OpenCores
URL https://opencores.org/ocsvn/or1k_soc_on_altera_embedded_dev_kit/or1k_soc_on_altera_embedded_dev_kit/trunk

Subversion Repositories or1k_soc_on_altera_embedded_dev_kit

[/] [or1k_soc_on_altera_embedded_dev_kit/] [trunk/] [linux-2.6/] [linux-2.6.24/] [arch/] [x86/] [kernel/] [vmi_32.c] - Blame information for rev 3

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 3 xianfeng
/*
2
 * VMI specific paravirt-ops implementation
3
 *
4
 * Copyright (C) 2005, VMware, Inc.
5
 *
6
 * This program is free software; you can redistribute it and/or modify
7
 * it under the terms of the GNU General Public License as published by
8
 * the Free Software Foundation; either version 2 of the License, or
9
 * (at your option) any later version.
10
 *
11
 * This program is distributed in the hope that it will be useful, but
12
 * WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14
 * NON INFRINGEMENT.  See the GNU General Public License for more
15
 * details.
16
 *
17
 * You should have received a copy of the GNU General Public License
18
 * along with this program; if not, write to the Free Software
19
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20
 *
21
 * Send feedback to zach@vmware.com
22
 *
23
 */
24
 
25
#include <linux/module.h>
26
#include <linux/cpu.h>
27
#include <linux/bootmem.h>
28
#include <linux/mm.h>
29
#include <linux/highmem.h>
30
#include <linux/sched.h>
31
#include <asm/vmi.h>
32
#include <asm/io.h>
33
#include <asm/fixmap.h>
34
#include <asm/apicdef.h>
35
#include <asm/apic.h>
36
#include <asm/processor.h>
37
#include <asm/timer.h>
38
#include <asm/vmi_time.h>
39
#include <asm/kmap_types.h>
40
 
41
/* Convenient for calling VMI functions indirectly in the ROM */
42
typedef u32 __attribute__((regparm(1))) (VROMFUNC)(void);
43
typedef u64 __attribute__((regparm(2))) (VROMLONGFUNC)(int);
44
 
45
#define call_vrom_func(rom,func) \
46
   (((VROMFUNC *)(rom->func))())
47
 
48
#define call_vrom_long_func(rom,func,arg) \
49
   (((VROMLONGFUNC *)(rom->func)) (arg))
50
 
51
static struct vrom_header *vmi_rom;
52
static int disable_pge;
53
static int disable_pse;
54
static int disable_sep;
55
static int disable_tsc;
56
static int disable_mtrr;
57
static int disable_noidle;
58
static int disable_vmi_timer;
59
 
60
/* Cached VMI operations */
61
static struct {
62
        void (*cpuid)(void /* non-c */);
63
        void (*_set_ldt)(u32 selector);
64
        void (*set_tr)(u32 selector);
65
        void (*set_kernel_stack)(u32 selector, u32 esp0);
66
        void (*allocate_page)(u32, u32, u32, u32, u32);
67
        void (*release_page)(u32, u32);
68
        void (*set_pte)(pte_t, pte_t *, unsigned);
69
        void (*update_pte)(pte_t *, unsigned);
70
        void (*set_linear_mapping)(int, void *, u32, u32);
71
        void (*_flush_tlb)(int);
72
        void (*set_initial_ap_state)(int, int);
73
        void (*halt)(void);
74
        void (*set_lazy_mode)(int mode);
75
} vmi_ops;
76
 
77
/* Cached VMI operations */
78
struct vmi_timer_ops vmi_timer_ops;
79
 
80
/*
81
 * VMI patching routines.
82
 */
83
#define MNEM_CALL 0xe8
84
#define MNEM_JMP  0xe9
85
#define MNEM_RET  0xc3
86
 
87
#define IRQ_PATCH_INT_MASK 0
88
#define IRQ_PATCH_DISABLE  5
89
 
90
static inline void patch_offset(void *insnbuf,
91
                                unsigned long eip, unsigned long dest)
92
{
93
        *(unsigned long *)(insnbuf+1) = dest-eip-5;
94
}
95
 
96
static unsigned patch_internal(int call, unsigned len, void *insnbuf,
97
                               unsigned long eip)
98
{
99
        u64 reloc;
100
        struct vmi_relocation_info *const rel = (struct vmi_relocation_info *)&reloc;
101
        reloc = call_vrom_long_func(vmi_rom, get_reloc, call);
102
        switch(rel->type) {
103
                case VMI_RELOCATION_CALL_REL:
104
                        BUG_ON(len < 5);
105
                        *(char *)insnbuf = MNEM_CALL;
106
                        patch_offset(insnbuf, eip, (unsigned long)rel->eip);
107
                        return 5;
108
 
109
                case VMI_RELOCATION_JUMP_REL:
110
                        BUG_ON(len < 5);
111
                        *(char *)insnbuf = MNEM_JMP;
112
                        patch_offset(insnbuf, eip, (unsigned long)rel->eip);
113
                        return 5;
114
 
115
                case VMI_RELOCATION_NOP:
116
                        /* obliterate the whole thing */
117
                        return 0;
118
 
119
                case VMI_RELOCATION_NONE:
120
                        /* leave native code in place */
121
                        break;
122
 
123
                default:
124
                        BUG();
125
        }
126
        return len;
127
}
128
 
