OpenCores
URL https://opencores.org/ocsvn/or1k_soc_on_altera_embedded_dev_kit/or1k_soc_on_altera_embedded_dev_kit/trunk

Subversion Repositories or1k_soc_on_altera_embedded_dev_kit

[/] [or1k_soc_on_altera_embedded_dev_kit/] [trunk/] [linux-2.6/] [linux-2.6.24/] [arch/] [x86/] [kernel/] [hpet.c] - Blame information for rev 3

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 3 xianfeng
#include <linux/clocksource.h>
2
#include <linux/clockchips.h>
3
#include <linux/delay.h>
4
#include <linux/errno.h>
5
#include <linux/hpet.h>
6
#include <linux/init.h>
7
#include <linux/sysdev.h>
8
#include <linux/pm.h>
9
#include <linux/delay.h>
10
 
11
#include <asm/fixmap.h>
12
#include <asm/hpet.h>
13
#include <asm/i8253.h>
14
#include <asm/io.h>
15
 
16
#define HPET_MASK       CLOCKSOURCE_MASK(32)
17
#define HPET_SHIFT      22
18
 
19
/* FSEC = 10^-15 NSEC = 10^-9 */
20
#define FSEC_PER_NSEC   1000000
21
 
22
/*
23
 * HPET address is set in acpi/boot.c, when an ACPI entry exists
24
 */
25
unsigned long hpet_address;
26
static void __iomem *hpet_virt_address;
27
 
28
unsigned long hpet_readl(unsigned long a)
29
{
30
        return readl(hpet_virt_address + a);
31
}
32
 
33
static inline void hpet_writel(unsigned long d, unsigned long a)
34
{
35
        writel(d, hpet_virt_address + a);
36
}
37
 
38
#ifdef CONFIG_X86_64
39
 
40
#include <asm/pgtable.h>
41
 
42
static inline void hpet_set_mapping(void)
43
{
44
        set_fixmap_nocache(FIX_HPET_BASE, hpet_address);
45
        __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
46
        hpet_virt_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE);
47
}
48
 
49
static inline void hpet_clear_mapping(void)
50
{
51
        hpet_virt_address = NULL;
52
}
53
 
54
#else
55
 
56
static inline void hpet_set_mapping(void)
57
{
58
        hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
59
}
60
 
61
static inline void hpet_clear_mapping(void)
62
{
63
        iounmap(hpet_virt_address);
64
        hpet_virt_address = NULL;
65
}
66
#endif
67
 
68
/*
69
 * HPET command line enable / disable
70
 */
71
static int boot_hpet_disable;
72
int hpet_force_user;
73
 
74
static int __init hpet_setup(char* str)
75
{
76
        if (str) {
77
                if (!strncmp("disable", str, 7))
78
                        boot_hpet_disable = 1;
79
                if (!strncmp("force", str, 5))
80
                        hpet_force_user = 1;
81
        }
82
        return 1;
83
}
84
__setup("hpet=", hpet_setup);
85
 
86
static int __init disable_hpet(char *str)
87
{
88
        boot_hpet_disable = 1;
89
        return 1;
90
}
91
__setup("nohpet", disable_hpet);
92
 
93
static inline int is_hpet_capable(void)
94
{
95
        return (!boot_hpet_disable && hpet_address);
96
}
97
 
98
/*
99
 * HPET timer interrupt enable / disable
100
 */
101
static int hpet_legacy_int_enabled;
102
 
103
/**
104
 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
105
 */
106
int is_hpet_enabled(void)
107
{
108
        return is_hpet_capable() && hpet_legacy_int_enabled;
109
}
110
 
111
/*
112
 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
113
 * timer 0 and timer 1 in case of RTC emulation.
114
 */
115
#ifdef CONFIG_HPET
116
static void hpet_reserve_platform_timers(unsigned long id)
117
{
118
        struct hpet __iomem *hpet = hpet_virt_address;
119
        struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
120
        unsigned int nrtimers, i;
121
        struct hpet_data hd;
122
 
123
        nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
124
 
125
        memset(&hd, 0, sizeof (hd));
126
        hd.hd_phys_address = hpet_address;
127
        hd.hd_address = hpet;
128
        hd.hd_nirqs = nrtimers;
129
        hd.hd_flags = HPET_DATA_PLATFORM;
130
        hpet_reserve_timer(&hd, 0);
131
 
132
#ifdef CONFIG_HPET_EMULATE_RTC
133
        hpet_reserve_timer(&hd, 1);
134
#endif
135
 
