OpenCores
URL https://opencores.org/ocsvn/or1k_soc_on_altera_embedded_dev_kit/or1k_soc_on_altera_embedded_dev_kit/trunk

Subversion Repositories or1k_soc_on_altera_embedded_dev_kit

[/] [or1k_soc_on_altera_embedded_dev_kit/] [trunk/] [linux-2.6/] [linux-2.6.24/] [arch/] [sparc/] [lib/] [umul.S] - Blame information for rev 3

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 3 xianfeng
/* $Id: umul.S,v 1.4 1996/09/30 02:22:39 davem Exp $
2
 * umul.S:      This routine was taken from glibc-1.09 and is covered
3
 *              by the GNU Library General Public License Version 2.
4
 */
5
 
6
 
7
/*
8
 * Unsigned multiply.  Returns %o0 * %o1 in %o1%o0 (i.e., %o1 holds the
9
 * upper 32 bits of the 64-bit product).
10
 *
11
 * This code optimizes short (less than 13-bit) multiplies.  Short
12
 * multiplies require 25 instruction cycles, and long ones require
13
 * 45 instruction cycles.
14
 *
15
 * On return, overflow has occurred (%o1 is not zero) if and only if
16
 * the Z condition code is clear, allowing, e.g., the following:
17
 *
18
 *      call    .umul
19
 *      nop
20
 *      bnz     overflow        (or tnz)
21
 */
22
 
23
        .globl .umul
24
        .globl _Umul
25
.umul:
26
_Umul:  /* needed for export */
27
        or      %o0, %o1, %o4
28
        mov     %o0, %y         ! multiplier -> Y
29
 
30
        andncc  %o4, 0xfff, %g0 ! test bits 12..31 of *both* args
31
        be      Lmul_shortway   ! if zero, can do it the short way
32
         andcc  %g0, %g0, %o4   ! zero the partial product and clear N and V
33
 
34
        /*
35
         * Long multiply.  32 steps, followed by a final shift step.
36
         */
37
        mulscc  %o4, %o1, %o4   ! 1
38
        mulscc  %o4, %o1, %o4   ! 2
39
        mulscc  %o4, %o1, %o4   ! 3
40
        mulscc  %o4, %o1, %o4   ! 4
41
        mulscc  %o4, %o1, %o4   ! 5
42
        mulscc  %o4, %o1, %o4   ! 6
43
        mulscc  %o4, %o1, %o4   ! 7
44
        mulscc  %o4, %o1, %o4   ! 8
45
        mulscc  %o4, %o1, %o4   ! 9
46
        mulscc  %o4, %o1, %o4   ! 10
47
        mulscc  %o4, %o1, %o4   ! 11
48
        mulscc  %o4, %o1, %o4   ! 12
49
        mulscc  %o4, %o1, %o4   ! 13
50
        mulscc  %o4, %o1, %o4   ! 14
51
        mulscc  %o4, %o1, %o4   ! 15
52
        mulscc  %o4, %o1, %o4   ! 16
53
        mulscc  %o4, %o1, %o4   ! 17
54
        mulscc  %o4, %o1, %o4   ! 18
55
        mulscc  %o4, %o1, %o4   ! 19
56
        mulscc  %o4, %o1, %o4   ! 20
57
        mulscc  %o4, %o1, %o4   ! 21
58
        mulscc  %o4, %o1, %o4   ! 22
59
        mulscc  %o4, %o1, %o4   ! 23
60
        mulscc  %o4, %o1, %o4   ! 24
61
        mulscc  %o4, %o1, %o4   ! 25
62
        mulscc  %o4, %o1, %o4   ! 26
63
        mulscc  %o4, %o1, %o4   ! 27
64
        mulscc  %o4, %o1, %o4   ! 28
65
        mulscc  %o4, %o1, %o4   ! 29
66
        mulscc  %o4, %o1, %o4   ! 30
67
        mulscc  %o4, %o1, %o4   ! 31
68
        mulscc  %o4, %o1, %o4   ! 32
69
        mulscc  %o4, %g0, %o4   ! final shift
70
 