129
/*
130
 * Apply patch if appropriate, return length of new instruction
131
 * sequence.  The callee does nop padding for us.
132
 */
133
static unsigned vmi_patch(u8 type, u16 clobbers, void *insns,
134
                          unsigned long eip, unsigned len)
135
{
136
        switch (type) {
137
                case PARAVIRT_PATCH(pv_irq_ops.irq_disable):
138
                        return patch_internal(VMI_CALL_DisableInterrupts, len,
139
                                              insns, eip);
140
                case PARAVIRT_PATCH(pv_irq_ops.irq_enable):
141
                        return patch_internal(VMI_CALL_EnableInterrupts, len,
142
                                              insns, eip);
143
                case PARAVIRT_PATCH(pv_irq_ops.restore_fl):
144
                        return patch_internal(VMI_CALL_SetInterruptMask, len,
145
                                              insns, eip);
146
                case PARAVIRT_PATCH(pv_irq_ops.save_fl):
147
                        return patch_internal(VMI_CALL_GetInterruptMask, len,
148
                                              insns, eip);
149
                case PARAVIRT_PATCH(pv_cpu_ops.iret):
150
                        return patch_internal(VMI_CALL_IRET, len, insns, eip);
151
                case PARAVIRT_PATCH(pv_cpu_ops.irq_enable_sysexit):
152
                        return patch_internal(VMI_CALL_SYSEXIT, len, insns, eip);
153
                default:
154
                        break;
155
        }
156
        return len;
157
}
158
 
159
/* CPUID has non-C semantics, and paravirt-ops API doesn't match hardware ISA */
160
static void vmi_cpuid(unsigned int *eax, unsigned int *ebx,
161
                               unsigned int *ecx, unsigned int *edx)
162
{
163
        int override = 0;
164
        if (*eax == 1)
165
                override = 1;
166
        asm volatile ("call *%6"
167
                      : "=a" (*eax),
168
                        "=b" (*ebx),
169
                        "=c" (*ecx),
170
                        "=d" (*edx)
171
                      : "0" (*eax), "2" (*ecx), "r" (vmi_ops.cpuid));
172
        if (override) {
173
                if (disable_pse)
174
                        *edx &= ~X86_FEATURE_PSE;
175
                if (disable_pge)
176
                        *edx &= ~X86_FEATURE_PGE;
177
                if (disable_sep)
178
                        *edx &= ~X86_FEATURE_SEP;
179
                if (disable_tsc)
180
                        *edx &= ~X86_FEATURE_TSC;
181
                if (disable_mtrr)
182
                        *edx &= ~X86_FEATURE_MTRR;
183
        }
184
}
185
 
186
static inline void vmi_maybe_load_tls(struct desc_struct *gdt, int nr, struct desc_struct *new)
187
{
188
        if (gdt[nr].a != new->a || gdt[nr].b != new->b)
189
                write_gdt_entry(gdt, nr, new->a, new->b);
190
}
191
 
192
static void vmi_load_tls(struct thread_struct *t, unsigned int cpu)
193
{
194
        struct desc_struct *gdt = get_cpu_gdt_table(cpu);
195
        vmi_maybe_load_tls(gdt, GDT_ENTRY_TLS_MIN + 0, &t->tls_array[0]);
196
        vmi_maybe_load_tls(gdt, GDT_ENTRY_TLS_MIN + 1, &t->tls_array[1]);
197
        vmi_maybe_load_tls(gdt, GDT_ENTRY_TLS_MIN + 2, &t->tls_array[2]);
198
}
199
 
200
static void vmi_set_ldt(const void *addr, unsigned entries)
201
{
202
        unsigned cpu = smp_processor_id();
203
        u32 low, high;
204
 
205
        pack_descriptor(&low, &high, (unsigned long)addr,
206
                        entries * sizeof(struct desc_struct) - 1,
207
                        DESCTYPE_LDT, 0);
208
        write_gdt_entry(get_cpu_gdt_table(cpu), GDT_ENTRY_LDT, low, high);
209
        vmi_ops._set_ldt(entries ? GDT_ENTRY_LDT*sizeof(struct desc_struct) : 0);
210
}
211
 
212
static void vmi_set_tr(void)
213
{
214
        vmi_ops.set_tr(GDT_ENTRY_TSS*sizeof(struct desc_struct));
215
}
216
 
217
static void vmi_load_esp0(struct tss_struct *tss,
218
                                   struct thread_struct *thread)
219
{
220
        tss->x86_tss.esp0 = thread->esp0;
221
 
222
        /* This can only happen when SEP is enabled, no need to test "SEP"arately */
223
        if (unlikely(tss->x86_tss.ss1 != thread->sysenter_cs)) {
224
                tss->x86_tss.ss1 = thread->sysenter_cs;
225
                wrmsr(MSR_IA32_SYSENTER_CS, thread->sysenter_cs, 0);
226
        }
227
        vmi_ops.set_kernel_stack(__KERNEL_DS, tss->x86_tss.esp0);
228
}
229
 
230
static void vmi_flush_tlb_user(void)
231
{
232
        vmi_ops._flush_tlb(VMI_FLUSH_TLB);
233
}
234
 
235
static void vmi_flush_tlb_kernel(void)
236
{
237
        vmi_ops._flush_tlb(VMI_FLUSH_TLB | VMI_FLUSH_GLOBAL);
238
}
239
 
240
/* Stub to do nothing at all; used for delays and unimplemented calls */
241
static void vmi_nop(void)
242
{
243
}
244
 
245
#ifdef CONFIG_DEBUG_PAGE_TYPE
246
 
247
#ifdef CONFIG_X86_PAE
248
#define MAX_BOOT_PTS (2048+4+1)
249
#else
250
#define MAX_BOOT_PTS (1024+1)
251
#endif
252
 
253
/*
254
 * During boot, mem_map is not yet available in paging_init, so stash
255
 * all the boot page allocations here.
256
 */
257
static struct {
258
        u32 pfn;
259
        int type;
260
} boot_page_allocations[MAX_BOOT_PTS];
261
static int num_boot_page_allocations;
262
static int boot_allocations_applied;
263
 
