ulong(fp, cells);
671
                }
672
 
673
                of_node_put(cpu);
674
        }
675
 
676
        return found;
677
}
678
 
679
void __init generic_calibrate_decr(void)
680
{
681
        ppc_tb_freq = DEFAULT_TB_FREQ;          /* hardcoded default */
682
 
683
        if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
684
            !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
685
 
686
                printk(KERN_ERR "WARNING: Estimating decrementer frequency "
687
                                "(not found)\n");
688
        }
689
 
690
        ppc_proc_freq = DEFAULT_PROC_FREQ;      /* hardcoded default */
691
 
692
        if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
693
            !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
694
 
695
                printk(KERN_ERR "WARNING: Estimating processor frequency "
696
                                "(not found)\n");
697
        }
698
 
699
#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
700
        /* Set the time base to zero */
701
        mtspr(SPRN_TBWL, 0);
702
        mtspr(SPRN_TBWU, 0);
703
 
704
        /* Clear any pending timer interrupts */
705
        mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
706
 
707
        /* Enable decrementer interrupt */
708
        mtspr(SPRN_TCR, TCR_DIE);
709
#endif
710
}
711
 
712
int update_persistent_clock(struct timespec now)
713
{
714
        struct rtc_time tm;
715
 
716
        if (!ppc_md.set_rtc_time)
717
                return 0;
718
 
719
        to_tm(now.tv_sec + 1 + timezone_offset, &tm);
720
        tm.tm_year -= 1900;
721
        tm.tm_mon -= 1;
722
 
723
        return ppc_md.set_rtc_time(&tm);
724
}
725
 
726
unsigned long read_persistent_clock(void)
727
{
728
        struct rtc_time tm;
729
        static int first = 1;
730
 
731
        /* XXX this is a litle fragile but will work okay in the short term */
732
        if (first) {
733
                first = 0;
734
                if (ppc_md.time_init)
735
                        timezone_offset = ppc_md.time_init();
736
 
737
                /* get_boot_time() isn't guaranteed to be safe to call late */
738
                if (ppc_md.get_boot_time)
739
                        return ppc_md.get_boot_time() -timezone_offset;
740
        }
741
        if (!ppc_md.get_rtc_time)
742
                return 0;
743
        ppc_md.get_rtc_time(&tm);
744
        return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
745
                      tm.tm_hour, tm.tm_min, tm.tm_sec);
746
}
747
 
748
/* clocksource code */
749
static cycle_t rtc_read(void)
750
{
751
        return (cycle_t)get_rtc();
752
}
753
 
754
static cycle_t timebase_read(void)
755
{
756
        return (cycle_t)get_tb();
757
}
758
 
759
void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
760
{
761
        u64 t2x, stamp_xsec;
762
 
763
        if (clock != &clocksource_timebase)
764
                return;
765
 
766
        /* Make userspace gettimeofday spin until we're done. */
767
        ++vdso_data->tb_update_count;
768
        smp_mb();
769
 
770
        /* XXX this assumes clock->shift == 22 */
771
        /* 4611686018 ~= 2^(20+64-22) / 1e9 */
772
        t2x = (u64) clock->mult * 4611686018ULL;
773
        stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
774
        do_div(stamp_xsec, 1000000000);
775
        stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
776
        update_gtod(clock->cycle_last, stamp_xsec, t2x);
777
}
778
 
779
void update_vsyscall_tz(void)
780
{
781
        /* Make userspace gettimeofday spin until we're done. */
782
        ++vdso_data->tb_update_count;
783
        smp_mb();
784
        vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
785
        vdso_data->tz_dsttime = sys_tz.tz_dsttime;
786
        smp_mb();
787
        ++vdso_data->tb_update_count;
788
}
789
 
790
void __init clocksource_init(void)
791
{
792
        struct clocksource *clock;
793
 
794
        if (__USE_RTC())
795
                clock = &clocksource_rtc;
796
        else
797
                clock = &clocksource_timebase;
798
 
799
        clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
800
 
801
        if (clocksource_register(clock)) {
802
                printk(KERN_ERR "clocksource: %s is already registered\n",
803
                       clock->name);
804
                return;
805
        }
806
 
807
        printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
808
               clock->name, clock->mult, clock->shift);
809
}
810
 
811
static int decrementer_set_next_event(unsigned long evt,
812
                                      struct clock_event_device *dev)
813
{
814
        __get_cpu_var(decrementer_next_tb) = get_tb_or_rtc() + evt;
815
        set_dec(evt);
816
        return 0;
817
}
818
 
819
static void decrementer_set_mode(enum clock_event_mode mode,
820
                                 struct clock_event_device *dev)
821
{
822
        if (mode != CLOCK_EVT_MODE_ONESHOT)
823
                decrementer_set_next_event(DECREMENTER_MAX, dev);
824
}
825
 
826
static void register_decrementer_clockevent(int cpu)
827
{
828
        struct clock_event_device *dec = &per_cpu(decrementers, cpu);
829
 
830
        *dec = decrementer_clockevent;
831
        dec->cpumask = cpumask_of_cpu(cpu);
832
 
