OpenCores
URL https://opencores.org/ocsvn/or1k_soc_on_altera_embedded_dev_kit/or1k_soc_on_altera_embedded_dev_kit/trunk

Subversion Repositories or1k_soc_on_altera_embedded_dev_kit

[/] [or1k_soc_on_altera_embedded_dev_kit/] [trunk/] [linux-2.6/] [linux-2.6.24/] [block/] [cfq-iosched.c] - Blame information for rev 19

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 3 xianfeng
/*
2
 *  CFQ, or complete fairness queueing, disk scheduler.
3
 *
4
 *  Based on ideas from a previously unfinished io
5
 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6
 *
7
 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8
 */
9
#include <linux/module.h>
10
#include <linux/blkdev.h>
11
#include <linux/elevator.h>
12
#include <linux/rbtree.h>
13
#include <linux/ioprio.h>
14
 
15
/*
16
 * tunables
17
 */
18
static const int cfq_quantum = 4;               /* max queue in one round of service */
19
static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
20
static const int cfq_back_max = 16 * 1024;      /* maximum backwards seek, in KiB */
21
static const int cfq_back_penalty = 2;          /* penalty of a backwards seek */
22
 
23
static const int cfq_slice_sync = HZ / 10;
24
static int cfq_slice_async = HZ / 25;
25
static const int cfq_slice_async_rq = 2;
26
static int cfq_slice_idle = HZ / 125;
27
 
28
/*
29
 * grace period before allowing idle class to get disk access
30
 */
31
#define CFQ_IDLE_GRACE          (HZ / 10)
32
 
33
/*
34
 * below this threshold, we consider thinktime immediate
35
 */
36
#define CFQ_MIN_TT              (2)
37
 
38
#define CFQ_SLICE_SCALE         (5)
39
 
40
#define RQ_CIC(rq)              ((struct cfq_io_context*)(rq)->elevator_private)
41
#define RQ_CFQQ(rq)             ((rq)->elevator_private2)
42
 
43
static struct kmem_cache *cfq_pool;
44
static struct kmem_cache *cfq_ioc_pool;
45
 
46
static DEFINE_PER_CPU(unsigned long, ioc_count);
47
static struct completion *ioc_gone;
48
 
49
#define CFQ_PRIO_LISTS          IOPRIO_BE_NR
50
#define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
51
#define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
52
 
53
#define ASYNC                   (0)
54
#define SYNC                    (1)
55
 
56
#define sample_valid(samples)   ((samples) > 80)
57
 
58
/*
59
 * Most of our rbtree usage is for sorting with min extraction, so
60
 * if we cache the leftmost node we don't have to walk down the tree
61
 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
62
 * move this into the elevator for the rq sorting as well.
63
 */
64
struct cfq_rb_root {
65
        struct rb_root rb;
66
        struct rb_node *left;
67
};
68
#define CFQ_RB_ROOT     (struct cfq_rb_root) { RB_ROOT, NULL, }
69
 
70
/*
71
 * Per block device queue structure
72
 */
73
struct cfq_data {
74
        struct request_queue *queue;
75
 
76
        /*
77
         * rr list of queues with requests and the count of them
78
         */
79
        struct cfq_rb_root service_tree;
80
        unsigned int busy_queues;
81
 
82
        int rq_in_driver;
83
        int sync_flight;
84
        int hw_tag;
85
 
86
        /*
87
         * idle window management
88
         */
89
        struct timer_list idle_slice_timer;
90
        struct work_struct unplug_work;
91
 
92
        struct cfq_queue *active_queue;
93
        struct cfq_io_context *active_cic;
94
 
95
        /*
96
         * async queue for each priority case
97
         */
98
        struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
99
        struct cfq_queue *async_idle_cfqq;
100
 
101
        struct timer_list idle_class_timer;
102
 
103
        sector_t last_position;
104
        unsigned long last_end_request;
105
 
106
        /*
107
         * tunables, see top of file
108
         */
109
        unsigned int cfq_quantum;
110
        unsigned int cfq_fifo_expire[2];
111
        unsigned int cfq_back_penalty;
112
        unsigned int cfq_back_max;
113
        unsigned int cfq_slice[2];
114
        unsigned int cfq_slice_async_rq;
115
        unsigned int cfq_slice_idle;
116
 
117
        struct list_head cic_list;
118
};
119
 
120
/*
121
 * Per process-grouping structure
122
 */
123
struct cfq_queue {
124
        /* reference count */
125
        atomic_t ref;
126
        /* parent cfq_data */
127
        struct cfq_data *cfqd;
128
        /* service_tree member */
129
        struct rb_node rb_node;
130
        /* service_tree key */
131
        unsigned long rb_key;
132
        /* sorted list of pending requests */
133
        struct rb_root sort_list;
134
        /* if fifo isn't expired, next request to serve */
135
        struct request *next_rq;
136
        /* requests queued in sort_list */
137
        int queued[2];
138
        /* currently allocated requests */
139
        int allocated[2];
140
        /* pending metadata requests */
141
        int meta_pending;
142
        /* fifo list of requests in sort_list */
143
        struct list_head fifo;
144
 
145
        unsigned long slice_end;
146
        long slice_resid;
147
 
148
        /* number of requests that are on the dispatch list or inside driver */
149
        int dispatched;
150
 
151
        /* io prio of this group */
152
        unsigned short ioprio, org_ioprio;
153
        unsigned short ioprio_class, org_ioprio_class;
154
 
155
        /* various state flags, see below */
156
        unsigned int flags;
157
};
158
 
159
enum cfqq_state_flags {
160
        CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
161
        CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
162
        CFQ_CFQQ_FLAG_must_alloc,       /* must be allowed rq alloc */
163
        CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
164
        CFQ_CFQQ_FLAG_must_dispatch,    /* must dispatch, even if expired */
165
        CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
166
        CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
167
        CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
168
        CFQ_CFQQ_FLAG_queue_new,        /* queue never been serviced */
169
        CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
170
        CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
171
};
172
 
173
#define CFQ_CFQQ_FNS(name)                                              \
174
static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
175
{                                                                       \
176
        cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name);                     \
177
}                                                                       \
178
static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
179
{                                                                       \
180
        cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                    \
181
}                                                                       \
182
static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
183
{                                                                       \
184
        return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;        \
185
}
186
 
187
CFQ_CFQQ_FNS(on_rr);
188
CFQ_CFQQ_FNS(wait_request);
189
CFQ_CFQQ_FNS(must_alloc);
190
CFQ_CFQQ_FNS(must_alloc_slice);
191
CFQ_CFQQ_FNS(must_dispatch);
192
CFQ_CFQQ_FNS(fifo_expire);
193
CFQ_CFQQ_FNS(idle_window);
194
CFQ_CFQQ_FNS(prio_changed);
195
CFQ_CFQQ_FNS(queue_new);
196
CFQ_CFQQ_FNS(slice_new);
197
CFQ_CFQQ_FNS(sync);
198
#undef CFQ_CFQQ_FNS
199
 
200
static void cfq_dispatch_insert(struct request_queue *, struct request *);
201
static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
202
                                       struct task_struct *, gfp_t);
203
static struct cfq_io_context *cfq_cic_rb_lookup(struct cfq_data *,
204
                                                struct io_context *);
205
 
206
static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
207
                                            int is_sync)
208
{
209
        return cic->cfqq[!!is_sync];
210
}
211
 
212
static inline void cic_set_cfqq(struct cfq_io_context *cic,
213
                                struct cfq_queue *cfqq, int is_sync)
214
{
215
        cic->cfqq[!!is_sync] = cfqq;
216
}
217
 
218
/*
219
 * We regard a request as SYNC, if it's either a read or has the SYNC bit
220
 * set (in which case it could also be direct WRITE).
221
 */
222
static inline int cfq_bio_sync(struct bio *bio)
223
{
224
        if (bio_data_dir(bio) == READ || bio_sync(bio))
225
                return 1;
226
 
227
        return 0;
228
}
229
 
230
/*
231
 * scheduler run of queue, if there are requests pending and no one in the
232
 * driver that will restart queueing
233
 */
234
static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
235
{
236
        if (cfqd->busy_queues)
237
                kblockd_schedule_work(&cfqd->unplug_work);
238
}
239
 
240
static int cfq_queue_empty(struct request_queue *q)
241
{
242
        struct cfq_data *cfqd = q->elevator->elevator_data;
243
 