264
void vmi_apply_boot_page_allocations(void)
265
{
266
        int i;
267
        BUG_ON(!mem_map);
268
        for (i = 0; i < num_boot_page_allocations; i++) {
269
                struct page *page = pfn_to_page(boot_page_allocations[i].pfn);
270
                page->type = boot_page_allocations[i].type;
271
                page->type = boot_page_allocations[i].type &
272
                                ~(VMI_PAGE_ZEROED | VMI_PAGE_CLONE);
273
        }
274
        boot_allocations_applied = 1;
275
}
276
 
277
static void record_page_type(u32 pfn, int type)
278
{
279
        BUG_ON(num_boot_page_allocations >= MAX_BOOT_PTS);
280
        boot_page_allocations[num_boot_page_allocations].pfn = pfn;
281
        boot_page_allocations[num_boot_page_allocations].type = type;
282
        num_boot_page_allocations++;
283
}
284
 
285
static void check_zeroed_page(u32 pfn, int type, struct page *page)
286
{
287
        u32 *ptr;
288
        int i;
289
        int limit = PAGE_SIZE / sizeof(int);
290
 
291
        if (page_address(page))
292
                ptr = (u32 *)page_address(page);
293
        else
294
                ptr = (u32 *)__va(pfn << PAGE_SHIFT);
295
        /*
296
         * When cloning the root in non-PAE mode, only the userspace
297
         * pdes need to be zeroed.
298
         */
299
        if (type & VMI_PAGE_CLONE)
300
                limit = USER_PTRS_PER_PGD;
301
        for (i = 0; i < limit; i++)
302
                BUG_ON(ptr[i]);
303
}
304
 
305
/*
306
 * We stash the page type into struct page so we can verify the page
307
 * types are used properly.
308
 */
309
static void vmi_set_page_type(u32 pfn, int type)
310
{
311
        /* PAE can have multiple roots per page - don't track */
312
        if (PTRS_PER_PMD > 1 && (type & VMI_PAGE_PDP))
313
                return;
314
 
315
        if (boot_allocations_applied) {
316
                struct page *page = pfn_to_page(pfn);
317
                if (type != VMI_PAGE_NORMAL)
318
                        BUG_ON(page->type);
319
                else
320
                        BUG_ON(page->type == VMI_PAGE_NORMAL);
321
                page->type = type & ~(VMI_PAGE_ZEROED | VMI_PAGE_CLONE);
322
                if (type & VMI_PAGE_ZEROED)
323
                        check_zeroed_page(pfn, type, page);
324
        } else {
325
                record_page_type(pfn, type);
326
        }
327
}
328
 
329
static void vmi_check_page_type(u32 pfn, int type)
330
{
331
        /* PAE can have multiple roots per page - skip checks */
332
        if (PTRS_PER_PMD > 1 && (type & VMI_PAGE_PDP))
333
                return;
334
 
335
        type &= ~(VMI_PAGE_ZEROED | VMI_PAGE_CLONE);
336
        if (boot_allocations_applied) {
337
                struct page *page = pfn_to_page(pfn);
338
                BUG_ON((page->type ^ type) & VMI_PAGE_PAE);
339
                BUG_ON(type == VMI_PAGE_NORMAL && page->type);
340
                BUG_ON((type & page->type) == 0);
341
        }
342
}
343
#else
344
#define vmi_set_page_type(p,t) do { } while (0)
345
#define vmi_check_page_type(p,t) do { } while (0)
346
#endif
347
 
348
#ifdef CONFIG_HIGHPTE
349
static void *vmi_kmap_atomic_pte(struct page *page, enum km_type type)
350
{
351
        void *va = kmap_atomic(page, type);
352
 
353
        /*
354
         * Internally, the VMI ROM must map virtual addresses to physical
355
         * addresses for processing MMU updates.  By the time MMU updates
356
         * are issued, this information is typically already lost.
357
         * Fortunately, the VMI provides a cache of mapping slots for active
358
         * page tables.
359
         *
360
         * We use slot zero for the linear mapping of physical memory, and
361
         * in HIGHPTE kernels, slot 1 and 2 for KM_PTE0 and KM_PTE1.
362
         *
363
         *  args:                 SLOT                 VA    COUNT PFN
364
         */
365
        BUG_ON(type != KM_PTE0 && type != KM_PTE1);
366
        vmi_ops.set_linear_mapping((type - KM_PTE0)+1, va, 1, page_to_pfn(page));
367
 
368
        return va;
369
}
370
#endif
371
 
372
static void vmi_allocate_pt(struct mm_struct *mm, u32 pfn)
373
{
374
        vmi_set_page_type(pfn, VMI_PAGE_L1);
375
        vmi_ops.allocate_page(pfn, VMI_PAGE_L1, 0, 0, 0);
376
}
377
 
378
static void vmi_allocate_pd(u32 pfn)
379
{
380
        /*
381
         * This call comes in very early, before mem_map is setup.
382
         * It is called only for swapper_pg_dir, which already has
383
         * data on it.
384
         */
385
        vmi_set_page_type(pfn, VMI_PAGE_L2);
386
        vmi_ops.allocate_page(pfn, VMI_PAGE_L2, 0, 0, 0);
387
}
388
 
389
static void vmi_allocate_pd_clone(u32 pfn, u32 clonepfn, u32 start, u32 count)
390
{
391
        vmi_set_page_type(pfn, VMI_PAGE_L2 | VMI_PAGE_CLONE);
392
        vmi_check_page_type(clonepfn, VMI_PAGE_L2);
393
        vmi_ops.allocate_page(pfn, VMI_PAGE_L2 | VMI_PAGE_CLONE, clonepfn, start, count);
394
}
395
 
396
static void vmi_release_pt(u32 pfn)
397
{
398
        vmi_ops.release_page(pfn, VMI_PAGE_L1);
399
        vmi_set_page_type(pfn, VMI_PAGE_NORMAL);
400
}
401
 
