OpenCores
URL https://opencores.org/ocsvn/or1k_soc_on_altera_embedded_dev_kit/or1k_soc_on_altera_embedded_dev_kit/trunk

Subversion Repositories or1k_soc_on_altera_embedded_dev_kit

[/] [or1k_soc_on_altera_embedded_dev_kit/] [trunk/] [linux-2.6/] [linux-2.6.24/] [arch/] [x86/] [mach-voyager/] [voyager_smp.c] - Blame information for rev 3

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 3 xianfeng
/* -*- mode: c; c-basic-offset: 8 -*- */
2
 
3
/* Copyright (C) 1999,2001
4
 *
5
 * Author: J.E.J.Bottomley@HansenPartnership.com
6
 *
7
 * linux/arch/i386/kernel/voyager_smp.c
8
 *
9
 * This file provides all the same external entries as smp.c but uses
10
 * the voyager hal to provide the functionality
11
 */
12
#include <linux/module.h>
13
#include <linux/mm.h>
14
#include <linux/kernel_stat.h>
15
#include <linux/delay.h>
16
#include <linux/mc146818rtc.h>
17
#include <linux/cache.h>
18
#include <linux/interrupt.h>
19
#include <linux/init.h>
20
#include <linux/kernel.h>
21
#include <linux/bootmem.h>
22
#include <linux/completion.h>
23
#include <asm/desc.h>
24
#include <asm/voyager.h>
25
#include <asm/vic.h>
26
#include <asm/mtrr.h>
27
#include <asm/pgalloc.h>
28
#include <asm/tlbflush.h>
29
#include <asm/arch_hooks.h>
30
 
31
/* TLB state -- visible externally, indexed physically */
32
DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = { &init_mm, 0 };
33
 
34
/* CPU IRQ affinity -- set to all ones initially */
35
static unsigned long cpu_irq_affinity[NR_CPUS] __cacheline_aligned = { [0 ... NR_CPUS-1]  = ~0UL };
36
 
37
/* per CPU data structure (for /proc/cpuinfo et al), visible externally
38
 * indexed physically */
39
DEFINE_PER_CPU_SHARED_ALIGNED(struct cpuinfo_x86, cpu_info);
40
EXPORT_PER_CPU_SYMBOL(cpu_info);
41
 
42
/* physical ID of the CPU used to boot the system */
43
unsigned char boot_cpu_id;
44
 
45
/* The memory line addresses for the Quad CPIs */
46
struct voyager_qic_cpi *voyager_quad_cpi_addr[NR_CPUS] __cacheline_aligned;
47
 
48
/* The masks for the Extended VIC processors, filled in by cat_init */
49
__u32 voyager_extended_vic_processors = 0;
50
 
51
/* Masks for the extended Quad processors which cannot be VIC booted */
52
__u32 voyager_allowed_boot_processors = 0;
53
 
54
/* The mask for the Quad Processors (both extended and non-extended) */
55
__u32 voyager_quad_processors = 0;
56
 
57
/* Total count of live CPUs, used in process.c to display
58
 * the CPU information and in irq.c for the per CPU irq
59
 * activity count.  Finally exported by i386_ksyms.c */
60
static int voyager_extended_cpus = 1;
61
 
62
/* Have we found an SMP box - used by time.c to do the profiling
63
   interrupt for timeslicing; do not set to 1 until the per CPU timer
64
   interrupt is active */
65
int smp_found_config = 0;
66
 
67
/* Used for the invalidate map that's also checked in the spinlock */
68
static volatile unsigned long smp_invalidate_needed;
69
 
70
/* Bitmask of currently online CPUs - used by setup.c for
71
   /proc/cpuinfo, visible externally but still physical */
72
cpumask_t cpu_online_map = CPU_MASK_NONE;
73
EXPORT_SYMBOL(cpu_online_map);
74
 
75
/* Bitmask of CPUs present in the system - exported by i386_syms.c, used
76
 * by scheduler but indexed physically */
77
cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
78
 
79
 
80
/* The internal functions */
81
static void send_CPI(__u32 cpuset, __u8 cpi);
82
static void ack_CPI(__u8 cpi);
83
static int ack_QIC_CPI(__u8 cpi);
84
static void ack_special_QIC_CPI(__u8 cpi);
85
static void ack_VIC_CPI(__u8 cpi);
86
static void send_CPI_allbutself(__u8 cpi);
87
static void mask_vic_irq(unsigned int irq);
88
static void unmask_vic_irq(unsigned int irq);
89
static unsigned int startup_vic_irq(unsigned int irq);
90
static void enable_local_vic_irq(unsigned int irq);
91
static void disable_local_vic_irq(unsigned int irq);
92
static void before_handle_vic_irq(unsigned int irq);
93
static void after_handle_vic_irq(unsigned int irq);
94
static void set_vic_irq_affinity(unsigned int irq, cpumask_t mask);
95
static void ack_vic_irq(unsigned int irq);
96
static void vic_enable_cpi(void);
97
static void do_boot_cpu(__u8 cpuid);
98
static void do_quad_bootstrap(void);
99
 
100
int hard_smp_processor_id(void);
101
int safe_smp_processor_id(void);
102
 
103
/* Inline functions */
104
static inline void
105
send_one_QIC_CPI(__u8 cpu, __u8 cpi)
106
{
107
        voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi =
108
                (smp_processor_id() << 16) + cpi;
109
}
110
 
111
static inline void
112
send_QIC_CPI(__u32 cpuset, __u8 cpi)
113
{
114
        int cpu;
115
 
116
        for_each_online_cpu(cpu) {
117
                if(cpuset & (1<<cpu)) {
118
#ifdef VOYAGER_DEBUG
119
                        if(!cpu_isset(cpu, cpu_online_map))
120
                                VDEBUG(("CPU%d sending cpi %d to CPU%d not in cpu_online_map\n", hard_smp_processor_id(), cpi, cpu));
121
#endif
122
                        send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
123
                }
124
        }
125
}
126
 
127
static inline void
128
wrapper_smp_local_timer_interrupt(void)
129
{
130
        irq_enter();
131
        smp_local_timer_interrupt();
132
        irq_exit();
133
}
134
 
135
static inline void
136
send_one_CPI(__u8 cpu, __u8 cpi)
137
{
138
        if(voyager_quad_processors & (1<<cpu))
139
                send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
140
        else
141
                send_CPI(1<<cpu, cpi);
142
}
143
 
144
static inline void
145
send_CPI_allbutself(__u8 cpi)
146
{
147
        __u8 cpu = smp_processor_id();
148
        __u32 mask = cpus_addr(cpu_online_map)[0] & ~(1 << cpu);
149
        send_CPI(mask, cpi);
150
}
151
 
152
static inline int
153
is_cpu_quad(void)
154
{
155
        __u8 cpumask = inb(VIC_PROC_WHO_AM_I);
156
        return ((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER);
157
}
158
 
159
static inline int
160
is_cpu_extended(void)
161
{
162
        __u8 cpu = hard_smp_processor_id();
163
 
164
        return(voyager_extended_vic_processors & (1<<cpu));
165
}
166
 
167
static inline int
168
is_cpu_vic_boot(void)
169
{
170
        __u8 cpu = hard_smp_processor_id();
171
 
172
        return(voyager_extended_vic_processors
173
               & voyager_allowed_boot_processors & (1<<cpu));
174
}
175
 
176
 
177
static inline void
178
ack_CPI(__u8 cpi)
179
{
180
        switch(cpi) {
181
        case VIC_CPU_BOOT_CPI:
182
                if(is_cpu_quad() && !is_cpu_vic_boot())
183
                        ack_QIC_CPI(cpi);
184
                else
185
                        ack_VIC_CPI(cpi);
186
                break;
187
        case VIC_SYS_INT:
188
        case VIC_CMN_INT:
189
                /* These are slightly strange.  Even on the Quad card,
190
                 * They are vectored as VIC CPIs */
191
                if(is_cpu_quad())
192
                        ack_special_QIC_CPI(cpi);
193
                else
194
                        ack_VIC_CPI(cpi);
195
                break;
196
        default:
197
                printk("VOYAGER ERROR: CPI%d is in common CPI code\n", cpi);
198
                break;
199
        }
200
}
201
 
202
/* local variables */
203
 
204
/* The VIC IRQ descriptors -- these look almost identical to the
205
 * 8259 IRQs except that masks and things must be kept per processor
206
 */
207
static struct irq_chip vic_chip = {
208
        .name           = "VIC",
209
        .startup        = startup_vic_irq,
210
        .mask           = mask_vic_irq,
211
        .unmask         = unmask_vic_irq,
212
        .set_affinity   = set_vic_irq_affinity,
213
};
214
 
215
/* used to count up as CPUs are brought on line (starts at 0) */
216
static int cpucount = 0;
217
 
218
/* steal a page from the bottom of memory for the trampoline and
219
 * squirrel its address away here.  This will be in kernel virtual
220
 * space */
221
static __u32 trampoline_base;
222
 
223
/* The per cpu profile stuff - used in smp_local_timer_interrupt */
224
static DEFINE_PER_CPU(int, prof_multiplier) = 1;
225
static DEFINE_PER_CPU(int, prof_old_multiplier) = 1;
226
static DEFINE_PER_CPU(int, prof_counter) =  1;
227
 
228
/* the map used to check if a CPU has booted */
229
static __u32 cpu_booted_map;
230
 
231
/* the synchronize flag used to hold all secondary CPUs spinning in
232
 * a tight loop until the boot sequence is ready for them */
233
static cpumask_t smp_commenced_mask = CPU_MASK_NONE;
234
 
235
/* This is for the new dynamic CPU boot code */
236
cpumask_t cpu_callin_map = CPU_MASK_NONE;
237
cpumask_t cpu_callout_map = CPU_MASK_NONE;
238
EXPORT_SYMBOL(cpu_callout_map);
239
cpumask_t cpu_possible_map = CPU_MASK_NONE;
240
EXPORT_SYMBOL(cpu_possible_map);
241
 