136
        hd.hd_irq[0] = HPET_LEGACY_8254;
137
        hd.hd_irq[1] = HPET_LEGACY_RTC;
138
 
139
        for (i = 2; i < nrtimers; timer++, i++)
140
                hd.hd_irq[i] = (timer->hpet_config & Tn_INT_ROUTE_CNF_MASK) >>
141
                        Tn_INT_ROUTE_CNF_SHIFT;
142
 
143
        hpet_alloc(&hd);
144
 
145
}
146
#else
147
static void hpet_reserve_platform_timers(unsigned long id) { }
148
#endif
149
 
150
/*
151
 * Common hpet info
152
 */
153
static unsigned long hpet_period;
154
 
155
static void hpet_legacy_set_mode(enum clock_event_mode mode,
156
                          struct clock_event_device *evt);
157
static int hpet_legacy_next_event(unsigned long delta,
158
                           struct clock_event_device *evt);
159
 
160
/*
161
 * The hpet clock event device
162
 */
163
static struct clock_event_device hpet_clockevent = {
164
        .name           = "hpet",
165
        .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
166
        .set_mode       = hpet_legacy_set_mode,
167
        .set_next_event = hpet_legacy_next_event,
168
        .shift          = 32,
169
        .irq            = 0,
170
        .rating         = 50,
171
};
172
 
173
static void hpet_start_counter(void)
174
{
175
        unsigned long cfg = hpet_readl(HPET_CFG);
176
 
177
        cfg &= ~HPET_CFG_ENABLE;
178
        hpet_writel(cfg, HPET_CFG);
179
        hpet_writel(0, HPET_COUNTER);
180
        hpet_writel(0, HPET_COUNTER + 4);
181
        cfg |= HPET_CFG_ENABLE;
182
        hpet_writel(cfg, HPET_CFG);
183
}
184
 
185
static void hpet_resume_device(void)
186
{
187
        force_hpet_resume();
188
}
189
 
190
static void hpet_restart_counter(void)
191
{
192
        hpet_resume_device();
193
        hpet_start_counter();
194
}
195
 
196
static void hpet_enable_legacy_int(void)
197
{
198
        unsigned long cfg = hpet_readl(HPET_CFG);
199
 
200
        cfg |= HPET_CFG_LEGACY;
201
        hpet_writel(cfg, HPET_CFG);
202
        hpet_legacy_int_enabled = 1;
203
}
204
 
205
static void hpet_legacy_clockevent_register(void)
206
{
207
        uint64_t hpet_freq;
208
 
209
        /* Start HPET legacy interrupts */
210
        hpet_enable_legacy_int();
211
 
212
        /*
213
         * The period is a femto seconds value. We need to calculate the
214
         * scaled math multiplication factor for nanosecond to hpet tick
215
         * conversion.
216
         */
217
        hpet_freq = 1000000000000000ULL;
218
        do_div(hpet_freq, hpet_period);
219
        hpet_clockevent.mult = div_sc((unsigned long) hpet_freq,
220
                                      NSEC_PER_SEC, 32);
221
        /* Calculate the min / max delta */
222
        hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
223
                                                           &hpet_clockevent);
224
        hpet_clockevent.min_delta_ns = clockevent_delta2ns(0x30,
225
                                                           &hpet_clockevent);
226
 
227
        /*
228
         * Start hpet with the boot cpu mask and make it
229
         * global after the IO_APIC has been initialized.
230
         */
231
        hpet_clockevent.cpumask = cpumask_of_cpu(smp_processor_id());
232
        clockevents_register_device(&hpet_clockevent);
233
        global_clock_event = &hpet_clockevent;
234
        printk(KERN_DEBUG "hpet clockevent registered\n");
235
}
236
 
237
static void hpet_legacy_set_mode(enum clock_event_mode mode,
238
                          struct clock_event_device *evt)
239
{
240
        unsigned long cfg, cmp, now;
241
        uint64_t delta;
242
 
243
        switch(mode) {
244
        case CLOCK_EVT_MODE_PERIODIC:
245
                delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * hpet_clockevent.mult;
246
                delta >>= hpet_clockevent.shift;
247
                now = hpet_readl(HPET_COUNTER);
248
                cmp = now + (unsigned long) delta;
249
                cfg = hpet_readl(HPET_T0_CFG);
250
                cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
251
                       HPET_TN_SETVAL | HPET_TN_32BIT;
252
                hpet_writel(cfg, HPET_T0_CFG);
253
                /*
254
                 * The first write after writing TN_SETVAL to the
255
                 * config register sets the counter value, the second
256
                 * write sets the period.
257
                 */
258
                hpet_writel(cmp, HPET_T0_CMP);
259
                udelay(1);
260
                hpet_writel((unsigned long) delta, HPET_T0_CMP);
261
                break;
262
 