402
static void vmi_release_pd(u32 pfn)
403
{
404
        vmi_ops.release_page(pfn, VMI_PAGE_L2);
405
        vmi_set_page_type(pfn, VMI_PAGE_NORMAL);
406
}
407
 
408
/*
409
 * Helper macros for MMU update flags.  We can defer updates until a flush
410
 * or page invalidation only if the update is to the current address space
411
 * (otherwise, there is no flush).  We must check against init_mm, since
412
 * this could be a kernel update, which usually passes init_mm, although
413
 * sometimes this check can be skipped if we know the particular function
414
 * is only called on user mode PTEs.  We could change the kernel to pass
415
 * current->active_mm here, but in particular, I was unsure if changing
416
 * mm/highmem.c to do this would still be correct on other architectures.
417
 */
418
#define is_current_as(mm, mustbeuser) ((mm) == current->active_mm ||    \
419
                                       (!mustbeuser && (mm) == &init_mm))
420
#define vmi_flags_addr(mm, addr, level, user)                           \
421
        ((level) | (is_current_as(mm, user) ?                           \
422
                (VMI_PAGE_CURRENT_AS | ((addr) & VMI_PAGE_VA_MASK)) : 0))
423
#define vmi_flags_addr_defer(mm, addr, level, user)                     \
424
        ((level) | (is_current_as(mm, user) ?                           \
425
                (VMI_PAGE_DEFER | VMI_PAGE_CURRENT_AS | ((addr) & VMI_PAGE_VA_MASK)) : 0))
426
 
427
static void vmi_update_pte(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
428
{
429
        vmi_check_page_type(__pa(ptep) >> PAGE_SHIFT, VMI_PAGE_PTE);
430
        vmi_ops.update_pte(ptep, vmi_flags_addr(mm, addr, VMI_PAGE_PT, 0));
431
}
432
 
433
static void vmi_update_pte_defer(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
434
{
435
        vmi_check_page_type(__pa(ptep) >> PAGE_SHIFT, VMI_PAGE_PTE);
436
        vmi_ops.update_pte(ptep, vmi_flags_addr_defer(mm, addr, VMI_PAGE_PT, 0));
437
}
438
 
439
static void vmi_set_pte(pte_t *ptep, pte_t pte)
440
{
441
        /* XXX because of set_pmd_pte, this can be called on PT or PD layers */
442
        vmi_check_page_type(__pa(ptep) >> PAGE_SHIFT, VMI_PAGE_PTE | VMI_PAGE_PD);
443
        vmi_ops.set_pte(pte, ptep, VMI_PAGE_PT);
444
}
445
 
446
static void vmi_set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte)
447
{
448
        vmi_check_page_type(__pa(ptep) >> PAGE_SHIFT, VMI_PAGE_PTE);
449
        vmi_ops.set_pte(pte, ptep, vmi_flags_addr(mm, addr, VMI_PAGE_PT, 0));
450
}
451
 
452
static void vmi_set_pmd(pmd_t *pmdp, pmd_t pmdval)
453
{
454
#ifdef CONFIG_X86_PAE
455
        const pte_t pte = { pmdval.pmd, pmdval.pmd >> 32 };
456
        vmi_check_page_type(__pa(pmdp) >> PAGE_SHIFT, VMI_PAGE_PMD);
457
#else
458
        const pte_t pte = { pmdval.pud.pgd.pgd };
459
        vmi_check_page_type(__pa(pmdp) >> PAGE_SHIFT, VMI_PAGE_PGD);
460
#endif
461
        vmi_ops.set_pte(pte, (pte_t *)pmdp, VMI_PAGE_PD);
462
}
463
 
464
#ifdef CONFIG_X86_PAE
465
 
466
static void vmi_set_pte_atomic(pte_t *ptep, pte_t pteval)
467
{
468
        /*
469
         * XXX This is called from set_pmd_pte, but at both PT
470
         * and PD layers so the VMI_PAGE_PT flag is wrong.  But
471
         * it is only called for large page mapping changes,
472
         * the Xen backend, doesn't support large pages, and the
473
         * ESX backend doesn't depend on the flag.
474
         */
475
        set_64bit((unsigned long long *)ptep,pte_val(pteval));
476
        vmi_ops.update_pte(ptep, VMI_PAGE_PT);
477
}
478
 
479
static void vmi_set_pte_present(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte)
480
{
481
        vmi_check_page_type(__pa(ptep) >> PAGE_SHIFT, VMI_PAGE_PTE);
482
        vmi_ops.set_pte(pte, ptep, vmi_flags_addr_defer(mm, addr, VMI_PAGE_PT, 1));
483
}
484
 
485
static void vmi_set_pud(pud_t *pudp, pud_t pudval)
486
{
487
        /* Um, eww */
488
        const pte_t pte = { pudval.pgd.pgd, pudval.pgd.pgd >> 32 };
489
        vmi_check_page_type(__pa(pudp) >> PAGE_SHIFT, VMI_PAGE_PGD);
490
        vmi_ops.set_pte(pte, (pte_t *)pudp, VMI_PAGE_PDP);
491
}
492
 
493
static void vmi_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
494
{
495
        const pte_t pte = { 0 };
496
        vmi_check_page_type(__pa(ptep) >> PAGE_SHIFT, VMI_PAGE_PTE);
497
        vmi_ops.set_pte(pte, ptep, vmi_flags_addr(mm, addr, VMI_PAGE_PT, 0));
498
}
499
 
500
static void vmi_pmd_clear(pmd_t *pmd)
501
{
502
        const pte_t pte = { 0 };
503
        vmi_check_page_type(__pa(pmd) >> PAGE_SHIFT, VMI_PAGE_PMD);
504
        vmi_ops.set_pte(pte, (pte_t *)pmd, VMI_PAGE_PD);
505
}
506
#endif
507
 