833
        printk(KERN_DEBUG "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n",
834
               dec->name, dec->mult, dec->shift, cpu);
835
 
836
        clockevents_register_device(dec);
837
}
838
 
839
void init_decrementer_clockevent(void)
840
{
841
        int cpu = smp_processor_id();
842
 
843
        decrementer_clockevent.mult = div_sc(ppc_tb_freq, NSEC_PER_SEC,
844
                                             decrementer_clockevent.shift);
845
        decrementer_clockevent.max_delta_ns =
846
                clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
847
        decrementer_clockevent.min_delta_ns =
848
                clockevent_delta2ns(2, &decrementer_clockevent);
849
 
850
        register_decrementer_clockevent(cpu);
851
}
852
 
853
void secondary_cpu_time_init(void)
854
{
855
        /* FIME: Should make unrelatred change to move snapshot_timebase
856
         * call here ! */
857
        register_decrementer_clockevent(smp_processor_id());
858
}
859
 
860
/* This function is only called on the boot processor */
861
void __init time_init(void)
862
{
863
        unsigned long flags;
864
        struct div_result res;
865
        u64 scale, x;
866
        unsigned shift;
867
 
868
        if (__USE_RTC()) {
869
                /* 601 processor: dec counts down by 128 every 128ns */
870
                ppc_tb_freq = 1000000000;
871
                tb_last_jiffy = get_rtcl();
872
        } else {
873
                /* Normal PowerPC with timebase register */
874
                ppc_md.calibrate_decr();
875
                printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
876
                       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
877
                printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
878
                       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
879
                tb_last_jiffy = get_tb();
880
        }
881
 
882
        tb_ticks_per_jiffy = ppc_tb_freq / HZ;
883
        tb_ticks_per_sec = ppc_tb_freq;
884
        tb_ticks_per_usec = ppc_tb_freq / 1000000;
885
        tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
886
        calc_cputime_factors();
887
 
888
        /*
889
         * Calculate the length of each tick in ns.  It will not be
890
         * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
891
         * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
892
         * rounded up.
893
         */
894
        x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
895
        do_div(x, ppc_tb_freq);
896
        tick_nsec = x;
897
        last_tick_len = x << TICKLEN_SCALE;
898
 
899
        /*
900
         * Compute ticklen_to_xs, which is a factor which gets multiplied
901
         * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
902
         * It is computed as:
903
         * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
904
         * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
905
         * which turns out to be N = 51 - SHIFT_HZ.
906
         * This gives the result as a 0.64 fixed-point fraction.
907
         * That value is reduced by an offset amounting to 1 xsec per
908
         * 2^31 timebase ticks to avoid problems with time going backwards
909
         * by 1 xsec when we do timer_recalc_offset due to losing the
910
         * fractional xsec.  That offset is equal to ppc_tb_freq/2^51
911
         * since there are 2^20 xsec in a second.
912
         */
913
        div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
914
                     tb_ticks_per_jiffy << SHIFT_HZ, &res);
915
        div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
916
        ticklen_to_xs = res.result_low;
917
 
918
        /* Compute tb_to_xs from tick_nsec */
919
        tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
920
 
921
        /*
922
         * Compute scale factor for sched_clock.
923
         * The calibrate_decr() function has set tb_ticks_per_sec,
924
         * which is the timebase frequency.
925
         * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
926
         * the 128-bit result as a 64.64 fixed-point number.
927
         * We then shift that number right until it is less than 1.0,
928
         * giving us the scale factor and shift count to use in
929
         * sched_clock().
930
         */
931
        div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
932
        scale = res.result_low;
933
        for (shift = 0; res.result_high != 0; ++shift) {
934
                scale = (scale >> 1) | (res.result_high << 63);
935
                res.result_high >>= 1;
936
        }
937
        tb_to_ns_scale = scale;
938
        tb_to_ns_shift = shift;
939
        /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
940
        boot_tb = get_tb_or_rtc();
941
 
942
        write_seqlock_irqsave(&xtime_lock, flags);
943
 
944
        /* If platform provided a timezone (pmac), we correct the time */
945
        if (timezone_offset) {
946
                sys_tz.tz_minuteswest = -timezone_offset / 60;
947
                sys_tz.tz_dsttime = 0;
948
        }
949
 
950
        do_gtod.varp = &do_gtod.vars[0];
951
        do_gtod.var_idx = 0;
952
        do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
953
        __get_cpu_var(last_jiffy) = tb_last_jiffy;
954
        do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
955
        do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
956
        do_gtod.varp->tb_to_xs = tb_to_xs;
957
        do_gtod.tb_to_us = tb_to_us;
958
 
959
        vdso_data->tb_orig_stamp = tb_last_jiffy;
960
        vdso_data->tb_update_count = 0;
961
        vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
962
        vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
963
        vdso_data->tb_to_xs = tb_to_xs;
964
 
965
        time_freq = 0;
966
 
967
        write_sequnlock_irqrestore(&xtime_lock, flags);
968
 
969
        /* Register the clocksource, if we're not running on iSeries */
970
        if (!firmware_has_feature(FW_FEATURE_ISERIES))
971
                clocksource_init();
972
 