242
/* The per processor IRQ masks (these are usually kept in sync) */
243
static __u16 vic_irq_mask[NR_CPUS] __cacheline_aligned;
244
 
245
/* the list of IRQs to be enabled by the VIC_ENABLE_IRQ_CPI */
246
static __u16 vic_irq_enable_mask[NR_CPUS] __cacheline_aligned = { 0 };
247
 
248
/* Lock for enable/disable of VIC interrupts */
249
static  __cacheline_aligned DEFINE_SPINLOCK(vic_irq_lock);
250
 
251
/* The boot processor is correctly set up in PC mode when it
252
 * comes up, but the secondaries need their master/slave 8259
253
 * pairs initializing correctly */
254
 
255
/* Interrupt counters (per cpu) and total - used to try to
256
 * even up the interrupt handling routines */
257
static long vic_intr_total = 0;
258
static long vic_intr_count[NR_CPUS] __cacheline_aligned = { 0 };
259
static unsigned long vic_tick[NR_CPUS] __cacheline_aligned = { 0 };
260
 
261
/* Since we can only use CPI0, we fake all the other CPIs */
262
static unsigned long vic_cpi_mailbox[NR_CPUS] __cacheline_aligned;
263
 
264
/* debugging routine to read the isr of the cpu's pic */
265
static inline __u16
266
vic_read_isr(void)
267
{
268
        __u16 isr;
269
 
270
        outb(0x0b, 0xa0);
271
        isr = inb(0xa0) << 8;
272
        outb(0x0b, 0x20);
273
        isr |= inb(0x20);
274
 
275
        return isr;
276
}
277
 
278
static __init void
279
qic_setup(void)
280
{
281
        if(!is_cpu_quad()) {
282
                /* not a quad, no setup */
283
                return;
284
        }
285
        outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
286
        outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
287
 
288
        if(is_cpu_extended()) {
289
                /* the QIC duplicate of the VIC base register */
290
                outb(VIC_DEFAULT_CPI_BASE, QIC_VIC_CPI_BASE_REGISTER);
291
                outb(QIC_DEFAULT_CPI_BASE, QIC_CPI_BASE_REGISTER);
292
 
293
                /* FIXME: should set up the QIC timer and memory parity
294
                 * error vectors here */
295
        }
296
}
297
 
298
static __init void
299
vic_setup_pic(void)
300
{
301
        outb(1, VIC_REDIRECT_REGISTER_1);
302
        /* clear the claim registers for dynamic routing */
303
        outb(0, VIC_CLAIM_REGISTER_0);
304
        outb(0, VIC_CLAIM_REGISTER_1);
305
 
306
        outb(0, VIC_PRIORITY_REGISTER);
307
        /* Set the Primary and Secondary Microchannel vector
308
         * bases to be the same as the ordinary interrupts
309
         *
310
         * FIXME: This would be more efficient using separate
311
         * vectors. */
312
        outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
313
        outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
314
        /* Now initiallise the master PIC belonging to this CPU by
315
         * sending the four ICWs */
316
 
317
        /* ICW1: level triggered, ICW4 needed */
318
        outb(0x19, 0x20);
319
 
320
        /* ICW2: vector base */
321
        outb(FIRST_EXTERNAL_VECTOR, 0x21);
322
 
323
        /* ICW3: slave at line 2 */
324
        outb(0x04, 0x21);
325
 
326
        /* ICW4: 8086 mode */
327
        outb(0x01, 0x21);
328
 
329
        /* now the same for the slave PIC */
330
 
331
        /* ICW1: level trigger, ICW4 needed */
332
        outb(0x19, 0xA0);
333
 
334
        /* ICW2: slave vector base */
335
        outb(FIRST_EXTERNAL_VECTOR + 8, 0xA1);
336
 
337
        /* ICW3: slave ID */
338
        outb(0x02, 0xA1);
339
 
340
        /* ICW4: 8086 mode */
341
        outb(0x01, 0xA1);
342
}
343
 
344
static void
345
do_quad_bootstrap(void)
346
{
347
        if(is_cpu_quad() && is_cpu_vic_boot()) {
348
                int i;
349
                unsigned long flags;
350
                __u8 cpuid = hard_smp_processor_id();
351
 
352
                local_irq_save(flags);
353
 
354
                for(i = 0; i<4; i++) {
355
                        /* FIXME: this would be >>3 &0x7 on the 32 way */
356
                        if(((cpuid >> 2) & 0x03) == i)
357
                                /* don't lower our own mask! */
358
                                continue;
359
 
360
                        /* masquerade as local Quad CPU */
361
                        outb(QIC_CPUID_ENABLE | i, QIC_PROCESSOR_ID);
362
                        /* enable the startup CPI */
363
                        outb(QIC_BOOT_CPI_MASK, QIC_MASK_REGISTER1);
364
                        /* restore cpu id */
365
                        outb(0, QIC_PROCESSOR_ID);
366
                }
367
                local_irq_restore(flags);
368
        }
369
}
370
 
371
 
372
/* Set up all the basic stuff: read the SMP config and make all the
373
 * SMP information reflect only the boot cpu.  All others will be
374
 * brought on-line later. */
375
void __init
376
find_smp_config(void)
377
{
378
        int i;
379
 
380
        boot_cpu_id = hard_smp_processor_id();
381
 
382
        printk("VOYAGER SMP: Boot cpu is %d\n", boot_cpu_id);
383
 
384
        /* initialize the CPU structures (moved from smp_boot_cpus) */
385
        for(i=0; i<NR_CPUS; i++) {
386
                cpu_irq_affinity[i] = ~0;
387
        }
388
        cpu_online_map = cpumask_of_cpu(boot_cpu_id);
389
 
390
        /* The boot CPU must be extended */
391
        voyager_extended_vic_processors = 1<<boot_cpu_id;
392
        /* initially, all of the first 8 CPUs can boot */
393
        voyager_allowed_boot_processors = 0xff;
394
        /* set up everything for just this CPU, we can alter
395
         * this as we start the other CPUs later */
396
        /* now get the CPU disposition from the extended CMOS */
397
        cpus_addr(phys_cpu_present_map)[0] = voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK);
398
        cpus_addr(phys_cpu_present_map)[0] |= voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 1) << 8;
399
        cpus_addr(phys_cpu_present_map)[0] |= voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 2) << 16;
400
        cpus_addr(phys_cpu_present_map)[0] |= voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 3) << 24;
401
        cpu_possible_map = phys_cpu_present_map;
402
        printk("VOYAGER SMP: phys_cpu_present_map = 0x%lx\n", cpus_addr(phys_cpu_present_map)[0]);
403
        /* Here we set up the VIC to enable SMP */
404
        /* enable the CPIs by writing the base vector to their register */
405
        outb(VIC_DEFAULT_CPI_BASE, VIC_CPI_BASE_REGISTER);
406
        outb(1, VIC_REDIRECT_REGISTER_1);
407
        /* set the claim registers for static routing --- Boot CPU gets
408
         * all interrupts untill all other CPUs started */
409
        outb(0xff, VIC_CLAIM_REGISTER_0);
410
        outb(0xff, VIC_CLAIM_REGISTER_1);
411
        /* Set the Primary and Secondary Microchannel vector
412
         * bases to be the same as the ordinary interrupts
413
         *
414
         * FIXME: This would be more efficient using separate
415
         * vectors. */
416
        outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
417
        outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
418
 
419
        /* Finally tell the firmware that we're driving */
420
        outb(inb(VOYAGER_SUS_IN_CONTROL_PORT) | VOYAGER_IN_CONTROL_FLAG,
421
             VOYAGER_SUS_IN_CONTROL_PORT);
422
 
423
        current_thread_info()->cpu = boot_cpu_id;
424
        x86_write_percpu(cpu_number, boot_cpu_id);
425
}
426
 
427
/*
428
 *      The bootstrap kernel entry code has set these up. Save them
429
 *      for a given CPU, id is physical */
430
void __init
431
smp_store_cpu_info(int id)
432
{
433
        struct cpuinfo_x86 *c = &cpu_data(id);
434
 
435
        *c = boot_cpu_data;
436
 
437
        identify_secondary_cpu(c);
438
}
439
 
440
/* set up the trampoline and return the physical address of the code */
441
static __u32 __init
442
setup_trampoline(void)
443
{
444
        /* these two are global symbols in trampoline.S */
445
        extern const __u8 trampoline_end[];
446
        extern const __u8 trampoline_data[];
447
 
448
        memcpy((__u8 *)trampoline_base, trampoline_data,
449
               trampoline_end - trampoline_data);
450
        return virt_to_phys((__u8 *)trampoline_base);
451
}
452
 
453
/* Routine initially called when a non-boot CPU is brought online */
454
static void __init
455
start_secondary(void *unused)
456
{
457
        __u8 cpuid = hard_smp_processor_id();
458
        /* external functions not defined in the headers */
459
        extern void calibrate_delay(void);
460
 
461
        cpu_init();
462
 
463
        /* OK, we're in the routine */
464
        ack_CPI(VIC_CPU_BOOT_CPI);
465
 
466
        /* setup the 8259 master slave pair belonging to this CPU ---
467
         * we won't actually receive any until the boot CPU
468
         * relinquishes it's static routing mask */
469
        vic_setup_pic();
470
 
471
        qic_setup();
472
 
473
        if(is_cpu_quad() && !is_cpu_vic_boot()) {
474
                /* clear the boot CPI */
475
                __u8 dummy;
476
 
477
                dummy = voyager_quad_cpi_addr[cpuid]->qic_cpi[VIC_CPU_BOOT_CPI].cpi;
478
                printk("read dummy %d\n", dummy);
479
        }
480
 
