OpenCores
URL https://opencores.org/ocsvn/or1k_soc_on_altera_embedded_dev_kit/or1k_soc_on_altera_embedded_dev_kit/trunk

Subversion Repositories or1k_soc_on_altera_embedded_dev_kit

[/] [or1k_soc_on_altera_embedded_dev_kit/] [trunk/] [linux-2.6/] [linux-2.6.24/] [arch/] [sparc/] [lib/] [udiv.S] - Blame information for rev 3

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 3 xianfeng
/* $Id: udiv.S,v 1.4 1996/09/30 02:22:38 davem Exp $
2
 * udiv.S:      This routine was taken from glibc-1.09 and is covered
3
 *              by the GNU Library General Public License Version 2.
4
 */
5
 
6
 
7
/* This file is generated from divrem.m4; DO NOT EDIT! */
8
/*
9
 * Division and remainder, from Appendix E of the Sparc Version 8
10
 * Architecture Manual, with fixes from Gordon Irlam.
11
 */
12
 
13
/*
14
 * Input: dividend and divisor in %o0 and %o1 respectively.
15
 *
16
 * m4 parameters:
17
 *  .udiv       name of function to generate
18
 *  div         div=div => %o0 / %o1; div=rem => %o0 % %o1
19
 *  false               false=true => signed; false=false => unsigned
20
 *
21
 * Algorithm parameters:
22
 *  N           how many bits per iteration we try to get (4)
23
 *  WORDSIZE    total number of bits (32)
24
 *
25
 * Derived constants:
26
 *  TOPBITS     number of bits in the top decade of a number
27
 *
28
 * Important variables:
29
 *  Q           the partial quotient under development (initially 0)
30
 *  R           the remainder so far, initially the dividend
31
 *  ITER        number of main division loop iterations required;
32
 *              equal to ceil(log2(quotient) / N).  Note that this
33
 *              is the log base (2^N) of the quotient.
34
 *  V           the current comparand, initially divisor*2^(ITER*N-1)
35
 *
36
 * Cost:
37
 *  Current estimate for non-large dividend is
38
 *      ceil(log2(quotient) / N) * (10 + 7N/2) + C
39
 *  A large dividend is one greater than 2^(31-TOPBITS) and takes a
40
 *  different path, as the upper bits of the quotient must be developed
41
 *  one bit at a time.
42
 */
43
 
44
 
45
        .globl .udiv
46
        .globl _Udiv
47
.udiv:
48
_Udiv:  /* needed for export */
49
 
50
        ! Ready to divide.  Compute size of quotient; scale comparand.
51
        orcc    %o1, %g0, %o5
52
        bne     1f
53
         mov    %o0, %o3
54
 
55
                ! Divide by zero trap.  If it returns, return 0 (about as
56
                ! wrong as possible, but that is what SunOS does...).
57
                ta      ST_DIV0
58
                retl
59
                 clr    %o0
60
 
61
1:
62
        cmp     %o3, %o5                        ! if %o1 exceeds %o0, done
63
        blu     Lgot_result             ! (and algorithm fails otherwise)
64
         clr    %o2
65
 
66
        sethi   %hi(1 << (32 - 4 - 1)), %g1
67
 
68
        cmp     %o3, %g1
69
        blu     Lnot_really_big
70
         clr    %o4
71
 
72
        ! Here the dividend is >= 2**(31-N) or so.  We must be careful here,
73
        ! as our usual N-at-a-shot divide step will cause overflow and havoc.
74
        ! The number of bits in the result here is N*ITER+SC, where SC <= N.
75
        ! Compute ITER in an unorthodox manner: know we need to shift V into
76
        ! the top decade: so do not even bother to compare to R.
77
        1:
78
                cmp     %o5, %g1
79
                bgeu    3f
80
                 mov    1, %g7
81
 
82
                sll     %o5, 4, %o5
83
 
84
                b       1b
85
                 add    %o4, 1, %o4
86
 
87
        ! Now compute %g7.
88
        2:
89
                addcc   %o5, %o5, %o5
90
                bcc     Lnot_too_big
91
                 add    %g7, 1, %g7
92
 
93
                ! We get here if the %o1 overflowed while shifting.
94
                ! This means that %o3 has the high-order bit set.
95
                ! Restore %o5 and subtract from %o3.
96
                sll     %g1, 4, %g1     ! high order bit
97
                srl     %o5, 1, %o5             ! rest of %o5
98
                add     %o5, %g1, %o5
99
 