244
        return !cfqd->busy_queues;
245
}
246
 
247
/*
248
 * Scale schedule slice based on io priority. Use the sync time slice only
249
 * if a queue is marked sync and has sync io queued. A sync queue with async
250
 * io only, should not get full sync slice length.
251
 */
252
static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
253
                                 unsigned short prio)
254
{
255
        const int base_slice = cfqd->cfq_slice[sync];
256
 
257
        WARN_ON(prio >= IOPRIO_BE_NR);
258
 
259
        return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
260
}
261
 
262
static inline int
263
cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
264
{
265
        return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
266
}
267
 
268
static inline void
269
cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
270
{
271
        cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
272
}
273
 
274
/*
275
 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
276
 * isn't valid until the first request from the dispatch is activated
277
 * and the slice time set.
278
 */
279
static inline int cfq_slice_used(struct cfq_queue *cfqq)
280
{
281
        if (cfq_cfqq_slice_new(cfqq))
282
                return 0;
283
        if (time_before(jiffies, cfqq->slice_end))
284
                return 0;
285
 
286
        return 1;
287
}
288
 
289
/*
290
 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
291
 * We choose the request that is closest to the head right now. Distance
292
 * behind the head is penalized and only allowed to a certain extent.
293
 */
294
static struct request *
295
cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
296
{
297
        sector_t last, s1, s2, d1 = 0, d2 = 0;
298
        unsigned long back_max;
299
#define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
300
#define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
301
        unsigned wrap = 0; /* bit mask: requests behind the disk head? */
302
 
303
        if (rq1 == NULL || rq1 == rq2)
304
                return rq2;
305
        if (rq2 == NULL)
306
                return rq1;
307
 
308
        if (rq_is_sync(rq1) && !rq_is_sync(rq2))
309
                return rq1;
310
        else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
311
                return rq2;
312
        if (rq_is_meta(rq1) && !rq_is_meta(rq2))
313
                return rq1;
314
        else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
315
                return rq2;
316
 
317
        s1 = rq1->sector;
318
        s2 = rq2->sector;
319
 
320
        last = cfqd->last_position;
321
 
322
        /*
323
         * by definition, 1KiB is 2 sectors
324
         */
325
        back_max = cfqd->cfq_back_max * 2;
326
 
327
        /*
328
         * Strict one way elevator _except_ in the case where we allow
329
         * short backward seeks which are biased as twice the cost of a
330
         * similar forward seek.
331
         */
332
        if (s1 >= last)
333
                d1 = s1 - last;
334
        else if (s1 + back_max >= last)
335
                d1 = (last - s1) * cfqd->cfq_back_penalty;
336
        else
337
                wrap |= CFQ_RQ1_WRAP;
338
 
339
        if (s2 >= last)
340
                d2 = s2 - last;
341
        else if (s2 + back_max >= last)
342
                d2 = (last - s2) * cfqd->cfq_back_penalty;
343
        else
344
                wrap |= CFQ_RQ2_WRAP;
345
 
346
        /* Found required data */
347
 
348
        /*
349
         * By doing switch() on the bit mask "wrap" we avoid having to
350
         * check two variables for all permutations: --> faster!
351
         */
352
        switch (wrap) {
353
        case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
354
                if (d1 < d2)
355
                        return rq1;
356
                else if (d2 < d1)
357
                        return rq2;
358
                else {
359
                        if (s1 >= s2)
360
                                return rq1;
361
                        else
362
                                return rq2;
363
                }
364
 
365
        case CFQ_RQ2_WRAP:
366
                return rq1;
367
        case CFQ_RQ1_WRAP:
368
                return rq2;
369
        case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
370
        default:
371
                /*
372
                 * Since both rqs are wrapped,
373
                 * start with the one that's further behind head
374
                 * (--> only *one* back seek required),
375
                 * since back seek takes more time than forward.
376
                 */
377
                if (s1 <= s2)
378
                        return rq1;
379
                else
380
                        return rq2;
381
        }
382
}
383
 
384
/*
385
 * The below is leftmost cache rbtree addon
386
 */
387
static struct rb_node *cfq_rb_first(struct cfq_rb_root *root)
388
{
389
        if (!root->left)
390
                root->left = rb_first(&root->rb);
391
 
392
        return root->left;
393
}
394
 
395
static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
396
{
397
        if (root->left == n)
398
                root->left = NULL;
399
 
400
        rb_erase(n, &root->rb);
401
        RB_CLEAR_NODE(n);
402
}
403
 
404
/*
405
 * would be nice to take fifo expire time into account as well
406
 */
407
static struct request *
408
cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
409
                  struct request *last)
410
{
411
        struct rb_node *rbnext = rb_next(&last->rb_node);
412
        struct rb_node *rbprev = rb_prev(&last->rb_node);
413
        struct request *next = NULL, *prev = NULL;
414
 
415
        BUG_ON(RB_EMPTY_NODE(&last->rb_node));
416
 
417
        if (rbprev)
418
                prev = rb_entry_rq(rbprev);
419
 
420
        if (rbnext)
421
                next = rb_entry_rq(rbnext);
422
        else {
423
                rbnext = rb_first(&cfqq->sort_list);
424
                if (rbnext && rbnext != &last->rb_node)
425
                        next = rb_entry_rq(rbnext);
426
        }
427
 
428
        return cfq_choose_req(cfqd, next, prev);
429
}
430
 
431
static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
432
                                      struct cfq_queue *cfqq)
433
{
434
        /*
435
         * just an approximation, should be ok.
436
         */
437
        return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
438
                       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
439
}
440
 
441
/*
442
 * The cfqd->service_tree holds all pending cfq_queue's that have
443
 * requests waiting to be processed. It is sorted in the order that
444
 * we will service the queues.
445
 */
446
static void cfq_service_tree_add(struct cfq_data *cfqd,
447
                                    struct cfq_queue *cfqq, int add_front)
448
{
449
        struct rb_node **p = &cfqd->service_tree.rb.rb_node;
450
        struct rb_node *parent = NULL;
451
        unsigned long rb_key;
452
        int left;
453
 
454
        if (!add_front) {
455
                rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
456
                rb_key += cfqq->slice_resid;
457
                cfqq->slice_resid = 0;
458
        } else
459
                rb_key = 0;
460
 
461
        if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
462
                /*
463
                 * same position, nothing more to do
464
                 */
465
                if (rb_key == cfqq->rb_key)
466
                        return;
467
 
468
                cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
469
        }
470
 
471
        left = 1;
472
        while (*p) {
473
                struct cfq_queue *__cfqq;
474
                struct rb_node **n;
475
 
476
                parent = *p;
477
                __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
478
 
479
                /*
480
                 * sort RT queues first, we always want to give
481
                 * preference to them. IDLE queues goes to the back.
482
                 * after that, sort on the next service time.
483
                 */
484
                if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
485
                        n = &(*p)->rb_left;
486
                else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
487
                        n = &(*p)->rb_right;
488
                else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
489
                        n = &(*p)->rb_left;
490
                else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
491
                        n = &(*p)->rb_right;
492
                else if (rb_key < __cfqq->rb_key)
493
                        n = &(*p)->rb_left;
494
                else
495
                        n = &(*p)->rb_right;
496
 
497
                if (n == &(*p)->rb_right)
498
                        left = 0;
499
 
500
                p = n;
501
        }
502
 
503
        if (left)
504
                cfqd->service_tree.left = &cfqq->rb_node;
505
 
506
        cfqq->rb_key = rb_key;
507
        rb_link_node(&cfqq->rb_node, parent, p);
508
        rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
509
}
510
 
511
/*
512
 * Update cfqq's position in the service tree.
513
 */
514
static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
515
{
516
        /*
517
         * Resorting requires the cfqq to be on the RR list already.
518
         */
519
        if (cfq_cfqq_on_rr(cfqq))
520
                cfq_service_tree_add(cfqd, cfqq, 0);
521
}
522
 
523
/*
524
 * add to busy list of queues for service, trying to be fair in ordering
525
 * the pending list according to last request service
526
 */
527
static inline void
528
cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
529
{
530
        BUG_ON(cfq_cfqq_on_rr(cfqq));
531
        cfq_mark_cfqq_on_rr(cfqq);
532
        cfqd->busy_queues++;
533
 
534
        cfq_resort_rr_list(cfqd, cfqq);
535
}
536
 
537
/*
538
 * Called when the cfqq no longer has requests pending, remove it from
539
 * the service tree.
540
 */
541
static inline void
542
cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
543
{
544
        BUG_ON(!cfq_cfqq_on_rr(cfqq));
545
        cfq_clear_cfqq_on_rr(cfqq);
546
 