263
        case CLOCK_EVT_MODE_ONESHOT:
264
                cfg = hpet_readl(HPET_T0_CFG);
265
                cfg &= ~HPET_TN_PERIODIC;
266
                cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
267
                hpet_writel(cfg, HPET_T0_CFG);
268
                break;
269
 
270
        case CLOCK_EVT_MODE_UNUSED:
271
        case CLOCK_EVT_MODE_SHUTDOWN:
272
                cfg = hpet_readl(HPET_T0_CFG);
273
                cfg &= ~HPET_TN_ENABLE;
274
                hpet_writel(cfg, HPET_T0_CFG);
275
                break;
276
 
277
        case CLOCK_EVT_MODE_RESUME:
278
                hpet_enable_legacy_int();
279
                break;
280
        }
281
}
282
 
283
static int hpet_legacy_next_event(unsigned long delta,
284
                           struct clock_event_device *evt)
285
{
286
        unsigned long cnt;
287
 
288
        cnt = hpet_readl(HPET_COUNTER);
289
        cnt += delta;
290
        hpet_writel(cnt, HPET_T0_CMP);
291
 
292
        return ((long)(hpet_readl(HPET_COUNTER) - cnt ) > 0) ? -ETIME : 0;
293
}
294
 
295
/*
296
 * Clock source related code
297
 */
298
static cycle_t read_hpet(void)
299
{
300
        return (cycle_t)hpet_readl(HPET_COUNTER);
301
}
302
 
303
#ifdef CONFIG_X86_64
304
static cycle_t __vsyscall_fn vread_hpet(void)
305
{
306
        return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
307
}
308
#endif
309
 
310
static struct clocksource clocksource_hpet = {
311
        .name           = "hpet",
312
        .rating         = 250,
313
        .read           = read_hpet,
314
        .mask           = HPET_MASK,
315
        .shift          = HPET_SHIFT,
316
        .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
317
        .resume         = hpet_restart_counter,
318
#ifdef CONFIG_X86_64
319
        .vread          = vread_hpet,
320
#endif
321
};
322
 
323
static int hpet_clocksource_register(void)
324
{
325
        u64 tmp, start, now;
326
        cycle_t t1;
327
 
328
        /* Start the counter */
329
        hpet_start_counter();
330
 
331
        /* Verify whether hpet counter works */
332
        t1 = read_hpet();
333
        rdtscll(start);
334
 
335
        /*
336
         * We don't know the TSC frequency yet, but waiting for
337
         * 200000 TSC cycles is safe:
338
         * 4 GHz == 50us
339
         * 1 GHz == 200us
340
         */
341
        do {
342
                rep_nop();
343
                rdtscll(now);
344
        } while ((now - start) < 200000UL);
345
 
346
        if (t1 == read_hpet()) {
347
                printk(KERN_WARNING
348
                       "HPET counter not counting. HPET disabled\n");
349
                return -ENODEV;
350
        }
351
 
352
        /* Initialize and register HPET clocksource
353
         *
354
         * hpet period is in femto seconds per cycle
355
         * so we need to convert this to ns/cyc units
356
         * approximated by mult/2^shift
357
         *
358
         *  fsec/cyc * 1nsec/1000000fsec = nsec/cyc = mult/2^shift
359
         *  fsec/cyc * 1ns/1000000fsec * 2^shift = mult
360
         *  fsec/cyc * 2^shift * 1nsec/1000000fsec = mult
361
         *  (fsec/cyc << shift)/1000000 = mult
362
         *  (hpet_period << shift)/FSEC_PER_NSEC = mult
363
         */
364
        tmp = (u64)hpet_period << HPET_SHIFT;
365
        do_div(tmp, FSEC_PER_NSEC);
366
        clocksource_hpet.mult = (u32)tmp;
367
 
368
        clocksource_register(&clocksource_hpet);
369
 
370
        return 0;
371
}
372
 
373
/*
374
 * Try to setup the HPET timer
375
 */
376
int __init hpet_enable(void)
377
{
378
        unsigned long id;
379
 
380
        if (!is_hpet_capable())
381
                return 0;
382
 
383
        hpet_set_mapping();
384
 
385
        /*
386
         * Read the period and check for a sane value:
387
         */
388
        hpet_period = hpet_readl(HPET_PERIOD);
389
        if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
390
                goto out_nohpet;
391
 