973
        init_decrementer_clockevent();
974
}
975
 
976
 
977
#define FEBRUARY        2
978
#define STARTOFTIME     1970
979
#define SECDAY          86400L
980
#define SECYR           (SECDAY * 365)
981
#define leapyear(year)          ((year) % 4 == 0 && \
982
                                 ((year) % 100 != 0 || (year) % 400 == 0))
983
#define days_in_year(a)         (leapyear(a) ? 366 : 365)
984
#define days_in_month(a)        (month_days[(a) - 1])
985
 
986
static int month_days[12] = {
987
        31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
988
};
989
 
990
/*
991
 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
992
 */
993
void GregorianDay(struct rtc_time * tm)
994
{
995
        int leapsToDate;
996
        int lastYear;
997
        int day;
998
        int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
999
 
1000
        lastYear = tm->tm_year - 1;
1001
 
1002
        /*
1003
         * Number of leap corrections to apply up to end of last year
1004
         */
1005
        leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1006
 
1007
        /*
1008
         * This year is a leap year if it is divisible by 4 except when it is
1009
         * divisible by 100 unless it is divisible by 400
1010
         *
1011
         * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1012
         */
1013
        day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1014
 
1015
        day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1016
                   tm->tm_mday;
1017
 
1018
        tm->tm_wday = day % 7;
1019
}
1020
 
1021
void to_tm(int tim, struct rtc_time * tm)
1022
{
1023
        register int    i;
1024
        register long   hms, day;
1025
 
1026
        day = tim / SECDAY;
1027
        hms = tim % SECDAY;
1028
 
1029
        /* Hours, minutes, seconds are easy */
1030
        tm->tm_hour = hms / 3600;
1031
        tm->tm_min = (hms % 3600) / 60;
1032
        tm->tm_sec = (hms % 3600) % 60;
1033
 
1034
        /* Number of years in days */
1035
        for (i = STARTOFTIME; day >= days_in_year(i); i++)
1036
                day -= days_in_year(i);
1037
        tm->tm_year = i;
1038
 
1039
        /* Number of months in days left */
1040
        if (leapyear(tm->tm_year))
1041
                days_in_month(FEBRUARY) = 29;
1042
        for (i = 1; day >= days_in_month(i); i++)
1043
                day -= days_in_month(i);
1044
        days_in_month(FEBRUARY) = 28;
1045
        tm->tm_mon = i;
1046
 
1047
        /* Days are what is left over (+1) from all that. */
1048
        tm->tm_mday = day + 1;
1049
 
1050
        /*
1051
         * Determine the day of week
1052
         */
1053
        GregorianDay(tm);
1054
}
1055
 
1056
/* Auxiliary function to compute scaling factors */
1057
/* Actually the choice of a timebase running at 1/4 the of the bus
1058
 * frequency giving resolution of a few tens of nanoseconds is quite nice.
1059
 * It makes this computation very precise (27-28 bits typically) which
1060
 * is optimistic considering the stability of most processor clock
1061
 * oscillators and the precision with which the timebase frequency
1062
 * is measured but does not harm.
1063
 */
1064
unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1065
{
1066
        unsigned mlt=0, tmp, err;
1067
        /* No concern for performance, it's done once: use a stupid
1068
         * but safe and compact method to find the multiplier.
1069
         */
1070
 
1071
        for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1072
                if (mulhwu(inscale, mlt|tmp) < outscale)
1073
                        mlt |= tmp;
1074
        }
1075
 
1076
        /* We might still be off by 1 for the best approximation.
1077
         * A side effect of this is that if outscale is too large
1078
         * the returned value will be zero.
1079
         * Many corner cases have been checked and seem to work,
1080
         * some might have been forgotten in the test however.
1081
         */
1082
 
1083
        err = inscale * (mlt+1);
1084
        if (err <= inscale/2)
1085
                mlt++;
1086
        return mlt;
1087
}
1088
 
1089
/*
1090
 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1091
 * result.
1092
 */
1093
void div128_by_32(u64 dividend_high, u64 dividend_low,
1094
                  unsigned divisor, struct div_result *dr)
1095
{
1096
        unsigned long a, b, c, d;
1097
        unsigned long w, x, y, z;
1098
        u64 ra, rb, rc;
1099
 
1100
        a = dividend_high >> 32;
1101
        b = dividend_high & 0xffffffff;
1102
        c = dividend_low >> 32;
1103
        d = dividend_low & 0xffffffff;
1104
 
1105
        w = a / divisor;
1106
        ra = ((u64)(a - (w * divisor)) << 32) + b;
1107
 
1108
        rb = ((u64) do_div(ra, divisor) << 32) + c;
1109
        x = ra;
1110
 
1111
        rc = ((u64) do_div(rb, divisor) << 32) + d;
1112
        y = rb;
1113
 
1114
        do_div(rc, divisor);
1115
        z = rc;
1116
 
1117
        dr->result_high = ((u64)w << 32) + x;
1118
        dr->result_low  = ((u64)y << 32) + z;
1119
 
1120
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.