481
        /* lower the mask to receive CPIs */
482
        vic_enable_cpi();
483
 
484
        VDEBUG(("VOYAGER SMP: CPU%d, stack at about %p\n", cpuid, &cpuid));
485
 
486
        /* enable interrupts */
487
        local_irq_enable();
488
 
489
        /* get our bogomips */
490
        calibrate_delay();
491
 
492
        /* save our processor parameters */
493
        smp_store_cpu_info(cpuid);
494
 
495
        /* if we're a quad, we may need to bootstrap other CPUs */
496
        do_quad_bootstrap();
497
 
498
        /* FIXME: this is rather a poor hack to prevent the CPU
499
         * activating softirqs while it's supposed to be waiting for
500
         * permission to proceed.  Without this, the new per CPU stuff
501
         * in the softirqs will fail */
502
        local_irq_disable();
503
        cpu_set(cpuid, cpu_callin_map);
504
 
505
        /* signal that we're done */
506
        cpu_booted_map = 1;
507
 
508
        while (!cpu_isset(cpuid, smp_commenced_mask))
509
                rep_nop();
510
        local_irq_enable();
511
 
512
        local_flush_tlb();
513
 
514
        cpu_set(cpuid, cpu_online_map);
515
        wmb();
516
        cpu_idle();
517
}
518
 
519
 
520
/* Routine to kick start the given CPU and wait for it to report ready
521
 * (or timeout in startup).  When this routine returns, the requested
522
 * CPU is either fully running and configured or known to be dead.
523
 *
524
 * We call this routine sequentially 1 CPU at a time, so no need for
525
 * locking */
526
 
527
static void __init
528
do_boot_cpu(__u8 cpu)
529
{
530
        struct task_struct *idle;
531
        int timeout;
532
        unsigned long flags;
533
        int quad_boot = (1<<cpu) & voyager_quad_processors
534
                & ~( voyager_extended_vic_processors
535
                     & voyager_allowed_boot_processors);
536
 
537
        /* This is an area in head.S which was used to set up the
538
         * initial kernel stack.  We need to alter this to give the
539
         * booting CPU a new stack (taken from its idle process) */
540
        extern struct {
541
                __u8 *esp;
542
                unsigned short ss;
543
        } stack_start;
544
        /* This is the format of the CPI IDT gate (in real mode) which
545
         * we're hijacking to boot the CPU */
546
        union   IDTFormat {
547
                struct seg {
548
                        __u16   Offset;
549
                        __u16   Segment;
550
                } idt;
551
                __u32 val;
552
        } hijack_source;
553
 
554
        __u32 *hijack_vector;
555
        __u32 start_phys_address = setup_trampoline();
556
 
557
        /* There's a clever trick to this: The linux trampoline is
558
         * compiled to begin at absolute location zero, so make the
559
         * address zero but have the data segment selector compensate
560
         * for the actual address */
561
        hijack_source.idt.Offset = start_phys_address & 0x000F;
562
        hijack_source.idt.Segment = (start_phys_address >> 4) & 0xFFFF;
563
 
564
        cpucount++;
565
        alternatives_smp_switch(1);
566
 
567
        idle = fork_idle(cpu);
568
        if(IS_ERR(idle))
569
                panic("failed fork for CPU%d", cpu);
570
        idle->thread.eip = (unsigned long) start_secondary;
571
        /* init_tasks (in sched.c) is indexed logically */
572
        stack_start.esp = (void *) idle->thread.esp;
573
 
574
        init_gdt(cpu);
575
        per_cpu(current_task, cpu) = idle;
576
        early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
577
        irq_ctx_init(cpu);
578
 
579
        /* Note: Don't modify initial ss override */
580
        VDEBUG(("VOYAGER SMP: Booting CPU%d at 0x%lx[%x:%x], stack %p\n", cpu,
581
                (unsigned long)hijack_source.val, hijack_source.idt.Segment,
582
                hijack_source.idt.Offset, stack_start.esp));
583
 
584
        /* init lowmem identity mapping */
585
        clone_pgd_range(swapper_pg_dir, swapper_pg_dir + USER_PGD_PTRS,
586
                        min_t(unsigned long, KERNEL_PGD_PTRS, USER_PGD_PTRS));
587
        flush_tlb_all();
588
 
589
        if(quad_boot) {
590
                printk("CPU %d: non extended Quad boot\n", cpu);
591
                hijack_vector = (__u32 *)phys_to_virt((VIC_CPU_BOOT_CPI + QIC_DEFAULT_CPI_BASE)*4);
592
                *hijack_vector = hijack_source.val;
593
        } else {
594
                printk("CPU%d: extended VIC boot\n", cpu);
595
                hijack_vector = (__u32 *)phys_to_virt((VIC_CPU_BOOT_CPI + VIC_DEFAULT_CPI_BASE)*4);
596
                *hijack_vector = hijack_source.val;
597
                /* VIC errata, may also receive interrupt at this address */
598
                hijack_vector = (__u32 *)phys_to_virt((VIC_CPU_BOOT_ERRATA_CPI + VIC_DEFAULT_CPI_BASE)*4);
599
                *hijack_vector = hijack_source.val;
600
        }
601
        /* All non-boot CPUs start with interrupts fully masked.  Need
602
         * to lower the mask of the CPI we're about to send.  We do
603
         * this in the VIC by masquerading as the processor we're
604
         * about to boot and lowering its interrupt mask */
605
        local_irq_save(flags);
606
        if(quad_boot) {
607
                send_one_QIC_CPI(cpu, VIC_CPU_BOOT_CPI);
608
        } else {
609
                outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
610
                /* here we're altering registers belonging to `cpu' */
611
 
612
                outb(VIC_BOOT_INTERRUPT_MASK, 0x21);
613
                /* now go back to our original identity */
614
                outb(boot_cpu_id, VIC_PROCESSOR_ID);
615
 
616
                /* and boot the CPU */
617
 
618
                send_CPI((1<<cpu), VIC_CPU_BOOT_CPI);
619
        }
620
        cpu_booted_map = 0;
621
        local_irq_restore(flags);
622
 
623
        /* now wait for it to become ready (or timeout) */
624
        for(timeout = 0; timeout < 50000; timeout++) {
625
                if(cpu_booted_map)
626
                        break;
627
                udelay(100);
628
        }
629
        /* reset the page table */
630
        zap_low_mappings();
631
 
632
        if (cpu_booted_map) {
633
                VDEBUG(("CPU%d: Booted successfully, back in CPU %d\n",
634
                        cpu, smp_processor_id()));
635
 
636
                printk("CPU%d: ", cpu);
637
                print_cpu_info(&cpu_data(cpu));
638
                wmb();
639
                cpu_set(cpu, cpu_callout_map);
640
                cpu_set(cpu, cpu_present_map);
641
        }
642
        else {
643
                printk("CPU%d FAILED TO BOOT: ", cpu);
644
                if (*((volatile unsigned char *)phys_to_virt(start_phys_address))==0xA5)
645
                        printk("Stuck.\n");
646
                else
647
                        printk("Not responding.\n");
648
 
649
                cpucount--;
650
        }
651
}
652
 
653
void __init
654
smp_boot_cpus(void)
655
{
656
        int i;
657
 
658
        /* CAT BUS initialisation must be done after the memory */
659
        /* FIXME: The L4 has a catbus too, it just needs to be
660
         * accessed in a totally different way */
661
        if(voyager_level == 5) {
662
                voyager_cat_init();
663
 
664
                /* now that the cat has probed the Voyager System Bus, sanity
665
                 * check the cpu map */
666
                if( ((voyager_quad_processors | voyager_extended_vic_processors)
667
                     & cpus_addr(phys_cpu_present_map)[0]) != cpus_addr(phys_cpu_present_map)[0]) {
668
                        /* should panic */
669
                        printk("\n\n***WARNING*** Sanity check of CPU present map FAILED\n");
670
                }
671
        } else if(voyager_level == 4)
672
                voyager_extended_vic_processors = cpus_addr(phys_cpu_present_map)[0];
673
 
674
        /* this sets up the idle task to run on the current cpu */
675
        voyager_extended_cpus = 1;
676
        /* Remove the global_irq_holder setting, it triggers a BUG() on
677
         * schedule at the moment */
678
        //global_irq_holder = boot_cpu_id;
679
 
680
        /* FIXME: Need to do something about this but currently only works
681
         * on CPUs with a tsc which none of mine have.
682
        smp_tune_scheduling();
683
         */
684
        smp_store_cpu_info(boot_cpu_id);
685
        printk("CPU%d: ", boot_cpu_id);
686
        print_cpu_info(&cpu_data(boot_cpu_id));
687
 
688
        if(is_cpu_quad()) {
689
                /* booting on a Quad CPU */
690
                printk("VOYAGER SMP: Boot CPU is Quad\n");
691
                qic_setup();
692
                do_quad_bootstrap();
693
        }
694
 
695
        /* enable our own CPIs */
696
        vic_enable_cpi();
697
 
698
        cpu_set(boot_cpu_id, cpu_online_map);
699
        cpu_set(boot_cpu_id, cpu_callout_map);
700
 