547
        if (!RB_EMPTY_NODE(&cfqq->rb_node))
548
                cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
549
 
550
        BUG_ON(!cfqd->busy_queues);
551
        cfqd->busy_queues--;
552
}
553
 
554
/*
555
 * rb tree support functions
556
 */
557
static inline void cfq_del_rq_rb(struct request *rq)
558
{
559
        struct cfq_queue *cfqq = RQ_CFQQ(rq);
560
        struct cfq_data *cfqd = cfqq->cfqd;
561
        const int sync = rq_is_sync(rq);
562
 
563
        BUG_ON(!cfqq->queued[sync]);
564
        cfqq->queued[sync]--;
565
 
566
        elv_rb_del(&cfqq->sort_list, rq);
567
 
568
        if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
569
                cfq_del_cfqq_rr(cfqd, cfqq);
570
}
571
 
572
static void cfq_add_rq_rb(struct request *rq)
573
{
574
        struct cfq_queue *cfqq = RQ_CFQQ(rq);
575
        struct cfq_data *cfqd = cfqq->cfqd;
576
        struct request *__alias;
577
 
578
        cfqq->queued[rq_is_sync(rq)]++;
579
 
580
        /*
581
         * looks a little odd, but the first insert might return an alias.
582
         * if that happens, put the alias on the dispatch list
583
         */
584
        while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
585
                cfq_dispatch_insert(cfqd->queue, __alias);
586
 
587
        if (!cfq_cfqq_on_rr(cfqq))
588
                cfq_add_cfqq_rr(cfqd, cfqq);
589
 
590
        /*
591
         * check if this request is a better next-serve candidate
592
         */
593
        cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
594
        BUG_ON(!cfqq->next_rq);
595
}
596
 
597
static inline void
598
cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
599
{
600
        elv_rb_del(&cfqq->sort_list, rq);
601
        cfqq->queued[rq_is_sync(rq)]--;
602
        cfq_add_rq_rb(rq);
603
}
604
 
605
static struct request *
606
cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
607
{
608
        struct task_struct *tsk = current;
609
        struct cfq_io_context *cic;
610
        struct cfq_queue *cfqq;
611
 
612
        cic = cfq_cic_rb_lookup(cfqd, tsk->io_context);
613
        if (!cic)
614
                return NULL;
615
 
616
        cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
617
        if (cfqq) {
618
                sector_t sector = bio->bi_sector + bio_sectors(bio);
619
 
620
                return elv_rb_find(&cfqq->sort_list, sector);
621
        }
622
 
623
        return NULL;
624
}
625
 
626
static void cfq_activate_request(struct request_queue *q, struct request *rq)
627
{
628
        struct cfq_data *cfqd = q->elevator->elevator_data;
629
 
630
        cfqd->rq_in_driver++;
631
 
632
        /*
633
         * If the depth is larger 1, it really could be queueing. But lets
634
         * make the mark a little higher - idling could still be good for
635
         * low queueing, and a low queueing number could also just indicate
636
         * a SCSI mid layer like behaviour where limit+1 is often seen.
637
         */
638
        if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
639
                cfqd->hw_tag = 1;
640
 
641
        cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
642
}
643
 
644
static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
645
{
646
        struct cfq_data *cfqd = q->elevator->elevator_data;
647
 
648
        WARN_ON(!cfqd->rq_in_driver);
649
        cfqd->rq_in_driver--;
650
}
651
 
652
static void cfq_remove_request(struct request *rq)
653
{
654
        struct cfq_queue *cfqq = RQ_CFQQ(rq);
655
 
656
        if (cfqq->next_rq == rq)
657
                cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
658
 
659
        list_del_init(&rq->queuelist);
660
        cfq_del_rq_rb(rq);
661
 
662
        if (rq_is_meta(rq)) {
663
                WARN_ON(!cfqq->meta_pending);
664
                cfqq->meta_pending--;
665
        }
666
}
667
 
668
static int cfq_merge(struct request_queue *q, struct request **req,
669
                     struct bio *bio)
670
{
671
        struct cfq_data *cfqd = q->elevator->elevator_data;
672
        struct request *__rq;
673
 
674
        __rq = cfq_find_rq_fmerge(cfqd, bio);
675
        if (__rq && elv_rq_merge_ok(__rq, bio)) {
676
                *req = __rq;
677
                return ELEVATOR_FRONT_MERGE;
678
        }
679
 
680
        return ELEVATOR_NO_MERGE;
681
}
682
 
683
static void cfq_merged_request(struct request_queue *q, struct request *req,
684
                               int type)
685
{
686
        if (type == ELEVATOR_FRONT_MERGE) {
687
                struct cfq_queue *cfqq = RQ_CFQQ(req);
688
 
689
                cfq_reposition_rq_rb(cfqq, req);
690
        }
691
}
692
 
693
static void
694
cfq_merged_requests(struct request_queue *q, struct request *rq,
695
                    struct request *next)
696
{
697
        /*
698
         * reposition in fifo if next is older than rq
699
         */
700
        if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
701
            time_before(next->start_time, rq->start_time))
702
                list_move(&rq->queuelist, &next->queuelist);
703
 
704
        cfq_remove_request(next);
705
}
706
 
707
static int cfq_allow_merge(struct request_queue *q, struct request *rq,
708
                           struct bio *bio)
709
{
710
        struct cfq_data *cfqd = q->elevator->elevator_data;
711
        struct cfq_io_context *cic;
712
        struct cfq_queue *cfqq;
713
 
714
        /*
715
         * Disallow merge of a sync bio into an async request.
716
         */
717
        if (cfq_bio_sync(bio) && !rq_is_sync(rq))
718
                return 0;
719
 
720
        /*
721
         * Lookup the cfqq that this bio will be queued with. Allow
722
         * merge only if rq is queued there.
723
         */
724
        cic = cfq_cic_rb_lookup(cfqd, current->io_context);
725
        if (!cic)
726
                return 0;
727
 
728
        cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
729
        if (cfqq == RQ_CFQQ(rq))
730
                return 1;
731
 
732
        return 0;
733
}
734
 
735
static inline void
736
__cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
737
{
738
        if (cfqq) {
739
                /*
740
                 * stop potential idle class queues waiting service
741
                 */
742
                del_timer(&cfqd->idle_class_timer);
743
 
744
                cfqq->slice_end = 0;
745
                cfq_clear_cfqq_must_alloc_slice(cfqq);
746
                cfq_clear_cfqq_fifo_expire(cfqq);
747
                cfq_mark_cfqq_slice_new(cfqq);
748
                cfq_clear_cfqq_queue_new(cfqq);
749
        }
750
 
751
        cfqd->active_queue = cfqq;
752
}
753
 
754
/*
755
 * current cfqq expired its slice (or was too idle), select new one
756
 */
757
static void
758
__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
759
                    int timed_out)
760
{
761
        if (cfq_cfqq_wait_request(cfqq))
762
                del_timer(&cfqd->idle_slice_timer);
763
 
764
        cfq_clear_cfqq_must_dispatch(cfqq);
765
        cfq_clear_cfqq_wait_request(cfqq);
766
 
767
        /*
768
         * store what was left of this slice, if the queue idled/timed out
769
         */
770
        if (timed_out && !cfq_cfqq_slice_new(cfqq))
771
                cfqq->slice_resid = cfqq->slice_end - jiffies;
772
 
773
        cfq_resort_rr_list(cfqd, cfqq);
774
 
775
        if (cfqq == cfqd->active_queue)
776
                cfqd->active_queue = NULL;
777
 
778
        if (cfqd->active_cic) {
779
                put_io_context(cfqd->active_cic->ioc);
780
                cfqd->active_cic = NULL;
781
        }
782
}
783
 
784
static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
785
{
786
        struct cfq_queue *cfqq = cfqd->active_queue;
787
 
788
        if (cfqq)
789
                __cfq_slice_expired(cfqd, cfqq, timed_out);
790
}
791
 
792
static int start_idle_class_timer(struct cfq_data *cfqd)
793
{
794
        unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
795
        unsigned long now = jiffies;
796
 
797
        if (time_before(now, end) &&
798
            time_after_eq(now, cfqd->last_end_request)) {
799
                mod_timer(&cfqd->idle_class_timer, end);
800
                return 1;
801
        }
802
 
803
        return 0;
804
}
805
 
806
/*
807
 * Get next queue for service. Unless we have a queue preemption,
808
 * we'll simply select the first cfqq in the service tree.
809
 */
810
static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
811
{
812
        struct cfq_queue *cfqq;
813
        struct rb_node *n;
814
 