508
#ifdef CONFIG_SMP
509
static void __devinit
510
vmi_startup_ipi_hook(int phys_apicid, unsigned long start_eip,
511
                     unsigned long start_esp)
512
{
513
        struct vmi_ap_state ap;
514
 
515
        /* Default everything to zero.  This is fine for most GPRs. */
516
        memset(&ap, 0, sizeof(struct vmi_ap_state));
517
 
518
        ap.gdtr_limit = GDT_SIZE - 1;
519
        ap.gdtr_base = (unsigned long) get_cpu_gdt_table(phys_apicid);
520
 
521
        ap.idtr_limit = IDT_ENTRIES * 8 - 1;
522
        ap.idtr_base = (unsigned long) idt_table;
523
 
524
        ap.ldtr = 0;
525
 
526
        ap.cs = __KERNEL_CS;
527
        ap.eip = (unsigned long) start_eip;
528
        ap.ss = __KERNEL_DS;
529
        ap.esp = (unsigned long) start_esp;
530
 
531
        ap.ds = __USER_DS;
532
        ap.es = __USER_DS;
533
        ap.fs = __KERNEL_PERCPU;
534
        ap.gs = 0;
535
 
536
        ap.eflags = 0;
537
 
538
#ifdef CONFIG_X86_PAE
539
        /* efer should match BSP efer. */
540
        if (cpu_has_nx) {
541
                unsigned l, h;
542
                rdmsr(MSR_EFER, l, h);
543
                ap.efer = (unsigned long long) h << 32 | l;
544
        }
545
#endif
546
 
547
        ap.cr3 = __pa(swapper_pg_dir);
548
        /* Protected mode, paging, AM, WP, NE, MP. */
549
        ap.cr0 = 0x80050023;
550
        ap.cr4 = mmu_cr4_features;
551
        vmi_ops.set_initial_ap_state((u32)&ap, phys_apicid);
552
}
553
#endif
554
 
555
static void vmi_enter_lazy_cpu(void)
556
{
557
        paravirt_enter_lazy_cpu();
558
        vmi_ops.set_lazy_mode(2);
559
}
560
 
561
static void vmi_enter_lazy_mmu(void)
562
{
563
        paravirt_enter_lazy_mmu();
564
        vmi_ops.set_lazy_mode(1);
565
}
566
 
567
static void vmi_leave_lazy(void)
568
{
569
        paravirt_leave_lazy(paravirt_get_lazy_mode());
570
        vmi_ops.set_lazy_mode(0);
571
}
572
 
573
static inline int __init check_vmi_rom(struct vrom_header *rom)
574
{
575
        struct pci_header *pci;
576
        struct pnp_header *pnp;
577
        const char *manufacturer = "UNKNOWN";
578
        const char *product = "UNKNOWN";
579
        const char *license = "unspecified";
580
 
581
        if (rom->rom_signature != 0xaa55)
582
                return 0;
583
        if (rom->vrom_signature != VMI_SIGNATURE)
584
                return 0;
585
        if (rom->api_version_maj != VMI_API_REV_MAJOR ||
586
            rom->api_version_min+1 < VMI_API_REV_MINOR+1) {
587
                printk(KERN_WARNING "VMI: Found mismatched rom version %d.%d\n",
588
                                rom->api_version_maj,
589
                                rom->api_version_min);
590
                return 0;
591
        }
592
 
593
        /*
594
         * Relying on the VMI_SIGNATURE field is not 100% safe, so check
595
         * the PCI header and device type to make sure this is really a
596
         * VMI device.
597
         */
598
        if (!rom->pci_header_offs) {
599
                printk(KERN_WARNING "VMI: ROM does not contain PCI header.\n");
600
                return 0;
601
        }
602
 
603
        pci = (struct pci_header *)((char *)rom+rom->pci_header_offs);
604
        if (pci->vendorID != PCI_VENDOR_ID_VMWARE ||
605
            pci->deviceID != PCI_DEVICE_ID_VMWARE_VMI) {
606
                /* Allow it to run... anyways, but warn */
607
                printk(KERN_WARNING "VMI: ROM from unknown manufacturer\n");
608
        }
609
 
610
        if (rom->pnp_header_offs) {
611
                pnp = (struct pnp_header *)((char *)rom+rom->pnp_header_offs);
612
                if (pnp->manufacturer_offset)
613
                        manufacturer = (const char *)rom+pnp->manufacturer_offset;
614
                if (pnp->product_offset)
615
                        product = (const char *)rom+pnp->product_offset;
616
        }
617
 
618
        if (rom->license_offs)
619
                license = (char *)rom+rom->license_offs;
620
 
621
        printk(KERN_INFO "VMI: Found %s %s, API version %d.%d, ROM version %d.%d\n",
622
                manufacturer, product,
623
                rom->api_version_maj, rom->api_version_min,
624
                pci->rom_version_maj, pci->rom_version_min);
625
 
626
        /* Don't allow BSD/MIT here for now because we don't want to end up
627
           with any binary only shim layers */
628
        if (strcmp(license, "GPL") && strcmp(license, "GPL v2")) {
629
                printk(KERN_WARNING "VMI: Non GPL license `%s' found for ROM. Not used.\n",
630
                        license);
631
                return 0;
632
        }
633
 
634
        return 1;
635
}
636
 
637
/*
638
 * Probe for the VMI option ROM
639
 */
640
static inline int __init probe_vmi_rom(void)
641
{
642
        unsigned long base;
643
 