71
 
72
        /*
73
         * Normally, with the shift-and-add approach, if both numbers are
74
         * positive you get the correct result.  With 32-bit two's-complement
75
         * numbers, -x is represented as
76
         *
77
         *                x                 32
78
         *      ( 2  -  ------ ) mod 2  *  2
79
         *                 32
80
         *                2
81
         *
82
         * (the `mod 2' subtracts 1 from 1.bbbb).  To avoid lots of 2^32s,
83
         * we can treat this as if the radix point were just to the left
84
         * of the sign bit (multiply by 2^32), and get
85
         *
86
         *      -x  =  (2 - x) mod 2
87
         *
88
         * Then, ignoring the `mod 2's for convenience:
89
         *
90
         *   x *  y     = xy
91
         *  -x *  y     = 2y - xy
92
         *   x * -y     = 2x - xy
93
         *  -x * -y     = 4 - 2x - 2y + xy
94
         *
95
         * For signed multiplies, we subtract (x << 32) from the partial
96
         * product to fix this problem for negative multipliers (see mul.s).
97
         * Because of the way the shift into the partial product is calculated
98
         * (N xor V), this term is automatically removed for the multiplicand,
99
         * so we don't have to adjust.
100
         *
101
         * But for unsigned multiplies, the high order bit wasn't a sign bit,
102
         * and the correction is wrong.  So for unsigned multiplies where the
103
         * high order bit is one, we end up with xy - (y << 32).  To fix it
104
         * we add y << 32.
105
         */
106
#if 0
107
        tst     %o1
108
        bl,a    1f              ! if %o1 < 0 (high order bit = 1),
109
         add    %o4, %o0, %o4   ! %o4 += %o0 (add y to upper half)
110
 
111
1:
112
        rd      %y, %o0         ! get lower half of product
113
        retl
114
         addcc  %o4, %g0, %o1   ! put upper half in place and set Z for %o1==0
115
#else
116
        /* Faster code from tege@sics.se.  */
117
        sra     %o1, 31, %o2    ! make mask from sign bit
118
        and     %o0, %o2, %o2   ! %o2 = 0 or %o0, depending on sign of %o1
119
        rd      %y, %o0         ! get lower half of product
120
        retl
121
         addcc  %o4, %o2, %o1   ! add compensation and put upper half in place
122
#endif
123
 
124
Lmul_shortway:
125
        /*
126
         * Short multiply.  12 steps, followed by a final shift step.
127
         * The resulting bits are off by 12 and (32-12) = 20 bit positions,
128
         * but there is no problem with %o0 being negative (unlike above),
129
         * and overflow is impossible (the answer is at most 24 bits long).
130
         */
131
        mulscc  %o4, %o1, %o4   ! 1
132
        mulscc  %o4, %o1, %o4   ! 2
133
        mulscc  %o4, %o1, %o4   ! 3
134
        mulscc  %o4, %o1, %o4   ! 4
135
        mulscc  %o4, %o1, %o4   ! 5
136
        mulscc  %o4, %o1, %o4   ! 6
137
        mulscc  %o4, %o1, %o4   ! 7
138
        mulscc  %o4, %o1, %o4   ! 8
139
        mulscc  %o4, %o1, %o4   ! 9
140
        mulscc  %o4, %o1, %o4   ! 10
141
        mulscc  %o4, %o1, %o4   ! 11
142
        mulscc  %o4, %o1, %o4   ! 12
143
        mulscc  %o4, %g0, %o4   ! final shift
144
 
145
        /*
146
         * %o4 has 20 of the bits that should be in the result; %y has
147
         * the bottom 12 (as %y's top 12).  That is:
148
         *
149
         *        %o4               %y
150
         * +----------------+----------------+
151
         * | -12- |   -20-  | -12- |   -20-  |
152
         * +------(---------+------)---------+
153
         *         -----result-----
154
         *
155
         * The 12 bits of %o4 left of the `result' area are all zero;
156
         * in fact, all top 20 bits of %o4 are zero.
157
         */
158
 
159
        rd      %y, %o5
160
        sll     %o4, 12, %o0    ! shift middle bits left 12
161
        srl     %o5, 20, %o5    ! shift low bits right 20
162
        or      %o5, %o0, %o0
163
        retl
164
         addcc  %g0, %g0, %o1   ! %o1 = zero, and set Z
165
 
166
        .globl  .umul_patch
167
.umul_patch:
168
        umul    %o0, %o1, %o0
169
        retl
170
         rd     %y, %o1
171
        nop

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.