815
        if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
816
                return NULL;
817
 
818
        n = cfq_rb_first(&cfqd->service_tree);
819
        cfqq = rb_entry(n, struct cfq_queue, rb_node);
820
 
821
        if (cfq_class_idle(cfqq)) {
822
                /*
823
                 * if we have idle queues and no rt or be queues had
824
                 * pending requests, either allow immediate service if
825
                 * the grace period has passed or arm the idle grace
826
                 * timer
827
                 */
828
                if (start_idle_class_timer(cfqd))
829
                        cfqq = NULL;
830
        }
831
 
832
        return cfqq;
833
}
834
 
835
/*
836
 * Get and set a new active queue for service.
837
 */
838
static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
839
{
840
        struct cfq_queue *cfqq;
841
 
842
        cfqq = cfq_get_next_queue(cfqd);
843
        __cfq_set_active_queue(cfqd, cfqq);
844
        return cfqq;
845
}
846
 
847
static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
848
                                          struct request *rq)
849
{
850
        if (rq->sector >= cfqd->last_position)
851
                return rq->sector - cfqd->last_position;
852
        else
853
                return cfqd->last_position - rq->sector;
854
}
855
 
856
static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
857
{
858
        struct cfq_io_context *cic = cfqd->active_cic;
859
 
860
        if (!sample_valid(cic->seek_samples))
861
                return 0;
862
 
863
        return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
864
}
865
 
866
static int cfq_close_cooperator(struct cfq_data *cfq_data,
867
                                struct cfq_queue *cfqq)
868
{
869
        /*
870
         * We should notice if some of the queues are cooperating, eg
871
         * working closely on the same area of the disk. In that case,
872
         * we can group them together and don't waste time idling.
873
         */
874
        return 0;
875
}
876
 
877
#define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
878
 
879
static void cfq_arm_slice_timer(struct cfq_data *cfqd)
880
{
881
        struct cfq_queue *cfqq = cfqd->active_queue;
882
        struct cfq_io_context *cic;
883
        unsigned long sl;
884
 
885
        WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
886
        WARN_ON(cfq_cfqq_slice_new(cfqq));
887
 
888
        /*
889
         * idle is disabled, either manually or by past process history
890
         */
891
        if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
892
                return;
893
 
894
        /*
895
         * task has exited, don't wait
896
         */
897
        cic = cfqd->active_cic;
898
        if (!cic || !cic->ioc->task)
899
                return;
900
 
901
        /*
902
         * See if this prio level has a good candidate
903
         */
904
        if (cfq_close_cooperator(cfqd, cfqq) &&
905
            (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
906
                return;
907
 
908
        cfq_mark_cfqq_must_dispatch(cfqq);
909
        cfq_mark_cfqq_wait_request(cfqq);
910
 
911
        /*
912
         * we don't want to idle for seeks, but we do want to allow
913
         * fair distribution of slice time for a process doing back-to-back
914
         * seeks. so allow a little bit of time for him to submit a new rq
915
         */
916
        sl = cfqd->cfq_slice_idle;
917
        if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
918
                sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
919
 
920
        mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
921
}
922
 
923
/*
924
 * Move request from internal lists to the request queue dispatch list.
925
 */
926
static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
927
{
928
        struct cfq_data *cfqd = q->elevator->elevator_data;
929
        struct cfq_queue *cfqq = RQ_CFQQ(rq);
930
 
931
        cfq_remove_request(rq);
932
        cfqq->dispatched++;
933
        elv_dispatch_sort(q, rq);
934
 
935
        if (cfq_cfqq_sync(cfqq))
936
                cfqd->sync_flight++;
937
}
938
 
939
/*
940
 * return expired entry, or NULL to just start from scratch in rbtree
941
 */
942
static inline struct request *cfq_check_fifo(struct cfq_queue *cfqq)
943
{
944
        struct cfq_data *cfqd = cfqq->cfqd;
945
        struct request *rq;
946
        int fifo;
947
 
948
        if (cfq_cfqq_fifo_expire(cfqq))
949
                return NULL;
950
 
951
        cfq_mark_cfqq_fifo_expire(cfqq);
952
 
953
        if (list_empty(&cfqq->fifo))
954
                return NULL;
955
 
956
        fifo = cfq_cfqq_sync(cfqq);
957
        rq = rq_entry_fifo(cfqq->fifo.next);
958
 
959
        if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
960
                return NULL;
961
 
962
        return rq;
963
}
964
 
965
static inline int
966
cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
967
{
968
        const int base_rq = cfqd->cfq_slice_async_rq;
969
 
970
        WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
971
 
972
        return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
973
}
974
 
975
/*
976
 * Select a queue for service. If we have a current active queue,
977
 * check whether to continue servicing it, or retrieve and set a new one.
978
 */
979
static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
980
{
981
        struct cfq_queue *cfqq;
982
 
983
        cfqq = cfqd->active_queue;
984
        if (!cfqq)
985
                goto new_queue;
986
 
987
        /*
988
         * The active queue has run out of time, expire it and select new.
989
         */
990
        if (cfq_slice_used(cfqq))
991
                goto expire;
992
 
993
        /*
994
         * The active queue has requests and isn't expired, allow it to
995
         * dispatch.
996
         */
997
        if (!RB_EMPTY_ROOT(&cfqq->sort_list))
998
                goto keep_queue;
999
 
1000
        /*
1001
         * No requests pending. If the active queue still has requests in
1002
         * flight or is idling for a new request, allow either of these
1003
         * conditions to happen (or time out) before selecting a new queue.
1004
         */
1005
        if (timer_pending(&cfqd->idle_slice_timer) ||
1006
            (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1007
                cfqq = NULL;
1008
                goto keep_queue;
1009
        }
1010
 
1011
expire:
1012
        cfq_slice_expired(cfqd, 0);
1013
new_queue:
1014
        cfqq = cfq_set_active_queue(cfqd);
1015
keep_queue:
1016
        return cfqq;
1017
}
1018
 
1019
/*
1020
 * Dispatch some requests from cfqq, moving them to the request queue
1021
 * dispatch list.
1022
 */
1023
static int
1024
__cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1025
                        int max_dispatch)
1026
{
1027
        int dispatched = 0;
1028
 
1029
        BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1030
 
1031
        do {
1032
                struct request *rq;
1033
 
1034
                /*
1035
                 * follow expired path, else get first next available
1036
                 */
1037
                if ((rq = cfq_check_fifo(cfqq)) == NULL)
1038
                        rq = cfqq->next_rq;
1039
 
1040
                /*
1041
                 * finally, insert request into driver dispatch list
1042
                 */
1043
                cfq_dispatch_insert(cfqd->queue, rq);
1044
 
1045
                dispatched++;
1046
 
1047
                if (!cfqd->active_cic) {
1048
                        atomic_inc(&RQ_CIC(rq)->ioc->refcount);
1049
                        cfqd->active_cic = RQ_CIC(rq);
1050
                }
1051
 
1052
                if (RB_EMPTY_ROOT(&cfqq->sort_list))
1053
                        break;
1054
 
1055
        } while (dispatched < max_dispatch);
1056
 
1057
        /*
1058
         * expire an async queue immediately if it has used up its slice. idle
1059
         * queue always expire after 1 dispatch round.
1060
         */
1061
        if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1062
            dispatched >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1063
            cfq_class_idle(cfqq))) {
1064
                cfqq->slice_end = jiffies + 1;
1065
                cfq_slice_expired(cfqd, 0);
1066
        }
1067
 
1068
        return dispatched;
1069
}
1070
 
1071
static inline int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1072
{
1073
        int dispatched = 0;
1074
 
1075
        while (cfqq->next_rq) {
1076
                cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1077
                dispatched++;
1078
        }
1079
 
1080
        BUG_ON(!list_empty(&cfqq->fifo));
1081
        return dispatched;
1082
}
1083
 
1084
/*
1085
 * Drain our current requests. Used for barriers and when switching
1086
 * io schedulers on-the-fly.
1087
 */
1088
static int cfq_forced_dispatch(struct cfq_data *cfqd)
1089
{
1090
        int dispatched = 0;
1091
        struct rb_node *n;
1092
 
1093
        while ((n = cfq_rb_first(&cfqd->service_tree)) != NULL) {
1094
                struct cfq_queue *cfqq = rb_entry(n, struct cfq_queue, rb_node);
1095
 
1096
                dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1097
        }
1098
 