701
        /* loop over all the extended VIC CPUs and boot them.  The
702
         * Quad CPUs must be bootstrapped by their extended VIC cpu */
703
        for(i = 0; i < NR_CPUS; i++) {
704
                if(i == boot_cpu_id || !cpu_isset(i, phys_cpu_present_map))
705
                        continue;
706
                do_boot_cpu(i);
707
                /* This udelay seems to be needed for the Quad boots
708
                 * don't remove unless you know what you're doing */
709
                udelay(1000);
710
        }
711
        /* we could compute the total bogomips here, but why bother?,
712
         * Code added from smpboot.c */
713
        {
714
                unsigned long bogosum = 0;
715
                for (i = 0; i < NR_CPUS; i++)
716
                        if (cpu_isset(i, cpu_online_map))
717
                                bogosum += cpu_data(i).loops_per_jiffy;
718
                printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
719
                        cpucount+1,
720
                        bogosum/(500000/HZ),
721
                        (bogosum/(5000/HZ))%100);
722
        }
723
        voyager_extended_cpus = hweight32(voyager_extended_vic_processors);
724
        printk("VOYAGER: Extended (interrupt handling CPUs): %d, non-extended: %d\n", voyager_extended_cpus, num_booting_cpus() - voyager_extended_cpus);
725
        /* that's it, switch to symmetric mode */
726
        outb(0, VIC_PRIORITY_REGISTER);
727
        outb(0, VIC_CLAIM_REGISTER_0);
728
        outb(0, VIC_CLAIM_REGISTER_1);
729
 
730
        VDEBUG(("VOYAGER SMP: Booted with %d CPUs\n", num_booting_cpus()));
731
}
732
 
733
/* Reload the secondary CPUs task structure (this function does not
734
 * return ) */
735
void __init
736
initialize_secondary(void)
737
{
738
#if 0
739
        // AC kernels only
740
        set_current(hard_get_current());
741
#endif
742
 
743
        /*
744
         * We don't actually need to load the full TSS,
745
         * basically just the stack pointer and the eip.
746
         */
747
 
748
        asm volatile(
749
                "movl %0,%%esp\n\t"
750
                "jmp *%1"
751
                :
752
                :"r" (current->thread.esp),"r" (current->thread.eip));
753
}
754
 
755
/* handle a Voyager SYS_INT -- If we don't, the base board will
756
 * panic the system.
757
 *
758
 * System interrupts occur because some problem was detected on the
759
 * various busses.  To find out what you have to probe all the
760
 * hardware via the CAT bus.  FIXME: At the moment we do nothing. */
761
fastcall void
762
smp_vic_sys_interrupt(struct pt_regs *regs)
763
{
764
        ack_CPI(VIC_SYS_INT);
765
        printk("Voyager SYSTEM INTERRUPT\n");
766
}
767
 
768
/* Handle a voyager CMN_INT; These interrupts occur either because of
769
 * a system status change or because a single bit memory error
770
 * occurred.  FIXME: At the moment, ignore all this. */
771
fastcall void
772
smp_vic_cmn_interrupt(struct pt_regs *regs)
773
{
774
        static __u8 in_cmn_int = 0;
775
        static DEFINE_SPINLOCK(cmn_int_lock);
776
 
777
        /* common ints are broadcast, so make sure we only do this once */
778
        _raw_spin_lock(&cmn_int_lock);
779
        if(in_cmn_int)
780
                goto unlock_end;
781
 
782
        in_cmn_int++;
783
        _raw_spin_unlock(&cmn_int_lock);
784
 
785
        VDEBUG(("Voyager COMMON INTERRUPT\n"));
786
 
787
        if(voyager_level == 5)
788
                voyager_cat_do_common_interrupt();
789
 
790
        _raw_spin_lock(&cmn_int_lock);
791
        in_cmn_int = 0;
792
 unlock_end:
793
        _raw_spin_unlock(&cmn_int_lock);
794
        ack_CPI(VIC_CMN_INT);
795
}
796
 
797
/*
798
 * Reschedule call back. Nothing to do, all the work is done
799
 * automatically when we return from the interrupt.  */
800
static void
801
smp_reschedule_interrupt(void)
802
{
803
        /* do nothing */
804
}
805
 
806
static struct mm_struct * flush_mm;
807
static unsigned long flush_va;
808
static DEFINE_SPINLOCK(tlbstate_lock);
809
#define FLUSH_ALL       0xffffffff
810
 
811
/*
812
 * We cannot call mmdrop() because we are in interrupt context,
813
 * instead update mm->cpu_vm_mask.
814
 *
815
 * We need to reload %cr3 since the page tables may be going
816
 * away from under us..
817
 */
818
static inline void
819
leave_mm (unsigned long cpu)
820
{
821
        if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK)
822
                BUG();
823
        cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask);
824
        load_cr3(swapper_pg_dir);
825
}
826
 
827
 
828
/*
829
 * Invalidate call-back
830
 */
831
static void
832
smp_invalidate_interrupt(void)
833
{
834
        __u8 cpu = smp_processor_id();
835
 
836
        if (!test_bit(cpu, &smp_invalidate_needed))
837
                return;
838
        /* This will flood messages.  Don't uncomment unless you see
839
         * Problems with cross cpu invalidation
840
        VDEBUG(("VOYAGER SMP: CPU%d received INVALIDATE_CPI\n",
841
                smp_processor_id()));
842
        */
843
 
844
        if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) {
845
                if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) {
846
                        if (flush_va == FLUSH_ALL)
847
                                local_flush_tlb();
848
                        else
849
                                __flush_tlb_one(flush_va);
850
                } else
851
                        leave_mm(cpu);
852
        }
853
        smp_mb__before_clear_bit();
854
        clear_bit(cpu, &smp_invalidate_needed);
855
        smp_mb__after_clear_bit();
856
}
857
 
858
/* All the new flush operations for 2.4 */
859
 
860
 
861
/* This routine is called with a physical cpu mask */
862
static void
863
voyager_flush_tlb_others (unsigned long cpumask, struct mm_struct *mm,
864
                          unsigned long va)
865
{
866
        int stuck = 50000;
867
 
868
        if (!cpumask)
869
                BUG();
870
        if ((cpumask & cpus_addr(cpu_online_map)[0]) != cpumask)
871
                BUG();
872
        if (cpumask & (1 << smp_processor_id()))
873
                BUG();
874
        if (!mm)
875
                BUG();
876
 
877
        spin_lock(&tlbstate_lock);
878
 
879
        flush_mm = mm;
880
        flush_va = va;
881
        atomic_set_mask(cpumask, &smp_invalidate_needed);
882
        /*
883
         * We have to send the CPI only to
884
         * CPUs affected.
885
         */
886
        send_CPI(cpumask, VIC_INVALIDATE_CPI);
887
 
888
        while (smp_invalidate_needed) {
889
                mb();
890
                if(--stuck == 0) {
891
                        printk("***WARNING*** Stuck doing invalidate CPI (CPU%d)\n", smp_processor_id());
892
                        break;
893
                }
894
        }
895
 
896
        /* Uncomment only to debug invalidation problems
897
        VDEBUG(("VOYAGER SMP: Completed invalidate CPI (CPU%d)\n", cpu));
898
        */
899
 
900
        flush_mm = NULL;
901
        flush_va = 0;
902
        spin_unlock(&tlbstate_lock);
903
}
904
 
905
void
906
flush_tlb_current_task(void)
907
{
908
        struct mm_struct *mm = current->mm;
909
        unsigned long cpu_mask;
910
 
911
        preempt_disable();
912
 
913
        cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
914
        local_flush_tlb();
915
        if (cpu_mask)
916
                voyager_flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
917
 
918
        preempt_enable();
919
}
920
 
921
 
922
void
923
flush_tlb_mm (struct mm_struct * mm)
924
{
925
        unsigned long cpu_mask;
926
 
927
        preempt_disable();
928
 
929
        cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
930
 
931
        if (current->active_mm == mm) {
932
                if (current->mm)
933
                        local_flush_tlb();
934
                else
935
                        leave_mm(smp_processor_id());
936
        }
937
        if (cpu_mask)
938
                voyager_flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
939
 
940
        preempt_enable();
941
}
942
 
943
void flush_tlb_page(struct vm_area_struct * vma, unsigned long va)
944
{
945
        struct mm_struct *mm = vma->vm_mm;
946
        unsigned long cpu_mask;
947
 
948
        preempt_disable();
949
 
950
        cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
951
        if (current->active_mm == mm) {
952
                if(current->mm)
953
                        __flush_tlb_one(va);
954
                 else
955
                        leave_mm(smp_processor_id());
956
        }
957
 
958
        if (cpu_mask)
959
                voyager_flush_tlb_others(cpu_mask, mm, va);
960
 
961
        preempt_enable();
962
}
963
EXPORT_SYMBOL(flush_tlb_page);
964
 
965
/* enable the requested IRQs */
966
static void
967
smp_enable_irq_interrupt(void)
968
{
969
        __u8 irq;
970
        __u8 cpu = get_cpu();
971
 
972
        VDEBUG(("VOYAGER SMP: CPU%d enabling irq mask 0x%x\n", cpu,
973
               vic_irq_enable_mask[cpu]));
974
 
975
        spin_lock(&vic_irq_lock);
976
        for(irq = 0; irq < 16; irq++) {
977
                if(vic_irq_enable_mask[cpu] & (1<<irq))
978
                        enable_local_vic_irq(irq);
979
        }
980
        vic_irq_enable_mask[cpu] = 0;
981
        spin_unlock(&vic_irq_lock);
982
 
983
        put_cpu_no_resched();
984
}
985
 
986
/*
987
 *      CPU halt call-back
988
 */
989
static void
990
smp_stop_cpu_function(void *dummy)
991
{
992
        VDEBUG(("VOYAGER SMP: CPU%d is STOPPING\n", smp_processor_id()));
993
        cpu_clear(smp_processor_id(), cpu_online_map);
994
        local_irq_disable();
995
        for(;;)
996
                halt();
997
}
998
 
999
static DEFINE_SPINLOCK(call_lock);
1000
 
1001
struct call_data_struct {
1002
        void (*func) (void *info);
1003
        void *info;
1004
        volatile unsigned long started;
1005
        volatile unsigned long finished;
1006
        int wait;
1007
};
1008
 