392
        /*
393
         * Read the HPET ID register to retrieve the IRQ routing
394
         * information and the number of channels
395
         */
396
        id = hpet_readl(HPET_ID);
397
 
398
#ifdef CONFIG_HPET_EMULATE_RTC
399
        /*
400
         * The legacy routing mode needs at least two channels, tick timer
401
         * and the rtc emulation channel.
402
         */
403
        if (!(id & HPET_ID_NUMBER))
404
                goto out_nohpet;
405
#endif
406
 
407
        if (hpet_clocksource_register())
408
                goto out_nohpet;
409
 
410
        if (id & HPET_ID_LEGSUP) {
411
                hpet_legacy_clockevent_register();
412
                return 1;
413
        }
414
        return 0;
415
 
416
out_nohpet:
417
        hpet_clear_mapping();
418
        boot_hpet_disable = 1;
419
        return 0;
420
}
421
 
422
/*
423
 * Needs to be late, as the reserve_timer code calls kalloc !
424
 *
425
 * Not a problem on i386 as hpet_enable is called from late_time_init,
426
 * but on x86_64 it is necessary !
427
 */
428
static __init int hpet_late_init(void)
429
{
430
        if (boot_hpet_disable)
431
                return -ENODEV;
432
 
433
        if (!hpet_address) {
434
                if (!force_hpet_address)
435
                        return -ENODEV;
436
 
437
                hpet_address = force_hpet_address;
438
                hpet_enable();
439
                if (!hpet_virt_address)
440
                        return -ENODEV;
441
        }
442
 
443
        hpet_reserve_platform_timers(hpet_readl(HPET_ID));
444
 
445
        return 0;
446
}
447
fs_initcall(hpet_late_init);
448
 
449
void hpet_disable(void)
450
{
451
        if (is_hpet_capable()) {
452
                unsigned long cfg = hpet_readl(HPET_CFG);
453
 
454
                if (hpet_legacy_int_enabled) {
455
                        cfg &= ~HPET_CFG_LEGACY;
456
                        hpet_legacy_int_enabled = 0;
457
                }
458
                cfg &= ~HPET_CFG_ENABLE;
459
                hpet_writel(cfg, HPET_CFG);
460
        }
461
}
462
 
463
#ifdef CONFIG_HPET_EMULATE_RTC
464
 
465
/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
466
 * is enabled, we support RTC interrupt functionality in software.
467
 * RTC has 3 kinds of interrupts:
468
 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
469
 *    is updated
470
 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
471
 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
472
 *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
473
 * (1) and (2) above are implemented using polling at a frequency of
474
 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
475
 * overhead. (DEFAULT_RTC_INT_FREQ)
476
 * For (3), we use interrupts at 64Hz or user specified periodic
477
 * frequency, whichever is higher.
478
 */
479
#include <linux/mc146818rtc.h>
480
#include <linux/rtc.h>
481
 
482
#define DEFAULT_RTC_INT_FREQ    64
483
#define DEFAULT_RTC_SHIFT       6
484
#define RTC_NUM_INTS            1
485
 
486
static unsigned long hpet_rtc_flags;
487
static unsigned long hpet_prev_update_sec;
488
static struct rtc_time hpet_alarm_time;
489
static unsigned long hpet_pie_count;
490
static unsigned long hpet_t1_cmp;
491
static unsigned long hpet_default_delta;
492
static unsigned long hpet_pie_delta;
493
static unsigned long hpet_pie_limit;
494
 
495
/*
496
 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
497
 * is not supported by all HPET implementations for timer 1.
498
 *
499
 * hpet_rtc_timer_init() is called when the rtc is initialized.
500
 */
501
int hpet_rtc_timer_init(void)
502
{
503
        unsigned long cfg, cnt, delta, flags;
504
 
505
        if (!is_hpet_enabled())
506
                return 0;
507
 
508
        if (!hpet_default_delta) {
509
                uint64_t clc;
510
 
511
                clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
512
                clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
513
                hpet_default_delta = (unsigned long) clc;
514
        }
515
 
516
        if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
517
                delta = hpet_default_delta;
518
        else
519
                delta = hpet_pie_delta;
520
 
521
        local_irq_save(flags);
522
 
523
        cnt = delta + hpet_readl(HPET_COUNTER);
524
        hpet_writel(cnt, HPET_T1_CMP);
525
        hpet_t1_cmp = cnt;
526
 