644
        /* VMI ROM is in option ROM area, check signature */
645
        for (base = 0xC0000; base < 0xE0000; base += 2048) {
646
                struct vrom_header *romstart;
647
                romstart = (struct vrom_header *)isa_bus_to_virt(base);
648
                if (check_vmi_rom(romstart)) {
649
                        vmi_rom = romstart;
650
                        return 1;
651
                }
652
        }
653
        return 0;
654
}
655
 
656
/*
657
 * VMI setup common to all processors
658
 */
659
void vmi_bringup(void)
660
{
661
        /* We must establish the lowmem mapping for MMU ops to work */
662
        if (vmi_ops.set_linear_mapping)
663
                vmi_ops.set_linear_mapping(0, (void *)__PAGE_OFFSET, max_low_pfn, 0);
664
}
665
 
666
/*
667
 * Return a pointer to a VMI function or NULL if unimplemented
668
 */
669
static void *vmi_get_function(int vmicall)
670
{
671
        u64 reloc;
672
        const struct vmi_relocation_info *rel = (struct vmi_relocation_info *)&reloc;
673
        reloc = call_vrom_long_func(vmi_rom, get_reloc, vmicall);
674
        BUG_ON(rel->type == VMI_RELOCATION_JUMP_REL);
675
        if (rel->type == VMI_RELOCATION_CALL_REL)
676
                return (void *)rel->eip;
677
        else
678
                return NULL;
679
}
680
 
681
/*
682
 * Helper macro for making the VMI paravirt-ops fill code readable.
683
 * For unimplemented operations, fall back to default, unless nop
684
 * is returned by the ROM.
685
 */
686
#define para_fill(opname, vmicall)                              \
687
do {                                                            \
688
        reloc = call_vrom_long_func(vmi_rom, get_reloc,         \
689
                                    VMI_CALL_##vmicall);        \
690
        if (rel->type == VMI_RELOCATION_CALL_REL)               \
691
                opname = (void *)rel->eip;                      \
692
        else if (rel->type == VMI_RELOCATION_NOP)               \
693
                opname = (void *)vmi_nop;                       \
694
        else if (rel->type != VMI_RELOCATION_NONE)              \
695
                printk(KERN_WARNING "VMI: Unknown relocation "  \
696
                                    "type %d for " #vmicall"\n",\
697
                                        rel->type);             \
698
} while (0)
699
 
700
/*
701
 * Helper macro for making the VMI paravirt-ops fill code readable.
702
 * For cached operations which do not match the VMI ROM ABI and must
703
 * go through a tranlation stub.  Ignore NOPs, since it is not clear
704
 * a NOP * VMI function corresponds to a NOP paravirt-op when the
705
 * functions are not in 1-1 correspondence.
706
 */
707
#define para_wrap(opname, wrapper, cache, vmicall)              \
708
do {                                                            \
709
        reloc = call_vrom_long_func(vmi_rom, get_reloc,         \
710
                                    VMI_CALL_##vmicall);        \
711
        BUG_ON(rel->type == VMI_RELOCATION_JUMP_REL);           \
712
        if (rel->type == VMI_RELOCATION_CALL_REL) {             \
713
                opname = wrapper;                               \
714
                vmi_ops.cache = (void *)rel->eip;               \
715
        }                                                       \
716
} while (0)
717
 
718
/*
719
 * Activate the VMI interface and switch into paravirtualized mode
720
 */
721
static inline int __init activate_vmi(void)
722
{
723
        short kernel_cs;
724
        u64 reloc;
725
        const struct vmi_relocation_info *rel = (struct vmi_relocation_info *)&reloc;
726
 
727
        if (call_vrom_func(vmi_rom, vmi_init) != 0) {
728
                printk(KERN_ERR "VMI ROM failed to initialize!");
729
                return 0;
730
        }
731
        savesegment(cs, kernel_cs);
732
 
733
        pv_info.paravirt_enabled = 1;
734
        pv_info.kernel_rpl = kernel_cs & SEGMENT_RPL_MASK;
735
        pv_info.name = "vmi";
736
 
737
        pv_init_ops.patch = vmi_patch;
738
 
739
        /*
740
         * Many of these operations are ABI compatible with VMI.
741
         * This means we can fill in the paravirt-ops with direct
742
         * pointers into the VMI ROM.  If the calling convention for
743
         * these operations changes, this code needs to be updated.
744
         *
745
         * Exceptions
746
         *  CPUID paravirt-op uses pointers, not the native ISA
747
         *  halt has no VMI equivalent; all VMI halts are "safe"
748
         *  no MSR support yet - just trap and emulate.  VMI uses the
749
         *    same ABI as the native ISA, but Linux wants exceptions
750
         *    from bogus MSR read / write handled
751
         *  rdpmc is not yet used in Linux
752
         */
753
 
754
        /* CPUID is special, so very special it gets wrapped like a present */
755
        para_wrap(pv_cpu_ops.cpuid, vmi_cpuid, cpuid, CPUID);
756
 
757
        para_fill(pv_cpu_ops.clts, CLTS);
758
        para_fill(pv_cpu_ops.get_debugreg, GetDR);
759
        para_fill(pv_cpu_ops.set_debugreg, SetDR);
760
        para_fill(pv_cpu_ops.read_cr0, GetCR0);
761
        para_fill(pv_mmu_ops.read_cr2, GetCR2);
762
        para_fill(pv_mmu_ops.read_cr3, GetCR3);
763
        para_fill(pv_cpu_ops.read_cr4, GetCR4);
764
        para_fill(pv_cpu_ops.write_cr0, SetCR0);
765
        para_fill(pv_mmu_ops.write_cr2, SetCR2);
766
        para_fill(pv_mmu_ops.write_cr3, SetCR3);
767
        para_fill(pv_cpu_ops.write_cr4, SetCR4);
768
        para_fill(pv_irq_ops.save_fl, GetInterruptMask);
769
        para_fill(pv_irq_ops.restore_fl, SetInterruptMask);
770
        para_fill(pv_irq_ops.irq_disable, DisableInterrupts);
771
        para_fill(pv_irq_ops.irq_enable, EnableInterrupts);
772
 