1009
static struct call_data_struct * call_data;
1010
 
1011
/* execute a thread on a new CPU.  The function to be called must be
1012
 * previously set up.  This is used to schedule a function for
1013
 * execution on all CPUs - set up the function then broadcast a
1014
 * function_interrupt CPI to come here on each CPU */
1015
static void
1016
smp_call_function_interrupt(void)
1017
{
1018
        void (*func) (void *info) = call_data->func;
1019
        void *info = call_data->info;
1020
        /* must take copy of wait because call_data may be replaced
1021
         * unless the function is waiting for us to finish */
1022
        int wait = call_data->wait;
1023
        __u8 cpu = smp_processor_id();
1024
 
1025
        /*
1026
         * Notify initiating CPU that I've grabbed the data and am
1027
         * about to execute the function
1028
         */
1029
        mb();
1030
        if(!test_and_clear_bit(cpu, &call_data->started)) {
1031
                /* If the bit wasn't set, this could be a replay */
1032
                printk(KERN_WARNING "VOYAGER SMP: CPU %d received call funtion with no call pending\n", cpu);
1033
                return;
1034
        }
1035
        /*
1036
         * At this point the info structure may be out of scope unless wait==1
1037
         */
1038
        irq_enter();
1039
        (*func)(info);
1040
        __get_cpu_var(irq_stat).irq_call_count++;
1041
        irq_exit();
1042
        if (wait) {
1043
                mb();
1044
                clear_bit(cpu, &call_data->finished);
1045
        }
1046
}
1047
 
1048
static int
1049
voyager_smp_call_function_mask (cpumask_t cpumask,
1050
                                void (*func) (void *info), void *info,
1051
                                int wait)
1052
{
1053
        struct call_data_struct data;
1054
        u32 mask = cpus_addr(cpumask)[0];
1055
 
1056
        mask &= ~(1<<smp_processor_id());
1057
 
1058
        if (!mask)
1059
                return 0;
1060
 
1061
        /* Can deadlock when called with interrupts disabled */
1062
        WARN_ON(irqs_disabled());
1063
 
1064
        data.func = func;
1065
        data.info = info;
1066
        data.started = mask;
1067
        data.wait = wait;
1068
        if (wait)
1069
                data.finished = mask;
1070
 
1071
        spin_lock(&call_lock);
1072
        call_data = &data;
1073
        wmb();
1074
        /* Send a message to all other CPUs and wait for them to respond */
1075
        send_CPI(mask, VIC_CALL_FUNCTION_CPI);
1076
 
1077
        /* Wait for response */
1078
        while (data.started)
1079
                barrier();
1080
 
1081
        if (wait)
1082
                while (data.finished)
1083
                        barrier();
1084
 
1085
        spin_unlock(&call_lock);
1086
 
1087
        return 0;
1088
}
1089
 
1090
/* Sorry about the name.  In an APIC based system, the APICs
1091
 * themselves are programmed to send a timer interrupt.  This is used
1092
 * by linux to reschedule the processor.  Voyager doesn't have this,
1093
 * so we use the system clock to interrupt one processor, which in
1094
 * turn, broadcasts a timer CPI to all the others --- we receive that
1095
 * CPI here.  We don't use this actually for counting so losing
1096
 * ticks doesn't matter
1097
 *
1098
 * FIXME: For those CPUs which actually have a local APIC, we could
1099
 * try to use it to trigger this interrupt instead of having to
1100
 * broadcast the timer tick.  Unfortunately, all my pentium DYADs have
1101
 * no local APIC, so I can't do this
1102
 *
1103
 * This function is currently a placeholder and is unused in the code */
1104
fastcall void
1105
smp_apic_timer_interrupt(struct pt_regs *regs)
1106
{
1107
        struct pt_regs *old_regs = set_irq_regs(regs);
1108
        wrapper_smp_local_timer_interrupt();
1109
        set_irq_regs(old_regs);
1110
}
1111
 
1112
/* All of the QUAD interrupt GATES */
1113
fastcall void
1114
smp_qic_timer_interrupt(struct pt_regs *regs)
1115
{
1116
        struct pt_regs *old_regs = set_irq_regs(regs);
1117
        ack_QIC_CPI(QIC_TIMER_CPI);
1118
        wrapper_smp_local_timer_interrupt();
1119
        set_irq_regs(old_regs);
1120
}
1121
 
1122
fastcall void
1123
smp_qic_invalidate_interrupt(struct pt_regs *regs)
1124
{
1125
        ack_QIC_CPI(QIC_INVALIDATE_CPI);
1126
        smp_invalidate_interrupt();
1127
}
1128
 
1129
fastcall void
1130
smp_qic_reschedule_interrupt(struct pt_regs *regs)
1131
{
1132
        ack_QIC_CPI(QIC_RESCHEDULE_CPI);
1133
        smp_reschedule_interrupt();
1134
}
1135
 
1136
fastcall void
1137
smp_qic_enable_irq_interrupt(struct pt_regs *regs)
1138
{
1139
        ack_QIC_CPI(QIC_ENABLE_IRQ_CPI);
1140
        smp_enable_irq_interrupt();
1141
}
1142
 
1143
fastcall void
1144
smp_qic_call_function_interrupt(struct pt_regs *regs)
1145
{
1146
        ack_QIC_CPI(QIC_CALL_FUNCTION_CPI);
1147
        smp_call_function_interrupt();
1148
}
1149
 
1150
fastcall void
1151
smp_vic_cpi_interrupt(struct pt_regs *regs)
1152
{
1153
        struct pt_regs *old_regs = set_irq_regs(regs);
1154
        __u8 cpu = smp_processor_id();
1155
 
1156
        if(is_cpu_quad())
1157
                ack_QIC_CPI(VIC_CPI_LEVEL0);
1158
        else
1159
                ack_VIC_CPI(VIC_CPI_LEVEL0);
1160
 
1161
        if(test_and_clear_bit(VIC_TIMER_CPI, &vic_cpi_mailbox[cpu]))
1162
                wrapper_smp_local_timer_interrupt();
1163
        if(test_and_clear_bit(VIC_INVALIDATE_CPI, &vic_cpi_mailbox[cpu]))
1164
                smp_invalidate_interrupt();
1165
        if(test_and_clear_bit(VIC_RESCHEDULE_CPI, &vic_cpi_mailbox[cpu]))
1166
                smp_reschedule_interrupt();
1167
        if(test_and_clear_bit(VIC_ENABLE_IRQ_CPI, &vic_cpi_mailbox[cpu]))
1168
                smp_enable_irq_interrupt();
1169
        if(test_and_clear_bit(VIC_CALL_FUNCTION_CPI, &vic_cpi_mailbox[cpu]))
1170
                smp_call_function_interrupt();
1171
        set_irq_regs(old_regs);
1172
}
1173
 
1174
static void
1175
do_flush_tlb_all(void* info)
1176
{
1177
        unsigned long cpu = smp_processor_id();
1178
 
1179
        __flush_tlb_all();
1180
        if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY)
1181
                leave_mm(cpu);
1182
}
1183
 
1184
 
1185
/* flush the TLB of every active CPU in the system */
1186
void
1187
flush_tlb_all(void)
1188
{
1189
        on_each_cpu(do_flush_tlb_all, 0, 1, 1);
1190
}
1191
 
1192
/* used to set up the trampoline for other CPUs when the memory manager
1193
 * is sorted out */
1194
void __init
1195
smp_alloc_memory(void)
1196
{
1197
        trampoline_base = (__u32)alloc_bootmem_low_pages(PAGE_SIZE);
1198
        if(__pa(trampoline_base) >= 0x93000)
1199
                BUG();
1200
}
1201
 
1202
/* send a reschedule CPI to one CPU by physical CPU number*/
1203
static void
1204
voyager_smp_send_reschedule(int cpu)
1205
{
1206
        send_one_CPI(cpu, VIC_RESCHEDULE_CPI);
1207
}
1208
 
1209
 
1210
int
1211
hard_smp_processor_id(void)
1212
{
1213
        __u8 i;
1214
        __u8 cpumask = inb(VIC_PROC_WHO_AM_I);
1215
        if((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER)
1216
                return cpumask & 0x1F;
1217
 
1218
        for(i = 0; i < 8; i++) {
1219
                if(cpumask & (1<<i))
1220
                        return i;
1221
        }
1222
        printk("** WARNING ** Illegal cpuid returned by VIC: %d", cpumask);
1223
        return 0;
1224
}
1225
 
1226
int
1227
safe_smp_processor_id(void)
1228
{
1229
        return hard_smp_processor_id();
1230
}
1231
 
1232
/* broadcast a halt to all other CPUs */
1233
static void
1234
voyager_smp_send_stop(void)
1235
{
1236
        smp_call_function(smp_stop_cpu_function, NULL, 1, 1);
1237
}
1238
 
1239
/* this function is triggered in time.c when a clock tick fires
1240
 * we need to re-broadcast the tick to all CPUs */
1241
void
1242
smp_vic_timer_interrupt(void)
1243
{
1244
        send_CPI_allbutself(VIC_TIMER_CPI);
1245
        smp_local_timer_interrupt();
1246
}
1247
 
1248
/* local (per CPU) timer interrupt.  It does both profiling and
1249
 * process statistics/rescheduling.
1250
 *
1251
 * We do profiling in every local tick, statistics/rescheduling
1252
 * happen only every 'profiling multiplier' ticks. The default
1253
 * multiplier is 1 and it can be changed by writing the new multiplier
1254
 * value into /proc/profile.
1255
 */
1256
void
1257
smp_local_timer_interrupt(void)
1258
{
1259
        int cpu = smp_processor_id();
1260
        long weight;
1261
 