1099
        cfq_slice_expired(cfqd, 0);
1100
 
1101
        BUG_ON(cfqd->busy_queues);
1102
 
1103
        return dispatched;
1104
}
1105
 
1106
static int cfq_dispatch_requests(struct request_queue *q, int force)
1107
{
1108
        struct cfq_data *cfqd = q->elevator->elevator_data;
1109
        struct cfq_queue *cfqq;
1110
        int dispatched;
1111
 
1112
        if (!cfqd->busy_queues)
1113
                return 0;
1114
 
1115
        if (unlikely(force))
1116
                return cfq_forced_dispatch(cfqd);
1117
 
1118
        dispatched = 0;
1119
        while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
1120
                int max_dispatch;
1121
 
1122
                max_dispatch = cfqd->cfq_quantum;
1123
                if (cfq_class_idle(cfqq))
1124
                        max_dispatch = 1;
1125
 
1126
                if (cfqq->dispatched >= max_dispatch) {
1127
                        if (cfqd->busy_queues > 1)
1128
                                break;
1129
                        if (cfqq->dispatched >= 4 * max_dispatch)
1130
                                break;
1131
                }
1132
 
1133
                if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1134
                        break;
1135
 
1136
                cfq_clear_cfqq_must_dispatch(cfqq);
1137
                cfq_clear_cfqq_wait_request(cfqq);
1138
                del_timer(&cfqd->idle_slice_timer);
1139
 
1140
                dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1141
        }
1142
 
1143
        return dispatched;
1144
}
1145
 
1146
/*
1147
 * task holds one reference to the queue, dropped when task exits. each rq
1148
 * in-flight on this queue also holds a reference, dropped when rq is freed.
1149
 *
1150
 * queue lock must be held here.
1151
 */
1152
static void cfq_put_queue(struct cfq_queue *cfqq)
1153
{
1154
        struct cfq_data *cfqd = cfqq->cfqd;
1155
 
1156
        BUG_ON(atomic_read(&cfqq->ref) <= 0);
1157
 
1158
        if (!atomic_dec_and_test(&cfqq->ref))
1159
                return;
1160
 
1161
        BUG_ON(rb_first(&cfqq->sort_list));
1162
        BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1163
        BUG_ON(cfq_cfqq_on_rr(cfqq));
1164
 
1165
        if (unlikely(cfqd->active_queue == cfqq)) {
1166
                __cfq_slice_expired(cfqd, cfqq, 0);
1167
                cfq_schedule_dispatch(cfqd);
1168
        }
1169
 
1170
        kmem_cache_free(cfq_pool, cfqq);
1171
}
1172
 
1173
static void cfq_free_io_context(struct io_context *ioc)
1174
{
1175
        struct cfq_io_context *__cic;
1176
        struct rb_node *n;
1177
        int freed = 0;
1178
 
1179
        ioc->ioc_data = NULL;
1180
 
1181
        while ((n = rb_first(&ioc->cic_root)) != NULL) {
1182
                __cic = rb_entry(n, struct cfq_io_context, rb_node);
1183
                rb_erase(&__cic->rb_node, &ioc->cic_root);
1184
                kmem_cache_free(cfq_ioc_pool, __cic);
1185
                freed++;
1186
        }
1187
 
1188
        elv_ioc_count_mod(ioc_count, -freed);
1189
 
1190
        if (ioc_gone && !elv_ioc_count_read(ioc_count))
1191
                complete(ioc_gone);
1192
}
1193
 
1194
static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1195
{
1196
        if (unlikely(cfqq == cfqd->active_queue)) {
1197
                __cfq_slice_expired(cfqd, cfqq, 0);
1198
                cfq_schedule_dispatch(cfqd);
1199
        }
1200
 
1201
        cfq_put_queue(cfqq);
1202
}
1203
 
1204
static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1205
                                         struct cfq_io_context *cic)
1206
{
1207
        list_del_init(&cic->queue_list);
1208
        smp_wmb();
1209
        cic->key = NULL;
1210
 
1211
        if (cic->cfqq[ASYNC]) {
1212
                cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1213
                cic->cfqq[ASYNC] = NULL;
1214
        }
1215
 
1216
        if (cic->cfqq[SYNC]) {
1217
                cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1218
                cic->cfqq[SYNC] = NULL;
1219
        }
1220
}
1221
 
1222
static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1223
{
1224
        struct cfq_data *cfqd = cic->key;
1225
 
1226
        if (cfqd) {
1227
                struct request_queue *q = cfqd->queue;
1228
 
1229
                spin_lock_irq(q->queue_lock);
1230
                __cfq_exit_single_io_context(cfqd, cic);
1231
                spin_unlock_irq(q->queue_lock);
1232
        }
1233
}
1234
 
1235
/*
1236
 * The process that ioc belongs to has exited, we need to clean up
1237
 * and put the internal structures we have that belongs to that process.
1238
 */
1239
static void cfq_exit_io_context(struct io_context *ioc)
1240
{
1241
        struct cfq_io_context *__cic;
1242
        struct rb_node *n;
1243
 
1244
        ioc->ioc_data = NULL;
1245
 
1246
        /*
1247
         * put the reference this task is holding to the various queues
1248
         */
1249
        n = rb_first(&ioc->cic_root);
1250
        while (n != NULL) {
1251
                __cic = rb_entry(n, struct cfq_io_context, rb_node);
1252
 
1253
                cfq_exit_single_io_context(__cic);
1254
                n = rb_next(n);
1255
        }
1256
}
1257
 
1258
static struct cfq_io_context *
1259
cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1260
{
1261
        struct cfq_io_context *cic;
1262
 
1263
        cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1264
                                                        cfqd->queue->node);
1265
        if (cic) {
1266
                cic->last_end_request = jiffies;
1267
                INIT_LIST_HEAD(&cic->queue_list);
1268
                cic->dtor = cfq_free_io_context;
1269
                cic->exit = cfq_exit_io_context;
1270
                elv_ioc_count_inc(ioc_count);
1271
        }
1272
 
1273
        return cic;
1274
}
1275
 
1276
static void cfq_init_prio_data(struct cfq_queue *cfqq)
1277
{
1278
        struct task_struct *tsk = current;
1279
        int ioprio_class;
1280
 
1281
        if (!cfq_cfqq_prio_changed(cfqq))
1282
                return;
1283
 
1284
        ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1285
        switch (ioprio_class) {
1286
                default:
1287
                        printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1288
                case IOPRIO_CLASS_NONE:
1289
                        /*
1290
                         * no prio set, place us in the middle of the BE classes
1291
                         */
1292
                        cfqq->ioprio = task_nice_ioprio(tsk);
1293
                        cfqq->ioprio_class = IOPRIO_CLASS_BE;
1294
                        break;
1295
                case IOPRIO_CLASS_RT:
1296
                        cfqq->ioprio = task_ioprio(tsk);
1297
                        cfqq->ioprio_class = IOPRIO_CLASS_RT;
1298
                        break;
1299
                case IOPRIO_CLASS_BE:
1300
                        cfqq->ioprio = task_ioprio(tsk);
1301
                        cfqq->ioprio_class = IOPRIO_CLASS_BE;
1302
                        break;
1303
                case IOPRIO_CLASS_IDLE:
1304
                        cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1305
                        cfqq->ioprio = 7;
1306
                        cfq_clear_cfqq_idle_window(cfqq);
1307
                        break;
1308
        }
1309
 
1310
        /*
1311
         * keep track of original prio settings in case we have to temporarily
1312
         * elevate the priority of this queue
1313
         */
1314
        cfqq->org_ioprio = cfqq->ioprio;
1315
        cfqq->org_ioprio_class = cfqq->ioprio_class;
1316
        cfq_clear_cfqq_prio_changed(cfqq);
1317
}
1318
 
1319
static inline void changed_ioprio(struct cfq_io_context *cic)
1320
{
1321
        struct cfq_data *cfqd = cic->key;
1322
        struct cfq_queue *cfqq;
1323
        unsigned long flags;
1324
 
1325
        if (unlikely(!cfqd))
1326
                return;
1327
 
1328
        spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1329
 
1330
        cfqq = cic->cfqq[ASYNC];
1331
        if (cfqq) {
1332
                struct cfq_queue *new_cfqq;
1333
                new_cfqq = cfq_get_queue(cfqd, ASYNC, cic->ioc->task,
1334
                                         GFP_ATOMIC);
1335
                if (new_cfqq) {
1336
                        cic->cfqq[ASYNC] = new_cfqq;
1337
                        cfq_put_queue(cfqq);
1338
                }
1339
        }
1340
 