100
                b       Ldo_single_div
101
                 sub    %g7, 1, %g7
102
 
103
        Lnot_too_big:
104
        3:
105
                cmp     %o5, %o3
106
                blu     2b
107
                 nop
108
 
109
                be      Ldo_single_div
110
                 nop
111
        /* NB: these are commented out in the V8-Sparc manual as well */
112
        /* (I do not understand this) */
113
        ! %o5 > %o3: went too far: back up 1 step
114
        !       srl     %o5, 1, %o5
115
        !       dec     %g7
116
        ! do single-bit divide steps
117
        !
118
        ! We have to be careful here.  We know that %o3 >= %o5, so we can do the
119
        ! first divide step without thinking.  BUT, the others are conditional,
120
        ! and are only done if %o3 >= 0.  Because both %o3 and %o5 may have the high-
121
        ! order bit set in the first step, just falling into the regular
122
        ! division loop will mess up the first time around.
123
        ! So we unroll slightly...
124
        Ldo_single_div:
125
                subcc   %g7, 1, %g7
126
                bl      Lend_regular_divide
127
                 nop
128
 
129
                sub     %o3, %o5, %o3
130
                mov     1, %o2
131
 
132
                b       Lend_single_divloop
133
                 nop
134
        Lsingle_divloop:
135
                sll     %o2, 1, %o2
136
                bl      1f
137
                 srl    %o5, 1, %o5
138
                ! %o3 >= 0
139
                sub     %o3, %o5, %o3
140
                b       2f
141
                 add    %o2, 1, %o2
142
        1:      ! %o3 < 0
143
                add     %o3, %o5, %o3
144
                sub     %o2, 1, %o2
145
        2:
146
        Lend_single_divloop:
147
                subcc   %g7, 1, %g7
148
                bge     Lsingle_divloop
149
                 tst    %o3
150
 
151
                b,a     Lend_regular_divide
152
 
153
Lnot_really_big:
154
1:
155
        sll     %o5, 4, %o5
156
 
157
        cmp     %o5, %o3
158
        bleu    1b
159
         addcc  %o4, 1, %o4
160
 
161
        be      Lgot_result
162
         sub    %o4, 1, %o4
163
 
164
        tst     %o3     ! set up for initial iteration
165
Ldivloop:
166
        sll     %o2, 4, %o2
167
                ! depth 1, accumulated bits 0
168
        bl      L.1.16
169
         srl    %o5,1,%o5
170
        ! remainder is positive
171
        subcc   %o3,%o5,%o3
172
                        ! depth 2, accumulated bits 1
173
        bl      L.2.17
174
         srl    %o5,1,%o5
175
        ! remainder is positive
176
        subcc   %o3,%o5,%o3
177
                        ! depth 3, accumulated bits 3
178
        bl      L.3.19
179
         srl    %o5,1,%o5
180
        ! remainder is positive
181
        subcc   %o3,%o5,%o3
182
                        ! depth 4, accumulated bits 7
183
        bl      L.4.23
184
         srl    %o5,1,%o5
185
        ! remainder is positive
186
        subcc   %o3,%o5,%o3
187
        b       9f
188
         add    %o2, (7*2+1), %o2
189
 
190
L.4.23:
191
        ! remainder is negative
192
        addcc   %o3,%o5,%o3
193
        b       9f
194
         add    %o2, (7*2-1), %o2
195
 
196
L.3.19:
197
        ! remainder is negative
198
        addcc   %o3,%o5,%o3
199
                        ! depth 4, accumulated bits 5
200
        bl      L.4.21
201
         srl    %o5,1,%o5
202
        ! remainder is positive
203
        subcc   %o3,%o5,%o3
204
        b       9f
205
         add    %o2, (5*2+1), %o2
206
 
207
L.4.21:
208
        ! remainder is negative
209
        addcc   %o3,%o5,%o3
210
        b       9f
211
         add    %o2, (5*2-1), %o2
212
 
213
L.2.17:
214
        ! remainder is negative
215
        addcc   %o3,%o5,%o3
216
                        ! depth 3, accumulated bits 1
217
        bl      L.3.17
218
         srl    %o5,1,%o5
219
        ! remainder is positive
220
        subcc   %o3,%o5,%o3
221
                        ! depth 4, accumulated bits 3
222
        bl      L.4.19
223
         srl    %o5,1,%o5
224
        ! remainder is positive
225
        subcc   %o3,%o5,%o3
226
        b       9f
227
         add    %o2, (3*2+1), %o2
228
 