1262
        profile_tick(CPU_PROFILING);
1263
        if (--per_cpu(prof_counter, cpu) <= 0) {
1264
                /*
1265
                 * The multiplier may have changed since the last time we got
1266
                 * to this point as a result of the user writing to
1267
                 * /proc/profile. In this case we need to adjust the APIC
1268
                 * timer accordingly.
1269
                 *
1270
                 * Interrupts are already masked off at this point.
1271
                 */
1272
                per_cpu(prof_counter,cpu) = per_cpu(prof_multiplier, cpu);
1273
                if (per_cpu(prof_counter, cpu) !=
1274
                                        per_cpu(prof_old_multiplier, cpu)) {
1275
                        /* FIXME: need to update the vic timer tick here */
1276
                        per_cpu(prof_old_multiplier, cpu) =
1277
                                                per_cpu(prof_counter, cpu);
1278
                }
1279
 
1280
                update_process_times(user_mode_vm(get_irq_regs()));
1281
        }
1282
 
1283
        if( ((1<<cpu) & voyager_extended_vic_processors) == 0)
1284
                /* only extended VIC processors participate in
1285
                 * interrupt distribution */
1286
                return;
1287
 
1288
        /*
1289
         * We take the 'long' return path, and there every subsystem
1290
         * grabs the appropriate locks (kernel lock/ irq lock).
1291
         *
1292
         * we might want to decouple profiling from the 'long path',
1293
         * and do the profiling totally in assembly.
1294
         *
1295
         * Currently this isn't too much of an issue (performance wise),
1296
         * we can take more than 100K local irqs per second on a 100 MHz P5.
1297
         */
1298
 
1299
        if((++vic_tick[cpu] & 0x7) != 0)
1300
                return;
1301
        /* get here every 16 ticks (about every 1/6 of a second) */
1302
 
1303
        /* Change our priority to give someone else a chance at getting
1304
         * the IRQ. The algorithm goes like this:
1305
         *
1306
         * In the VIC, the dynamically routed interrupt is always
1307
         * handled by the lowest priority eligible (i.e. receiving
1308
         * interrupts) CPU.  If >1 eligible CPUs are equal lowest, the
1309
         * lowest processor number gets it.
1310
         *
1311
         * The priority of a CPU is controlled by a special per-CPU
1312
         * VIC priority register which is 3 bits wide 0 being lowest
1313
         * and 7 highest priority..
1314
         *
1315
         * Therefore we subtract the average number of interrupts from
1316
         * the number we've fielded.  If this number is negative, we
1317
         * lower the activity count and if it is positive, we raise
1318
         * it.
1319
         *
1320
         * I'm afraid this still leads to odd looking interrupt counts:
1321
         * the totals are all roughly equal, but the individual ones
1322
         * look rather skewed.
1323
         *
1324
         * FIXME: This algorithm is total crap when mixed with SMP
1325
         * affinity code since we now try to even up the interrupt
1326
         * counts when an affinity binding is keeping them on a
1327
         * particular CPU*/
1328
        weight = (vic_intr_count[cpu]*voyager_extended_cpus
1329
                  - vic_intr_total) >> 4;
1330
        weight += 4;
1331
        if(weight > 7)
1332
                weight = 7;
1333
        if(weight < 0)
1334
                weight = 0;
1335
 
1336
        outb((__u8)weight, VIC_PRIORITY_REGISTER);
1337
 
1338
#ifdef VOYAGER_DEBUG
1339
        if((vic_tick[cpu] & 0xFFF) == 0) {
1340
                /* print this message roughly every 25 secs */
1341
                printk("VOYAGER SMP: vic_tick[%d] = %lu, weight = %ld\n",
1342
                       cpu, vic_tick[cpu], weight);
1343
        }
1344
#endif
1345
}
1346
 
1347
/* setup the profiling timer */
1348
int
1349
setup_profiling_timer(unsigned int multiplier)
1350
{
1351
        int i;
1352
 
1353
        if ( (!multiplier))
1354
                return -EINVAL;
1355
 
1356
        /*
1357
         * Set the new multiplier for each CPU. CPUs don't start using the
1358
         * new values until the next timer interrupt in which they do process
1359
         * accounting.
1360
         */
1361
        for (i = 0; i < NR_CPUS; ++i)
1362
                per_cpu(prof_multiplier, i) = multiplier;
1363
 
1364
        return 0;
1365
}
1366
 
1367
/* This is a bit of a mess, but forced on us by the genirq changes
1368
 * there's no genirq handler that really does what voyager wants
1369
 * so hack it up with the simple IRQ handler */
1370
static void fastcall
1371
handle_vic_irq(unsigned int irq, struct irq_desc *desc)
1372
{
1373
        before_handle_vic_irq(irq);
1374
        handle_simple_irq(irq, desc);
1375
        after_handle_vic_irq(irq);
1376
}
1377
 
1378
 
1379
/*  The CPIs are handled in the per cpu 8259s, so they must be
1380
 *  enabled to be received: FIX: enabling the CPIs in the early
1381
 *  boot sequence interferes with bug checking; enable them later
1382
 *  on in smp_init */
1383
#define VIC_SET_GATE(cpi, vector) \
1384
        set_intr_gate((cpi) + VIC_DEFAULT_CPI_BASE, (vector))
1385
#define QIC_SET_GATE(cpi, vector) \
1386
        set_intr_gate((cpi) + QIC_DEFAULT_CPI_BASE, (vector))
1387
 
1388
void __init
1389
smp_intr_init(void)
1390
{
1391
        int i;
1392
 
1393
        /* initialize the per cpu irq mask to all disabled */
1394
        for(i = 0; i < NR_CPUS; i++)
1395
                vic_irq_mask[i] = 0xFFFF;
1396
 
1397
        VIC_SET_GATE(VIC_CPI_LEVEL0, vic_cpi_interrupt);
1398
 
1399
        VIC_SET_GATE(VIC_SYS_INT, vic_sys_interrupt);
1400
        VIC_SET_GATE(VIC_CMN_INT, vic_cmn_interrupt);
1401
 
1402
        QIC_SET_GATE(QIC_TIMER_CPI, qic_timer_interrupt);
1403
        QIC_SET_GATE(QIC_INVALIDATE_CPI, qic_invalidate_interrupt);
1404
        QIC_SET_GATE(QIC_RESCHEDULE_CPI, qic_reschedule_interrupt);
1405
        QIC_SET_GATE(QIC_ENABLE_IRQ_CPI, qic_enable_irq_interrupt);
1406
        QIC_SET_GATE(QIC_CALL_FUNCTION_CPI, qic_call_function_interrupt);
1407
 
1408
 
1409
        /* now put the VIC descriptor into the first 48 IRQs
1410
         *
1411
         * This is for later: first 16 correspond to PC IRQs; next 16
1412
         * are Primary MC IRQs and final 16 are Secondary MC IRQs */
1413
        for(i = 0; i < 48; i++)
1414
                set_irq_chip_and_handler(i, &vic_chip, handle_vic_irq);
1415
}
1416
 
1417
/* send a CPI at level cpi to a set of cpus in cpuset (set 1 bit per
1418
 * processor to receive CPI */
1419
static void
1420
send_CPI(__u32 cpuset, __u8 cpi)
1421
{
1422
        int cpu;
1423
        __u32 quad_cpuset = (cpuset & voyager_quad_processors);
1424
 
1425
        if(cpi < VIC_START_FAKE_CPI) {
1426
                /* fake CPI are only used for booting, so send to the
1427
                 * extended quads as well---Quads must be VIC booted */
1428
                outb((__u8)(cpuset), VIC_CPI_Registers[cpi]);
1429
                return;
1430
        }
1431
        if(quad_cpuset)
1432
                send_QIC_CPI(quad_cpuset, cpi);
1433
        cpuset &= ~quad_cpuset;
1434
        cpuset &= 0xff;         /* only first 8 CPUs vaild for VIC CPI */
1435
        if(cpuset == 0)
1436
                return;
1437
        for_each_online_cpu(cpu) {
1438
                if(cpuset & (1<<cpu))
1439
                        set_bit(cpi, &vic_cpi_mailbox[cpu]);
1440
        }
1441
        if(cpuset)
1442
                outb((__u8)cpuset, VIC_CPI_Registers[VIC_CPI_LEVEL0]);
1443
}
1444
 
1445
/* Acknowledge receipt of CPI in the QIC, clear in QIC hardware and
1446
 * set the cache line to shared by reading it.
1447
 *
1448
 * DON'T make this inline otherwise the cache line read will be
1449
 * optimised away
1450
 * */
1451
static int
1452
ack_QIC_CPI(__u8 cpi) {
1453
        __u8 cpu = hard_smp_processor_id();
1454
 
1455
        cpi &= 7;
1456
 
1457
        outb(1<<cpi, QIC_INTERRUPT_CLEAR1);
1458
        return voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi;
1459
}
1460
 
1461
static void
1462
ack_special_QIC_CPI(__u8 cpi)
1463
{
1464
        switch(cpi) {
1465
        case VIC_CMN_INT:
1466
                outb(QIC_CMN_INT, QIC_INTERRUPT_CLEAR0);
1467
                break;
1468
        case VIC_SYS_INT:
1469
                outb(QIC_SYS_INT, QIC_INTERRUPT_CLEAR0);
1470
                break;
1471
        }
1472
        /* also clear at the VIC, just in case (nop for non-extended proc) */
1473
        ack_VIC_CPI(cpi);
1474
}
1475
 
1476
/* Acknowledge receipt of CPI in the VIC (essentially an EOI) */
1477
static void
1478
ack_VIC_CPI(__u8 cpi)
1479
{
1480
#ifdef VOYAGER_DEBUG
1481
        unsigned long flags;
1482
        __u16 isr;
1483
        __u8 cpu = smp_processor_id();
1484
 
1485
        local_irq_save(flags);
1486
        isr = vic_read_isr();
1487
        if((isr & (1<<(cpi &7))) == 0) {
1488
                printk("VOYAGER SMP: CPU%d lost CPI%d\n", cpu, cpi);
1489
        }
1490
#endif
1491
        /* send specific EOI; the two system interrupts have
1492
         * bit 4 set for a separate vector but behave as the
1493
         * corresponding 3 bit intr */
1494
        outb_p(0x60|(cpi & 7),0x20);
1495
 