1341
        cfqq = cic->cfqq[SYNC];
1342
        if (cfqq)
1343
                cfq_mark_cfqq_prio_changed(cfqq);
1344
 
1345
        spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1346
}
1347
 
1348
static void cfq_ioc_set_ioprio(struct io_context *ioc)
1349
{
1350
        struct cfq_io_context *cic;
1351
        struct rb_node *n;
1352
 
1353
        ioc->ioprio_changed = 0;
1354
 
1355
        n = rb_first(&ioc->cic_root);
1356
        while (n != NULL) {
1357
                cic = rb_entry(n, struct cfq_io_context, rb_node);
1358
 
1359
                changed_ioprio(cic);
1360
                n = rb_next(n);
1361
        }
1362
}
1363
 
1364
static struct cfq_queue *
1365
cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
1366
                     struct task_struct *tsk, gfp_t gfp_mask)
1367
{
1368
        struct cfq_queue *cfqq, *new_cfqq = NULL;
1369
        struct cfq_io_context *cic;
1370
 
1371
retry:
1372
        cic = cfq_cic_rb_lookup(cfqd, tsk->io_context);
1373
        /* cic always exists here */
1374
        cfqq = cic_to_cfqq(cic, is_sync);
1375
 
1376
        if (!cfqq) {
1377
                if (new_cfqq) {
1378
                        cfqq = new_cfqq;
1379
                        new_cfqq = NULL;
1380
                } else if (gfp_mask & __GFP_WAIT) {
1381
                        /*
1382
                         * Inform the allocator of the fact that we will
1383
                         * just repeat this allocation if it fails, to allow
1384
                         * the allocator to do whatever it needs to attempt to
1385
                         * free memory.
1386
                         */
1387
                        spin_unlock_irq(cfqd->queue->queue_lock);
1388
                        new_cfqq = kmem_cache_alloc_node(cfq_pool,
1389
                                        gfp_mask | __GFP_NOFAIL | __GFP_ZERO,
1390
                                        cfqd->queue->node);
1391
                        spin_lock_irq(cfqd->queue->queue_lock);
1392
                        goto retry;
1393
                } else {
1394
                        cfqq = kmem_cache_alloc_node(cfq_pool,
1395
                                        gfp_mask | __GFP_ZERO,
1396
                                        cfqd->queue->node);
1397
                        if (!cfqq)
1398
                                goto out;
1399
                }
1400
 
1401
                RB_CLEAR_NODE(&cfqq->rb_node);
1402
                INIT_LIST_HEAD(&cfqq->fifo);
1403
 
1404
                atomic_set(&cfqq->ref, 0);
1405
                cfqq->cfqd = cfqd;
1406
 
1407
                if (is_sync) {
1408
                        cfq_mark_cfqq_idle_window(cfqq);
1409
                        cfq_mark_cfqq_sync(cfqq);
1410
                }
1411
 
1412
                cfq_mark_cfqq_prio_changed(cfqq);
1413
                cfq_mark_cfqq_queue_new(cfqq);
1414
 
1415
                cfq_init_prio_data(cfqq);
1416
        }
1417
 
1418
        if (new_cfqq)
1419
                kmem_cache_free(cfq_pool, new_cfqq);
1420
 
1421
out:
1422
        WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1423
        return cfqq;
1424
}
1425
 
1426
static struct cfq_queue **
1427
cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1428
{
1429
        switch(ioprio_class) {
1430
        case IOPRIO_CLASS_RT:
1431
                return &cfqd->async_cfqq[0][ioprio];
1432
        case IOPRIO_CLASS_BE:
1433
                return &cfqd->async_cfqq[1][ioprio];
1434
        case IOPRIO_CLASS_IDLE:
1435
                return &cfqd->async_idle_cfqq;
1436
        default:
1437
                BUG();
1438
        }
1439
}
1440
 
1441
static struct cfq_queue *
1442
cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct task_struct *tsk,
1443
              gfp_t gfp_mask)
1444
{
1445
        const int ioprio = task_ioprio(tsk);
1446
        const int ioprio_class = task_ioprio_class(tsk);
1447
        struct cfq_queue **async_cfqq = NULL;
1448
        struct cfq_queue *cfqq = NULL;
1449
 
1450
        if (!is_sync) {
1451
                async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1452
                cfqq = *async_cfqq;
1453
        }
1454
 
1455
        if (!cfqq) {
1456
                cfqq = cfq_find_alloc_queue(cfqd, is_sync, tsk, gfp_mask);
1457
                if (!cfqq)
1458
                        return NULL;
1459
        }
1460
 
1461
        /*
1462
         * pin the queue now that it's allocated, scheduler exit will prune it
1463
         */
1464
        if (!is_sync && !(*async_cfqq)) {
1465
                atomic_inc(&cfqq->ref);
1466
                *async_cfqq = cfqq;
1467
        }
1468
 
1469
        atomic_inc(&cfqq->ref);
1470
        return cfqq;
1471
}
1472
 
1473
/*
1474
 * We drop cfq io contexts lazily, so we may find a dead one.
1475
 */
1476
static void
1477
cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1478
{
1479
        WARN_ON(!list_empty(&cic->queue_list));
1480
 
1481
        if (ioc->ioc_data == cic)
1482
                ioc->ioc_data = NULL;
1483
 
1484
        rb_erase(&cic->rb_node, &ioc->cic_root);
1485
        kmem_cache_free(cfq_ioc_pool, cic);
1486
        elv_ioc_count_dec(ioc_count);
1487
}
1488
 
1489
static struct cfq_io_context *
1490
cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1491
{
1492
        struct rb_node *n;
1493
        struct cfq_io_context *cic;
1494
        void *k, *key = cfqd;
1495
 
1496
        if (unlikely(!ioc))
1497
                return NULL;
1498
 
1499
        /*
1500
         * we maintain a last-hit cache, to avoid browsing over the tree
1501
         */
1502
        cic = ioc->ioc_data;
1503
        if (cic && cic->key == cfqd)
1504
                return cic;
1505
 
1506
restart:
1507
        n = ioc->cic_root.rb_node;
1508
        while (n) {
1509
                cic = rb_entry(n, struct cfq_io_context, rb_node);
1510
                /* ->key must be copied to avoid race with cfq_exit_queue() */
1511
                k = cic->key;
1512
                if (unlikely(!k)) {
1513
                        cfq_drop_dead_cic(ioc, cic);
1514
                        goto restart;
1515
                }
1516
 
1517
                if (key < k)
1518
                        n = n->rb_left;
1519
                else if (key > k)
1520
                        n = n->rb_right;
1521
                else {
1522
                        ioc->ioc_data = cic;
1523
                        return cic;
1524
                }
1525
        }
1526
 
1527
        return NULL;
1528
}
1529
 
1530
static inline void
1531
cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1532
             struct cfq_io_context *cic)
1533
{
1534
        struct rb_node **p;
1535
        struct rb_node *parent;
1536
        struct cfq_io_context *__cic;
1537
        unsigned long flags;
1538
        void *k;
1539
 
1540
        cic->ioc = ioc;
1541
        cic->key = cfqd;
1542
 
1543
restart:
1544
        parent = NULL;
1545
        p = &ioc->cic_root.rb_node;
1546
        while (*p) {
1547
                parent = *p;
1548
                __cic = rb_entry(parent, struct cfq_io_context, rb_node);
1549
                /* ->key must be copied to avoid race with cfq_exit_queue() */
1550
                k = __cic->key;
1551
                if (unlikely(!k)) {
1552
                        cfq_drop_dead_cic(ioc, __cic);
1553
                        goto restart;
1554
                }
1555
 
1556
                if (cic->key < k)
1557
                        p = &(*p)->rb_left;
1558
                else if (cic->key > k)
1559
                        p = &(*p)->rb_right;
1560
                else
1561
                        BUG();
1562
        }
1563
 
1564
        rb_link_node(&cic->rb_node, parent, p);
1565
        rb_insert_color(&cic->rb_node, &ioc->cic_root);
1566
 
1567
        spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1568
        list_add(&cic->queue_list, &cfqd->cic_list);
1569
        spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1570
}
1571
 
1572
/*
1573
 * Setup general io context and cfq io context. There can be several cfq
1574
 * io contexts per general io context, if this process is doing io to more
1575
 * than one device managed by cfq.
1576
 */
1577
static struct cfq_io_context *
1578
cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1579
{
1580
        struct io_context *ioc = NULL;
1581
        struct cfq_io_context *cic;
1582
 