773
        para_fill(pv_cpu_ops.wbinvd, WBINVD);
774
        para_fill(pv_cpu_ops.read_tsc, RDTSC);
775
 
776
        /* The following we emulate with trap and emulate for now */
777
        /* paravirt_ops.read_msr = vmi_rdmsr */
778
        /* paravirt_ops.write_msr = vmi_wrmsr */
779
        /* paravirt_ops.rdpmc = vmi_rdpmc */
780
 
781
        /* TR interface doesn't pass TR value, wrap */
782
        para_wrap(pv_cpu_ops.load_tr_desc, vmi_set_tr, set_tr, SetTR);
783
 
784
        /* LDT is special, too */
785
        para_wrap(pv_cpu_ops.set_ldt, vmi_set_ldt, _set_ldt, SetLDT);
786
 
787
        para_fill(pv_cpu_ops.load_gdt, SetGDT);
788
        para_fill(pv_cpu_ops.load_idt, SetIDT);
789
        para_fill(pv_cpu_ops.store_gdt, GetGDT);
790
        para_fill(pv_cpu_ops.store_idt, GetIDT);
791
        para_fill(pv_cpu_ops.store_tr, GetTR);
792
        pv_cpu_ops.load_tls = vmi_load_tls;
793
        para_fill(pv_cpu_ops.write_ldt_entry, WriteLDTEntry);
794
        para_fill(pv_cpu_ops.write_gdt_entry, WriteGDTEntry);
795
        para_fill(pv_cpu_ops.write_idt_entry, WriteIDTEntry);
796
        para_wrap(pv_cpu_ops.load_esp0, vmi_load_esp0, set_kernel_stack, UpdateKernelStack);
797
        para_fill(pv_cpu_ops.set_iopl_mask, SetIOPLMask);
798
        para_fill(pv_cpu_ops.io_delay, IODelay);
799
 
800
        para_wrap(pv_cpu_ops.lazy_mode.enter, vmi_enter_lazy_cpu,
801
                  set_lazy_mode, SetLazyMode);
802
        para_wrap(pv_cpu_ops.lazy_mode.leave, vmi_leave_lazy,
803
                  set_lazy_mode, SetLazyMode);
804
 
805
        para_wrap(pv_mmu_ops.lazy_mode.enter, vmi_enter_lazy_mmu,
806
                  set_lazy_mode, SetLazyMode);
807
        para_wrap(pv_mmu_ops.lazy_mode.leave, vmi_leave_lazy,
808
                  set_lazy_mode, SetLazyMode);
809
 
810
        /* user and kernel flush are just handled with different flags to FlushTLB */
811
        para_wrap(pv_mmu_ops.flush_tlb_user, vmi_flush_tlb_user, _flush_tlb, FlushTLB);
812
        para_wrap(pv_mmu_ops.flush_tlb_kernel, vmi_flush_tlb_kernel, _flush_tlb, FlushTLB);
813
        para_fill(pv_mmu_ops.flush_tlb_single, InvalPage);
814
 
815
        /*
816
         * Until a standard flag format can be agreed on, we need to
817
         * implement these as wrappers in Linux.  Get the VMI ROM
818
         * function pointers for the two backend calls.
819
         */
820
#ifdef CONFIG_X86_PAE
821
        vmi_ops.set_pte = vmi_get_function(VMI_CALL_SetPxELong);
822
        vmi_ops.update_pte = vmi_get_function(VMI_CALL_UpdatePxELong);
823
#else
824
        vmi_ops.set_pte = vmi_get_function(VMI_CALL_SetPxE);
825
        vmi_ops.update_pte = vmi_get_function(VMI_CALL_UpdatePxE);
826
#endif
827
 
828
        if (vmi_ops.set_pte) {
829
                pv_mmu_ops.set_pte = vmi_set_pte;
830
                pv_mmu_ops.set_pte_at = vmi_set_pte_at;
831
                pv_mmu_ops.set_pmd = vmi_set_pmd;
832
#ifdef CONFIG_X86_PAE
833
                pv_mmu_ops.set_pte_atomic = vmi_set_pte_atomic;
834
                pv_mmu_ops.set_pte_present = vmi_set_pte_present;
835
                pv_mmu_ops.set_pud = vmi_set_pud;
836
                pv_mmu_ops.pte_clear = vmi_pte_clear;
837
                pv_mmu_ops.pmd_clear = vmi_pmd_clear;
838
#endif
839
        }
840
 
841
        if (vmi_ops.update_pte) {
842
                pv_mmu_ops.pte_update = vmi_update_pte;
843
                pv_mmu_ops.pte_update_defer = vmi_update_pte_defer;
844
        }
845
 
846
        vmi_ops.allocate_page = vmi_get_function(VMI_CALL_AllocatePage);
847
        if (vmi_ops.allocate_page) {
848
                pv_mmu_ops.alloc_pt = vmi_allocate_pt;
849
                pv_mmu_ops.alloc_pd = vmi_allocate_pd;
850
                pv_mmu_ops.alloc_pd_clone = vmi_allocate_pd_clone;
851
        }
852
 
853
        vmi_ops.release_page = vmi_get_function(VMI_CALL_ReleasePage);
854
        if (vmi_ops.release_page) {
855
                pv_mmu_ops.release_pt = vmi_release_pt;
856
                pv_mmu_ops.release_pd = vmi_release_pd;
857
        }
858
 
859
        /* Set linear is needed in all cases */
860
        vmi_ops.set_linear_mapping = vmi_get_function(VMI_CALL_SetLinearMapping);
861
#ifdef CONFIG_HIGHPTE
862
        if (vmi_ops.set_linear_mapping)
863
                pv_mmu_ops.kmap_atomic_pte = vmi_kmap_atomic_pte;
864
#endif
865
 