1496
#ifdef VOYAGER_DEBUG
1497
        if((vic_read_isr() & (1<<(cpi &7))) != 0) {
1498
                printk("VOYAGER SMP: CPU%d still asserting CPI%d\n", cpu, cpi);
1499
        }
1500
        local_irq_restore(flags);
1501
#endif
1502
}
1503
 
1504
/* cribbed with thanks from irq.c */
1505
#define __byte(x,y)     (((unsigned char *)&(y))[x])
1506
#define cached_21(cpu)  (__byte(0,vic_irq_mask[cpu]))
1507
#define cached_A1(cpu)  (__byte(1,vic_irq_mask[cpu]))
1508
 
1509
static unsigned int
1510
startup_vic_irq(unsigned int irq)
1511
{
1512
        unmask_vic_irq(irq);
1513
 
1514
        return 0;
1515
}
1516
 
1517
/* The enable and disable routines.  This is where we run into
1518
 * conflicting architectural philosophy.  Fundamentally, the voyager
1519
 * architecture does not expect to have to disable interrupts globally
1520
 * (the IRQ controllers belong to each CPU).  The processor masquerade
1521
 * which is used to start the system shouldn't be used in a running OS
1522
 * since it will cause great confusion if two separate CPUs drive to
1523
 * the same IRQ controller (I know, I've tried it).
1524
 *
1525
 * The solution is a variant on the NCR lazy SPL design:
1526
 *
1527
 * 1) To disable an interrupt, do nothing (other than set the
1528
 *    IRQ_DISABLED flag).  This dares the interrupt actually to arrive.
1529
 *
1530
 * 2) If the interrupt dares to come in, raise the local mask against
1531
 *    it (this will result in all the CPU masks being raised
1532
 *    eventually).
1533
 *
1534
 * 3) To enable the interrupt, lower the mask on the local CPU and
1535
 *    broadcast an Interrupt enable CPI which causes all other CPUs to
1536
 *    adjust their masks accordingly.  */
1537
 
1538
static void
1539
unmask_vic_irq(unsigned int irq)
1540
{
1541
        /* linux doesn't to processor-irq affinity, so enable on
1542
         * all CPUs we know about */
1543
        int cpu = smp_processor_id(), real_cpu;
1544
        __u16 mask = (1<<irq);
1545
        __u32 processorList = 0;
1546
        unsigned long flags;
1547
 
1548
        VDEBUG(("VOYAGER: unmask_vic_irq(%d) CPU%d affinity 0x%lx\n",
1549
                irq, cpu, cpu_irq_affinity[cpu]));
1550
        spin_lock_irqsave(&vic_irq_lock, flags);
1551
        for_each_online_cpu(real_cpu) {
1552
                if(!(voyager_extended_vic_processors & (1<<real_cpu)))
1553
                        continue;
1554
                if(!(cpu_irq_affinity[real_cpu] & mask)) {
1555
                        /* irq has no affinity for this CPU, ignore */
1556
                        continue;
1557
                }
1558
                if(real_cpu == cpu) {
1559
                        enable_local_vic_irq(irq);
1560
                }
1561
                else if(vic_irq_mask[real_cpu] & mask) {
1562
                        vic_irq_enable_mask[real_cpu] |= mask;
1563
                        processorList |= (1<<real_cpu);
1564
                }
1565
        }
1566
        spin_unlock_irqrestore(&vic_irq_lock, flags);
1567
        if(processorList)
1568
                send_CPI(processorList, VIC_ENABLE_IRQ_CPI);
1569
}
1570
 
1571
static void
1572
mask_vic_irq(unsigned int irq)
1573
{
1574
        /* lazy disable, do nothing */
1575
}
1576
 
1577
static void
1578
enable_local_vic_irq(unsigned int irq)
1579
{
1580
        __u8 cpu = smp_processor_id();
1581
        __u16 mask = ~(1 << irq);
1582
        __u16 old_mask = vic_irq_mask[cpu];
1583
 
1584
        vic_irq_mask[cpu] &= mask;
1585
        if(vic_irq_mask[cpu] == old_mask)
1586
                return;
1587
 
1588
        VDEBUG(("VOYAGER DEBUG: Enabling irq %d in hardware on CPU %d\n",
1589
                irq, cpu));
1590
 
1591
        if (irq & 8) {
1592
                outb_p(cached_A1(cpu),0xA1);
1593
                (void)inb_p(0xA1);
1594
        }
1595
        else {
1596
                outb_p(cached_21(cpu),0x21);
1597
                (void)inb_p(0x21);
1598
        }
1599
}
1600
 
1601
static void
1602
disable_local_vic_irq(unsigned int irq)
1603
{
1604
        __u8 cpu = smp_processor_id();
1605
        __u16 mask = (1 << irq);
1606
        __u16 old_mask = vic_irq_mask[cpu];
1607
 
1608
        if(irq == 7)
1609
                return;
1610
 
1611
        vic_irq_mask[cpu] |= mask;
1612
        if(old_mask == vic_irq_mask[cpu])
1613
                return;
1614
 
1615
        VDEBUG(("VOYAGER DEBUG: Disabling irq %d in hardware on CPU %d\n",
1616
                irq, cpu));
1617
 
1618
        if (irq & 8) {
1619
                outb_p(cached_A1(cpu),0xA1);
1620
                (void)inb_p(0xA1);
1621
        }
1622
        else {
1623
                outb_p(cached_21(cpu),0x21);
1624
                (void)inb_p(0x21);
1625
        }
1626
}
1627
 
1628
/* The VIC is level triggered, so the ack can only be issued after the
1629
 * interrupt completes.  However, we do Voyager lazy interrupt
1630
 * handling here: It is an extremely expensive operation to mask an
1631
 * interrupt in the vic, so we merely set a flag (IRQ_DISABLED).  If
1632
 * this interrupt actually comes in, then we mask and ack here to push
1633
 * the interrupt off to another CPU */
1634
static void
1635
before_handle_vic_irq(unsigned int irq)
1636
{
1637
        irq_desc_t *desc = irq_desc + irq;
1638
        __u8 cpu = smp_processor_id();
1639
 
1640
        _raw_spin_lock(&vic_irq_lock);
1641
        vic_intr_total++;
1642
        vic_intr_count[cpu]++;
1643
 
1644
        if(!(cpu_irq_affinity[cpu] & (1<<irq))) {
1645
                /* The irq is not in our affinity mask, push it off
1646
                 * onto another CPU */
1647
                VDEBUG(("VOYAGER DEBUG: affinity triggered disable of irq %d on cpu %d\n",
1648
                        irq, cpu));
1649
                disable_local_vic_irq(irq);
1650
                /* set IRQ_INPROGRESS to prevent the handler in irq.c from
1651
                 * actually calling the interrupt routine */
1652
                desc->status |= IRQ_REPLAY | IRQ_INPROGRESS;
1653
        } else if(desc->status & IRQ_DISABLED) {
1654
                /* Damn, the interrupt actually arrived, do the lazy
1655
                 * disable thing. The interrupt routine in irq.c will
1656
                 * not handle a IRQ_DISABLED interrupt, so nothing more
1657
                 * need be done here */
1658
                VDEBUG(("VOYAGER DEBUG: lazy disable of irq %d on CPU %d\n",
1659
                        irq, cpu));
1660
                disable_local_vic_irq(irq);
1661
                desc->status |= IRQ_REPLAY;
1662
        } else {
1663
                desc->status &= ~IRQ_REPLAY;
1664
        }
1665
 
1666
        _raw_spin_unlock(&vic_irq_lock);
1667
}
1668
 
1669
/* Finish the VIC interrupt: basically mask */
1670
static void
1671
after_handle_vic_irq(unsigned int irq)
1672
{
1673
        irq_desc_t *desc = irq_desc + irq;
1674
 
1675
        _raw_spin_lock(&vic_irq_lock);
1676
        {
1677
                unsigned int status = desc->status & ~IRQ_INPROGRESS;
1678
#ifdef VOYAGER_DEBUG
1679
                __u16 isr;
1680
#endif
1681
 
1682
                desc->status = status;
1683
                if ((status & IRQ_DISABLED))
1684
                        disable_local_vic_irq(irq);
1685
#ifdef VOYAGER_DEBUG
1686
                /* DEBUG: before we ack, check what's in progress */
1687
                isr = vic_read_isr();
1688
                if((isr & (1<<irq) && !(status & IRQ_REPLAY)) == 0) {
1689
                        int i;
1690
                        __u8 cpu = smp_processor_id();
1691
                        __u8 real_cpu;
1692
                        int mask; /* Um... initialize me??? --RR */
1693
 
1694
                        printk("VOYAGER SMP: CPU%d lost interrupt %d\n",
1695
                               cpu, irq);
1696
                        for_each_possible_cpu(real_cpu, mask) {
1697
 
1698
                                outb(VIC_CPU_MASQUERADE_ENABLE | real_cpu,
1699
                                     VIC_PROCESSOR_ID);
1700
                                isr = vic_read_isr();
1701
                                if(isr & (1<<irq)) {
1702
                                        printk("VOYAGER SMP: CPU%d ack irq %d\n",
1703
                                               real_cpu, irq);
1704
                                        ack_vic_irq(irq);
1705
                                }
1706
                                outb(cpu, VIC_PROCESSOR_ID);
1707
                        }
1708
                }
1709
#endif /* VOYAGER_DEBUG */
1710
                /* as soon as we ack, the interrupt is eligible for
1711
                 * receipt by another CPU so everything must be in
1712
                 * order here  */
1713
                ack_vic_irq(irq);
1714
                if(status & IRQ_REPLAY) {
1715
                        /* replay is set if we disable the interrupt
1716
                         * in the before_handle_vic_irq() routine, so
1717
                         * clear the in progress bit here to allow the
1718
                         * next CPU to handle this correctly */
1719
                        desc->status &= ~(IRQ_REPLAY | IRQ_INPROGRESS);
1720
                }
1721
#ifdef VOYAGER_DEBUG
1722
                isr = vic_read_isr();
1723
                if((isr & (1<<irq)) != 0)
1724
                        printk("VOYAGER SMP: after_handle_vic_irq() after ack irq=%d, isr=0x%x\n",
1725
                               irq, isr);
1726
#endif /* VOYAGER_DEBUG */
1727
        }
1728
        _raw_spin_unlock(&vic_irq_lock);
1729
 