229
L.4.19:
230
        ! remainder is negative
231
        addcc   %o3,%o5,%o3
232
        b       9f
233
         add    %o2, (3*2-1), %o2
234
 
235
L.3.17:
236
        ! remainder is negative
237
        addcc   %o3,%o5,%o3
238
                        ! depth 4, accumulated bits 1
239
        bl      L.4.17
240
         srl    %o5,1,%o5
241
        ! remainder is positive
242
        subcc   %o3,%o5,%o3
243
        b       9f
244
         add    %o2, (1*2+1), %o2
245
 
246
L.4.17:
247
        ! remainder is negative
248
        addcc   %o3,%o5,%o3
249
        b       9f
250
         add    %o2, (1*2-1), %o2
251
 
252
L.1.16:
253
        ! remainder is negative
254
        addcc   %o3,%o5,%o3
255
                        ! depth 2, accumulated bits -1
256
        bl      L.2.15
257
         srl    %o5,1,%o5
258
        ! remainder is positive
259
        subcc   %o3,%o5,%o3
260
                        ! depth 3, accumulated bits -1
261
        bl      L.3.15
262
         srl    %o5,1,%o5
263
        ! remainder is positive
264
        subcc   %o3,%o5,%o3
265
                        ! depth 4, accumulated bits -1
266
        bl      L.4.15
267
         srl    %o5,1,%o5
268
        ! remainder is positive
269
        subcc   %o3,%o5,%o3
270
        b       9f
271
         add    %o2, (-1*2+1), %o2
272
 
273
L.4.15:
274
        ! remainder is negative
275
        addcc   %o3,%o5,%o3
276
        b       9f
277
         add    %o2, (-1*2-1), %o2
278
 
279
L.3.15:
280
        ! remainder is negative
281
        addcc   %o3,%o5,%o3
282
                        ! depth 4, accumulated bits -3
283
        bl      L.4.13
284
         srl    %o5,1,%o5
285
        ! remainder is positive
286
        subcc   %o3,%o5,%o3
287
        b       9f
288
         add    %o2, (-3*2+1), %o2
289
 
290
L.4.13:
291
        ! remainder is negative
292
        addcc   %o3,%o5,%o3
293
        b       9f
294
         add    %o2, (-3*2-1), %o2
295
 
296
L.2.15:
297
        ! remainder is negative
298
        addcc   %o3,%o5,%o3
299
                        ! depth 3, accumulated bits -3
300
        bl      L.3.13
301
         srl    %o5,1,%o5
302
        ! remainder is positive
303
        subcc   %o3,%o5,%o3
304
                        ! depth 4, accumulated bits -5
305
        bl      L.4.11
306
         srl    %o5,1,%o5
307
        ! remainder is positive
308
        subcc   %o3,%o5,%o3
309
        b       9f
310
         add    %o2, (-5*2+1), %o2
311
 
312
L.4.11:
313
        ! remainder is negative
314
        addcc   %o3,%o5,%o3
315
        b       9f
316
         add    %o2, (-5*2-1), %o2
317
 
318
L.3.13:
319
        ! remainder is negative
320
        addcc   %o3,%o5,%o3
321
                        ! depth 4, accumulated bits -7
322
        bl      L.4.9
323
         srl    %o5,1,%o5
324
        ! remainder is positive
325
        subcc   %o3,%o5,%o3
326
        b       9f
327
         add    %o2, (-7*2+1), %o2
328
 
329
L.4.9:
330
        ! remainder is negative
331
        addcc   %o3,%o5,%o3
332
        b       9f
333
         add    %o2, (-7*2-1), %o2
334
 
335
        9:
336
Lend_regular_divide:
337
        subcc   %o4, 1, %o4
338
        bge     Ldivloop
339
         tst    %o3
340
 
341
        bl,a    Lgot_result
342
        ! non-restoring fixup here (one instruction only!)
343
        sub     %o2, 1, %o2
344
 
345
Lgot_result:
346
 
347
        retl
348
         mov %o2, %o0
349
 
350
        .globl  .udiv_patch
351
.udiv_patch:
352
        wr      %g0, 0x0, %y
353
        nop
354
        nop
355
        retl
356
         udiv   %o0, %o1, %o0
357
        nop

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.