866
        /*
867
         * These MUST always be patched.  Don't support indirect jumps
868
         * through these operations, as the VMI interface may use either
869
         * a jump or a call to get to these operations, depending on
870
         * the backend.  They are performance critical anyway, so requiring
871
         * a patch is not a big problem.
872
         */
873
        pv_cpu_ops.irq_enable_sysexit = (void *)0xfeedbab0;
874
        pv_cpu_ops.iret = (void *)0xbadbab0;
875
 
876
#ifdef CONFIG_SMP
877
        para_wrap(pv_apic_ops.startup_ipi_hook, vmi_startup_ipi_hook, set_initial_ap_state, SetInitialAPState);
878
#endif
879
 
880
#ifdef CONFIG_X86_LOCAL_APIC
881
        para_fill(pv_apic_ops.apic_read, APICRead);
882
        para_fill(pv_apic_ops.apic_write, APICWrite);
883
        para_fill(pv_apic_ops.apic_write_atomic, APICWrite);
884
#endif
885
 
886
        /*
887
         * Check for VMI timer functionality by probing for a cycle frequency method
888
         */
889
        reloc = call_vrom_long_func(vmi_rom, get_reloc, VMI_CALL_GetCycleFrequency);
890
        if (!disable_vmi_timer && rel->type != VMI_RELOCATION_NONE) {
891
                vmi_timer_ops.get_cycle_frequency = (void *)rel->eip;
892
                vmi_timer_ops.get_cycle_counter =
893
                        vmi_get_function(VMI_CALL_GetCycleCounter);
894
                vmi_timer_ops.get_wallclock =
895
                        vmi_get_function(VMI_CALL_GetWallclockTime);
896
                vmi_timer_ops.wallclock_updated =
897
                        vmi_get_function(VMI_CALL_WallclockUpdated);
898
                vmi_timer_ops.set_alarm = vmi_get_function(VMI_CALL_SetAlarm);
899
                vmi_timer_ops.cancel_alarm =
900
                         vmi_get_function(VMI_CALL_CancelAlarm);
901
                pv_time_ops.time_init = vmi_time_init;
902
                pv_time_ops.get_wallclock = vmi_get_wallclock;
903
                pv_time_ops.set_wallclock = vmi_set_wallclock;
904
#ifdef CONFIG_X86_LOCAL_APIC
905
                pv_apic_ops.setup_boot_clock = vmi_time_bsp_init;
906
                pv_apic_ops.setup_secondary_clock = vmi_time_ap_init;
907
#endif
908
                pv_time_ops.sched_clock = vmi_sched_clock;
909
                pv_time_ops.get_cpu_khz = vmi_cpu_khz;
910
 
911
                /* We have true wallclock functions; disable CMOS clock sync */
912
                no_sync_cmos_clock = 1;
913
        } else {
914
                disable_noidle = 1;
915
                disable_vmi_timer = 1;
916
        }
917
 
918
        para_fill(pv_irq_ops.safe_halt, Halt);
919
 
920
        /*
921
         * Alternative instruction rewriting doesn't happen soon enough
922
         * to convert VMI_IRET to a call instead of a jump; so we have
923
         * to do this before IRQs get reenabled.  Fortunately, it is
924
         * idempotent.
925
         */
926
        apply_paravirt(__parainstructions, __parainstructions_end);
927
 
928
        vmi_bringup();
929
 
930
        return 1;
931
}
932
 
933
#undef para_fill
934
 
935
void __init vmi_init(void)
936
{
937
        unsigned long flags;
938
 
939
        if (!vmi_rom)
940
                probe_vmi_rom();
941
        else
942
                check_vmi_rom(vmi_rom);
943
 
944
        /* In case probing for or validating the ROM failed, basil */
945
        if (!vmi_rom)
946
                return;
947
 
948
        reserve_top_address(-vmi_rom->virtual_top);
949
 
950
        local_irq_save(flags);
951
        activate_vmi();
952
 
953
#ifdef CONFIG_X86_IO_APIC
954
        /* This is virtual hardware; timer routing is wired correctly */
955
        no_timer_check = 1;
956
#endif
957
        local_irq_restore(flags & X86_EFLAGS_IF);
958
}
959
 
960
static int __init parse_vmi(char *arg)
961
{
962
        if (!arg)
963
                return -EINVAL;
964
 
965
        if (!strcmp(arg, "disable_pge")) {
966
                clear_bit(X86_FEATURE_PGE, boot_cpu_data.x86_capability);
967
                disable_pge = 1;
968
        } else if (!strcmp(arg, "disable_pse")) {
969
                clear_bit(X86_FEATURE_PSE, boot_cpu_data.x86_capability);
970
                disable_pse = 1;
971
        } else if (!strcmp(arg, "disable_sep")) {
972
                clear_bit(X86_FEATURE_SEP, boot_cpu_data.x86_capability);
973
                disable_sep = 1;
974
        } else if (!strcmp(arg, "disable_tsc")) {
975
                clear_bit(X86_FEATURE_TSC, boot_cpu_data.x86_capability);
976
                disable_tsc = 1;
977
        } else if (!strcmp(arg, "disable_mtrr")) {
978
                clear_bit(X86_FEATURE_MTRR, boot_cpu_data.x86_capability);
979
                disable_mtrr = 1;
980
        } else if (!strcmp(arg, "disable_timer")) {
981
                disable_vmi_timer = 1;
982
                disable_noidle = 1;
983
        } else if (!strcmp(arg, "disable_noidle"))
984
                disable_noidle = 1;
985
        return 0;
986
}
987
 
988
early_param("vmi", parse_vmi);

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.