1583
        might_sleep_if(gfp_mask & __GFP_WAIT);
1584
 
1585
        ioc = get_io_context(gfp_mask, cfqd->queue->node);
1586
        if (!ioc)
1587
                return NULL;
1588
 
1589
        cic = cfq_cic_rb_lookup(cfqd, ioc);
1590
        if (cic)
1591
                goto out;
1592
 
1593
        cic = cfq_alloc_io_context(cfqd, gfp_mask);
1594
        if (cic == NULL)
1595
                goto err;
1596
 
1597
        cfq_cic_link(cfqd, ioc, cic);
1598
out:
1599
        smp_read_barrier_depends();
1600
        if (unlikely(ioc->ioprio_changed))
1601
                cfq_ioc_set_ioprio(ioc);
1602
 
1603
        return cic;
1604
err:
1605
        put_io_context(ioc);
1606
        return NULL;
1607
}
1608
 
1609
static void
1610
cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1611
{
1612
        unsigned long elapsed = jiffies - cic->last_end_request;
1613
        unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1614
 
1615
        cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1616
        cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1617
        cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1618
}
1619
 
1620
static void
1621
cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1622
                       struct request *rq)
1623
{
1624
        sector_t sdist;
1625
        u64 total;
1626
 
1627
        if (cic->last_request_pos < rq->sector)
1628
                sdist = rq->sector - cic->last_request_pos;
1629
        else
1630
                sdist = cic->last_request_pos - rq->sector;
1631
 
1632
        /*
1633
         * Don't allow the seek distance to get too large from the
1634
         * odd fragment, pagein, etc
1635
         */
1636
        if (cic->seek_samples <= 60) /* second&third seek */
1637
                sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1638
        else
1639
                sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1640
 
1641
        cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1642
        cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1643
        total = cic->seek_total + (cic->seek_samples/2);
1644
        do_div(total, cic->seek_samples);
1645
        cic->seek_mean = (sector_t)total;
1646
}
1647
 
1648
/*
1649
 * Disable idle window if the process thinks too long or seeks so much that
1650
 * it doesn't matter
1651
 */
1652
static void
1653
cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1654
                       struct cfq_io_context *cic)
1655
{
1656
        int enable_idle;
1657
 
1658
        if (!cfq_cfqq_sync(cfqq))
1659
                return;
1660
 
1661
        enable_idle = cfq_cfqq_idle_window(cfqq);
1662
 
1663
        if (!cic->ioc->task || !cfqd->cfq_slice_idle ||
1664
            (cfqd->hw_tag && CIC_SEEKY(cic)))
1665
                enable_idle = 0;
1666
        else if (sample_valid(cic->ttime_samples)) {
1667
                if (cic->ttime_mean > cfqd->cfq_slice_idle)
1668
                        enable_idle = 0;
1669
                else
1670
                        enable_idle = 1;
1671
        }
1672
 
1673
        if (enable_idle)
1674
                cfq_mark_cfqq_idle_window(cfqq);
1675
        else
1676
                cfq_clear_cfqq_idle_window(cfqq);
1677
}
1678
 
1679
/*
1680
 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1681
 * no or if we aren't sure, a 1 will cause a preempt.
1682
 */
1683
static int
1684
cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1685
                   struct request *rq)
1686
{
1687
        struct cfq_queue *cfqq;
1688
 
1689
        cfqq = cfqd->active_queue;
1690
        if (!cfqq)
1691
                return 0;
1692
 
1693
        if (cfq_slice_used(cfqq))
1694
                return 1;
1695
 
1696
        if (cfq_class_idle(new_cfqq))
1697
                return 0;
1698
 
1699
        if (cfq_class_idle(cfqq))
1700
                return 1;
1701
 
1702
        /*
1703
         * if the new request is sync, but the currently running queue is
1704
         * not, let the sync request have priority.
1705
         */
1706
        if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1707
                return 1;
1708
 
1709
        /*
1710
         * So both queues are sync. Let the new request get disk time if
1711
         * it's a metadata request and the current queue is doing regular IO.
1712
         */
1713
        if (rq_is_meta(rq) && !cfqq->meta_pending)
1714
                return 1;
1715
 
1716
        if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
1717
                return 0;
1718
 
1719
        /*
1720
         * if this request is as-good as one we would expect from the
1721
         * current cfqq, let it preempt
1722
         */
1723
        if (cfq_rq_close(cfqd, rq))
1724
                return 1;
1725
 
1726
        return 0;
1727
}
1728
 
1729
/*
1730
 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1731
 * let it have half of its nominal slice.
1732
 */
1733
static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1734
{
1735
        cfq_slice_expired(cfqd, 1);
1736
 
1737
        /*
1738
         * Put the new queue at the front of the of the current list,
1739
         * so we know that it will be selected next.
1740
         */
1741
        BUG_ON(!cfq_cfqq_on_rr(cfqq));
1742
 
1743
        cfq_service_tree_add(cfqd, cfqq, 1);
1744
 
1745
        cfqq->slice_end = 0;
1746
        cfq_mark_cfqq_slice_new(cfqq);
1747
}
1748
 
1749
/*
1750
 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1751
 * something we should do about it
1752
 */
1753
static void
1754
cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1755
                struct request *rq)
1756
{
1757
        struct cfq_io_context *cic = RQ_CIC(rq);
1758
 
1759
        if (rq_is_meta(rq))
1760
                cfqq->meta_pending++;
1761
 
1762
        cfq_update_io_thinktime(cfqd, cic);
1763
        cfq_update_io_seektime(cfqd, cic, rq);
1764
        cfq_update_idle_window(cfqd, cfqq, cic);
1765
 
1766
        cic->last_request_pos = rq->sector + rq->nr_sectors;
1767
 
1768
        if (cfqq == cfqd->active_queue) {
1769
                /*
1770
                 * if we are waiting for a request for this queue, let it rip
1771
                 * immediately and flag that we must not expire this queue
1772
                 * just now
1773
                 */
1774
                if (cfq_cfqq_wait_request(cfqq)) {
1775
                        cfq_mark_cfqq_must_dispatch(cfqq);
1776
                        del_timer(&cfqd->idle_slice_timer);
1777
                        blk_start_queueing(cfqd->queue);
1778
                }
1779
        } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1780
                /*
1781
                 * not the active queue - expire current slice if it is
1782
                 * idle and has expired it's mean thinktime or this new queue
1783
                 * has some old slice time left and is of higher priority
1784
                 */
1785
                cfq_preempt_queue(cfqd, cfqq);
1786
                cfq_mark_cfqq_must_dispatch(cfqq);
1787
                blk_start_queueing(cfqd->queue);
1788
        }
1789
}
1790
 
1791
static void cfq_insert_request(struct request_queue *q, struct request *rq)
1792
{
1793
        struct cfq_data *cfqd = q->elevator->elevator_data;
1794
        struct cfq_queue *cfqq = RQ_CFQQ(rq);
1795
 
1796
        cfq_init_prio_data(cfqq);
1797
 
1798
        cfq_add_rq_rb(rq);
1799
 
1800
        list_add_tail(&rq->queuelist, &cfqq->fifo);
1801
 
1802
        cfq_rq_enqueued(cfqd, cfqq, rq);
1803
}
1804
 
1805
static void cfq_completed_request(struct request_queue *q, struct request *rq)
1806
{
1807
        struct cfq_queue *cfqq = RQ_CFQQ(rq);
1808
        struct cfq_data *cfqd = cfqq->cfqd;
1809
        const int sync = rq_is_sync(rq);
1810
        unsigned long now;
1811
 
1812
        now = jiffies;
1813
 
1814
        WARN_ON(!cfqd->rq_in_driver);
1815
        WARN_ON(!cfqq->dispatched);
1816
        cfqd->rq_in_driver--;
1817
        cfqq->dispatched--;
1818
 
1819
        if (cfq_cfqq_sync(cfqq))
1820
                cfqd->sync_flight--;
1821
 
1822
        if (!cfq_class_idle(cfqq))
1823
                cfqd->last_end_request = now;
1824
 
1825
        if (sync)
1826
                RQ_CIC(rq)->last_end_request = now;
1827
 
1828
        /*
1829
         * If this is the active queue, check if it needs to be expired,
1830
         * or if we want to idle in case it has no pending requests.
1831
         */
1832
        if (cfqd->active_queue == cfqq) {
1833
                if (cfq_cfqq_slice_new(cfqq)) {
1834
                        cfq_set_prio_slice(cfqd, cfqq);
1835
                        cfq_clear_cfqq_slice_new(cfqq);
1836
                }
1837
                if (cfq_slice_used(cfqq))
1838
                        cfq_slice_expired(cfqd, 1);
1839
                else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list))
1840
                        cfq_arm_slice_timer(cfqd);
1841
        }
1842
 