1730
        /* All code after this point is out of the main path - the IRQ
1731
         * may be intercepted by another CPU if reasserted */
1732
}
1733
 
1734
 
1735
/* Linux processor - interrupt affinity manipulations.
1736
 *
1737
 * For each processor, we maintain a 32 bit irq affinity mask.
1738
 * Initially it is set to all 1's so every processor accepts every
1739
 * interrupt.  In this call, we change the processor's affinity mask:
1740
 *
1741
 * Change from enable to disable:
1742
 *
1743
 * If the interrupt ever comes in to the processor, we will disable it
1744
 * and ack it to push it off to another CPU, so just accept the mask here.
1745
 *
1746
 * Change from disable to enable:
1747
 *
1748
 * change the mask and then do an interrupt enable CPI to re-enable on
1749
 * the selected processors */
1750
 
1751
void
1752
set_vic_irq_affinity(unsigned int irq, cpumask_t mask)
1753
{
1754
        /* Only extended processors handle interrupts */
1755
        unsigned long real_mask;
1756
        unsigned long irq_mask = 1 << irq;
1757
        int cpu;
1758
 
1759
        real_mask = cpus_addr(mask)[0] & voyager_extended_vic_processors;
1760
 
1761
        if(cpus_addr(mask)[0] == 0)
1762
                /* can't have no CPUs to accept the interrupt -- extremely
1763
                 * bad things will happen */
1764
                return;
1765
 
1766
        if(irq == 0)
1767
                /* can't change the affinity of the timer IRQ.  This
1768
                 * is due to the constraint in the voyager
1769
                 * architecture that the CPI also comes in on and IRQ
1770
                 * line and we have chosen IRQ0 for this.  If you
1771
                 * raise the mask on this interrupt, the processor
1772
                 * will no-longer be able to accept VIC CPIs */
1773
                return;
1774
 
1775
        if(irq >= 32)
1776
                /* You can only have 32 interrupts in a voyager system
1777
                 * (and 32 only if you have a secondary microchannel
1778
                 * bus) */
1779
                return;
1780
 
1781
        for_each_online_cpu(cpu) {
1782
                unsigned long cpu_mask = 1 << cpu;
1783
 
1784
                if(cpu_mask & real_mask) {
1785
                        /* enable the interrupt for this cpu */
1786
                        cpu_irq_affinity[cpu] |= irq_mask;
1787
                } else {
1788
                        /* disable the interrupt for this cpu */
1789
                        cpu_irq_affinity[cpu] &= ~irq_mask;
1790
                }
1791
        }
1792
        /* this is magic, we now have the correct affinity maps, so
1793
         * enable the interrupt.  This will send an enable CPI to
1794
         * those CPUs who need to enable it in their local masks,
1795
         * causing them to correct for the new affinity . If the
1796
         * interrupt is currently globally disabled, it will simply be
1797
         * disabled again as it comes in (voyager lazy disable).  If
1798
         * the affinity map is tightened to disable the interrupt on a
1799
         * cpu, it will be pushed off when it comes in */
1800
        unmask_vic_irq(irq);
1801
}
1802
 
1803
static void
1804
ack_vic_irq(unsigned int irq)
1805
{
1806
        if (irq & 8) {
1807
                outb(0x62,0x20);        /* Specific EOI to cascade */
1808
                outb(0x60|(irq & 7),0xA0);
1809
        } else {
1810
                outb(0x60 | (irq & 7),0x20);
1811
        }
1812
}
1813
 
1814
/* enable the CPIs.  In the VIC, the CPIs are delivered by the 8259
1815
 * but are not vectored by it.  This means that the 8259 mask must be
1816
 * lowered to receive them */
1817
static __init void
1818
vic_enable_cpi(void)
1819
{
1820
        __u8 cpu = smp_processor_id();
1821
 
1822
        /* just take a copy of the current mask (nop for boot cpu) */
1823
        vic_irq_mask[cpu] = vic_irq_mask[boot_cpu_id];
1824
 
1825
        enable_local_vic_irq(VIC_CPI_LEVEL0);
1826
        enable_local_vic_irq(VIC_CPI_LEVEL1);
1827
        /* for sys int and cmn int */
1828
        enable_local_vic_irq(7);
1829
 
1830
        if(is_cpu_quad()) {
1831
                outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
1832
                outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
1833
                VDEBUG(("VOYAGER SMP: QIC ENABLE CPI: CPU%d: MASK 0x%x\n",
1834
                        cpu, QIC_CPI_ENABLE));
1835
        }
1836
 
1837
        VDEBUG(("VOYAGER SMP: ENABLE CPI: CPU%d: MASK 0x%x\n",
1838
                cpu, vic_irq_mask[cpu]));
1839
}
1840
 
1841
void
1842
voyager_smp_dump()
1843
{
1844
        int old_cpu = smp_processor_id(), cpu;
1845
 
1846
        /* dump the interrupt masks of each processor */
1847
        for_each_online_cpu(cpu) {
1848
                __u16 imr, isr, irr;
1849
                unsigned long flags;
1850
 
1851
                local_irq_save(flags);
1852
                outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
1853
                imr = (inb(0xa1) << 8) | inb(0x21);
1854
                outb(0x0a, 0xa0);
1855
                irr = inb(0xa0) << 8;
1856
                outb(0x0a, 0x20);
1857
                irr |= inb(0x20);
1858
                outb(0x0b, 0xa0);
1859
                isr = inb(0xa0) << 8;
1860
                outb(0x0b, 0x20);
1861
                isr |= inb(0x20);
1862
                outb(old_cpu, VIC_PROCESSOR_ID);
1863
                local_irq_restore(flags);
1864
                printk("\tCPU%d: mask=0x%x, IMR=0x%x, IRR=0x%x, ISR=0x%x\n",
1865
                       cpu, vic_irq_mask[cpu], imr, irr, isr);
1866
#if 0
1867
                /* These lines are put in to try to unstick an un ack'd irq */
1868
                if(isr != 0) {
1869
                        int irq;
1870
                        for(irq=0; irq<16; irq++) {
1871
                                if(isr & (1<<irq)) {
1872
                                        printk("\tCPU%d: ack irq %d\n",
1873
                                               cpu, irq);
1874
                                        local_irq_save(flags);
1875
                                        outb(VIC_CPU_MASQUERADE_ENABLE | cpu,
1876
                                             VIC_PROCESSOR_ID);
1877
                                        ack_vic_irq(irq);
1878
                                        outb(old_cpu, VIC_PROCESSOR_ID);
1879
                                        local_irq_restore(flags);
1880
                                }
1881
                        }
1882
                }
1883
#endif
1884
        }
1885
}
1886
 
1887
void
1888
smp_voyager_power_off(void *dummy)
1889
{
1890
        if(smp_processor_id() == boot_cpu_id)
1891
                voyager_power_off();
1892
        else
1893
                smp_stop_cpu_function(NULL);
1894
}
1895
 
1896
static void __init
1897
voyager_smp_prepare_cpus(unsigned int max_cpus)
1898
{
1899
        /* FIXME: ignore max_cpus for now */
1900
        smp_boot_cpus();
1901
}
1902
 
1903
static void __cpuinit voyager_smp_prepare_boot_cpu(void)
1904
{
1905
        init_gdt(smp_processor_id());
1906
        switch_to_new_gdt();
1907
 
1908
        cpu_set(smp_processor_id(), cpu_online_map);
1909
        cpu_set(smp_processor_id(), cpu_callout_map);
1910
        cpu_set(smp_processor_id(), cpu_possible_map);
1911
        cpu_set(smp_processor_id(), cpu_present_map);
1912
}
1913
 
1914
static int __cpuinit
1915
voyager_cpu_up(unsigned int cpu)
1916
{
1917
        /* This only works at boot for x86.  See "rewrite" above. */
1918
        if (cpu_isset(cpu, smp_commenced_mask))
1919
                return -ENOSYS;
1920
 
1921
        /* In case one didn't come up */
1922
        if (!cpu_isset(cpu, cpu_callin_map))
1923
                return -EIO;
1924
        /* Unleash the CPU! */
1925
        cpu_set(cpu, smp_commenced_mask);
1926
        while (!cpu_isset(cpu, cpu_online_map))
1927
                mb();
1928
        return 0;
1929
}
1930
 
1931
static void __init
1932
voyager_smp_cpus_done(unsigned int max_cpus)
1933
{
1934
        zap_low_mappings();
1935
}
1936
 
1937
void __init
1938
smp_setup_processor_id(void)
1939
{
1940
        current_thread_info()->cpu = hard_smp_processor_id();
1941
        x86_write_percpu(cpu_number, hard_smp_processor_id());
1942
}
1943
 
1944
struct smp_ops smp_ops = {
1945
        .smp_prepare_boot_cpu = voyager_smp_prepare_boot_cpu,
1946
        .smp_prepare_cpus = voyager_smp_prepare_cpus,
1947
        .cpu_up = voyager_cpu_up,
1948
        .smp_cpus_done = voyager_smp_cpus_done,
1949
 
1950
        .smp_send_stop = voyager_smp_send_stop,
1951
        .smp_send_reschedule = voyager_smp_send_reschedule,
1952
        .smp_call_function_mask = voyager_smp_call_function_mask,
1953
};

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.