527
        cfg = hpet_readl(HPET_T1_CFG);
528
        cfg &= ~HPET_TN_PERIODIC;
529
        cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
530
        hpet_writel(cfg, HPET_T1_CFG);
531
 
532
        local_irq_restore(flags);
533
 
534
        return 1;
535
}
536
 
537
/*
538
 * The functions below are called from rtc driver.
539
 * Return 0 if HPET is not being used.
540
 * Otherwise do the necessary changes and return 1.
541
 */
542
int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
543
{
544
        if (!is_hpet_enabled())
545
                return 0;
546
 
547
        hpet_rtc_flags &= ~bit_mask;
548
        return 1;
549
}
550
 
551
int hpet_set_rtc_irq_bit(unsigned long bit_mask)
552
{
553
        unsigned long oldbits = hpet_rtc_flags;
554
 
555
        if (!is_hpet_enabled())
556
                return 0;
557
 
558
        hpet_rtc_flags |= bit_mask;
559
 
560
        if (!oldbits)
561
                hpet_rtc_timer_init();
562
 
563
        return 1;
564
}
565
 
566
int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
567
                        unsigned char sec)
568
{
569
        if (!is_hpet_enabled())
570
                return 0;
571
 
572
        hpet_alarm_time.tm_hour = hrs;
573
        hpet_alarm_time.tm_min = min;
574
        hpet_alarm_time.tm_sec = sec;
575
 
576
        return 1;
577
}
578
 
579
int hpet_set_periodic_freq(unsigned long freq)
580
{
581
        uint64_t clc;
582
 
583
        if (!is_hpet_enabled())
584
                return 0;
585
 
586
        if (freq <= DEFAULT_RTC_INT_FREQ)
587
                hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
588
        else {
589
                clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
590
                do_div(clc, freq);
591
                clc >>= hpet_clockevent.shift;
592
                hpet_pie_delta = (unsigned long) clc;
593
        }
594
        return 1;
595
}
596
 
597
int hpet_rtc_dropped_irq(void)
598
{
599
        return is_hpet_enabled();
600
}
601
 
602
static void hpet_rtc_timer_reinit(void)
603
{
604
        unsigned long cfg, delta;
605
        int lost_ints = -1;
606
 
607
        if (unlikely(!hpet_rtc_flags)) {
608
                cfg = hpet_readl(HPET_T1_CFG);
609
                cfg &= ~HPET_TN_ENABLE;
610
                hpet_writel(cfg, HPET_T1_CFG);
611
                return;
612
        }
613
 
614
        if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
615
                delta = hpet_default_delta;
616
        else
617
                delta = hpet_pie_delta;
618
 
619
        /*
620
         * Increment the comparator value until we are ahead of the
621
         * current count.
622
         */
623
        do {
624
                hpet_t1_cmp += delta;
625
                hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
626
                lost_ints++;
627
        } while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0);
628
 
629
        if (lost_ints) {
630
                if (hpet_rtc_flags & RTC_PIE)
631
                        hpet_pie_count += lost_ints;
632
                if (printk_ratelimit())
633
                        printk(KERN_WARNING "rtc: lost %d interrupts\n",
634
                                lost_ints);
635
        }
636
}
637
 
638
irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
639
{
640
        struct rtc_time curr_time;
641
        unsigned long rtc_int_flag = 0;
642
 
643
        hpet_rtc_timer_reinit();
644
 
645
        if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
646
                rtc_get_rtc_time(&curr_time);
647
 
648
        if (hpet_rtc_flags & RTC_UIE &&
649
            curr_time.tm_sec != hpet_prev_update_sec) {
650
                rtc_int_flag = RTC_UF;
651
                hpet_prev_update_sec = curr_time.tm_sec;
652
        }
653
 
654
        if (hpet_rtc_flags & RTC_PIE &&
655
            ++hpet_pie_count >= hpet_pie_limit) {
656
                rtc_int_flag |= RTC_PF;
657
                hpet_pie_count = 0;
658
        }
659
 
660
        if (hpet_rtc_flags & RTC_AIE &&
661
            (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
662
            (curr_time.tm_min == hpet_alarm_time.tm_min) &&
663
            (curr_time.tm_hour == hpet_alarm_time.tm_hour))
664
                        rtc_int_flag |= RTC_AF;
665
 
666
        if (rtc_int_flag) {
667
                rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
668
                rtc_interrupt(rtc_int_flag, dev_id);
669
        }
670
        return IRQ_HANDLED;
671
}
672
#endif

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.