1843
        if (!cfqd->rq_in_driver)
1844
                cfq_schedule_dispatch(cfqd);
1845
}
1846
 
1847
/*
1848
 * we temporarily boost lower priority queues if they are holding fs exclusive
1849
 * resources. they are boosted to normal prio (CLASS_BE/4)
1850
 */
1851
static void cfq_prio_boost(struct cfq_queue *cfqq)
1852
{
1853
        if (has_fs_excl()) {
1854
                /*
1855
                 * boost idle prio on transactions that would lock out other
1856
                 * users of the filesystem
1857
                 */
1858
                if (cfq_class_idle(cfqq))
1859
                        cfqq->ioprio_class = IOPRIO_CLASS_BE;
1860
                if (cfqq->ioprio > IOPRIO_NORM)
1861
                        cfqq->ioprio = IOPRIO_NORM;
1862
        } else {
1863
                /*
1864
                 * check if we need to unboost the queue
1865
                 */
1866
                if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1867
                        cfqq->ioprio_class = cfqq->org_ioprio_class;
1868
                if (cfqq->ioprio != cfqq->org_ioprio)
1869
                        cfqq->ioprio = cfqq->org_ioprio;
1870
        }
1871
}
1872
 
1873
static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1874
{
1875
        if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1876
            !cfq_cfqq_must_alloc_slice(cfqq)) {
1877
                cfq_mark_cfqq_must_alloc_slice(cfqq);
1878
                return ELV_MQUEUE_MUST;
1879
        }
1880
 
1881
        return ELV_MQUEUE_MAY;
1882
}
1883
 
1884
static int cfq_may_queue(struct request_queue *q, int rw)
1885
{
1886
        struct cfq_data *cfqd = q->elevator->elevator_data;
1887
        struct task_struct *tsk = current;
1888
        struct cfq_io_context *cic;
1889
        struct cfq_queue *cfqq;
1890
 
1891
        /*
1892
         * don't force setup of a queue from here, as a call to may_queue
1893
         * does not necessarily imply that a request actually will be queued.
1894
         * so just lookup a possibly existing queue, or return 'may queue'
1895
         * if that fails
1896
         */
1897
        cic = cfq_cic_rb_lookup(cfqd, tsk->io_context);
1898
        if (!cic)
1899
                return ELV_MQUEUE_MAY;
1900
 
1901
        cfqq = cic_to_cfqq(cic, rw & REQ_RW_SYNC);
1902
        if (cfqq) {
1903
                cfq_init_prio_data(cfqq);
1904
                cfq_prio_boost(cfqq);
1905
 
1906
                return __cfq_may_queue(cfqq);
1907
        }
1908
 
1909
        return ELV_MQUEUE_MAY;
1910
}
1911
 
1912
/*
1913
 * queue lock held here
1914
 */
1915
static void cfq_put_request(struct request *rq)
1916
{
1917
        struct cfq_queue *cfqq = RQ_CFQQ(rq);
1918
 
1919
        if (cfqq) {
1920
                const int rw = rq_data_dir(rq);
1921
 
1922
                BUG_ON(!cfqq->allocated[rw]);
1923
                cfqq->allocated[rw]--;
1924
 
1925
                put_io_context(RQ_CIC(rq)->ioc);
1926
 
1927
                rq->elevator_private = NULL;
1928
                rq->elevator_private2 = NULL;
1929
 
1930
                cfq_put_queue(cfqq);
1931
        }
1932
}
1933
 
1934
/*
1935
 * Allocate cfq data structures associated with this request.
1936
 */
1937
static int
1938
cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1939
{
1940
        struct cfq_data *cfqd = q->elevator->elevator_data;
1941
        struct task_struct *tsk = current;
1942
        struct cfq_io_context *cic;
1943
        const int rw = rq_data_dir(rq);
1944
        const int is_sync = rq_is_sync(rq);
1945
        struct cfq_queue *cfqq;
1946
        unsigned long flags;
1947
 
1948
        might_sleep_if(gfp_mask & __GFP_WAIT);
1949
 
1950
        cic = cfq_get_io_context(cfqd, gfp_mask);
1951
 
1952
        spin_lock_irqsave(q->queue_lock, flags);
1953
 
1954
        if (!cic)
1955
                goto queue_fail;
1956
 
1957
        cfqq = cic_to_cfqq(cic, is_sync);
1958
        if (!cfqq) {
1959
                cfqq = cfq_get_queue(cfqd, is_sync, tsk, gfp_mask);
1960
 
1961
                if (!cfqq)
1962
                        goto queue_fail;
1963
 
1964
                cic_set_cfqq(cic, cfqq, is_sync);
1965
        }
1966
 
1967
        cfqq->allocated[rw]++;
1968
        cfq_clear_cfqq_must_alloc(cfqq);
1969
        atomic_inc(&cfqq->ref);
1970
 
1971
        spin_unlock_irqrestore(q->queue_lock, flags);
1972
 
1973
        rq->elevator_private = cic;
1974
        rq->elevator_private2 = cfqq;
1975
        return 0;
1976
 
1977
queue_fail:
1978
        if (cic)
1979
                put_io_context(cic->ioc);
1980
 
1981
        cfq_schedule_dispatch(cfqd);
1982
        spin_unlock_irqrestore(q->queue_lock, flags);
1983
        return 1;
1984
}
1985
 
1986
static void cfq_kick_queue(struct work_struct *work)
1987
{
1988
        struct cfq_data *cfqd =
1989
                container_of(work, struct cfq_data, unplug_work);
1990
        struct request_queue *q = cfqd->queue;
1991
        unsigned long flags;
1992
 
1993
        spin_lock_irqsave(q->queue_lock, flags);
1994
        blk_start_queueing(q);
1995
        spin_unlock_irqrestore(q->queue_lock, flags);
1996
}
1997
 
1998
/*
1999
 * Timer running if the active_queue is currently idling inside its time slice
2000
 */
2001
static void cfq_idle_slice_timer(unsigned long data)
2002
{
2003
        struct cfq_data *cfqd = (struct cfq_data *) data;
2004
        struct cfq_queue *cfqq;
2005
        unsigned long flags;
2006
        int timed_out = 1;
2007
 
2008
        spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2009
 
2010
        if ((cfqq = cfqd->active_queue) != NULL) {
2011
                timed_out = 0;
2012
 
2013
                /*
2014
                 * expired
2015
                 */
2016
                if (cfq_slice_used(cfqq))
2017
                        goto expire;
2018
 
2019
                /*
2020
                 * only expire and reinvoke request handler, if there are
2021
                 * other queues with pending requests
2022
                 */
2023
                if (!cfqd->busy_queues)
2024
                        goto out_cont;
2025
 
2026
                /*
2027
                 * not expired and it has a request pending, let it dispatch
2028
                 */
2029
                if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
2030
                        cfq_mark_cfqq_must_dispatch(cfqq);
2031
                        goto out_kick;
2032
                }
2033
        }
2034
expire:
2035
        cfq_slice_expired(cfqd, timed_out);
2036
out_kick:
2037
        cfq_schedule_dispatch(cfqd);
2038
out_cont:
2039
        spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2040
}
2041
 
2042
/*
2043
 * Timer running if an idle class queue is waiting for service
2044
 */
2045
static void cfq_idle_class_timer(unsigned long data)
2046
{
2047
        struct cfq_data *cfqd = (struct cfq_data *) data;
2048
        unsigned long flags;
2049
 
2050
        spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2051
 
2052
        /*
2053
         * race with a non-idle queue, reset timer
2054
         */
2055
        if (!start_idle_class_timer(cfqd))
2056
                cfq_schedule_dispatch(cfqd);
2057
 
2058
        spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2059
}
2060
 
2061
static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2062
{
2063
        del_timer_sync(&cfqd->idle_slice_timer);
2064
        del_timer_sync(&cfqd->idle_class_timer);
2065
        kblockd_flush_work(&cfqd->unplug_work);
2066
}
2067
 
2068
static void cfq_put_async_queues(struct cfq_data *cfqd)
2069
{
2070
        int i;
2071
 
2072
        for (i = 0; i < IOPRIO_BE_NR; i++) {
2073
                if (cfqd->async_cfqq[0][i])
2074
                        cfq_put_queue(cfqd->async_cfqq[0][i]);
2075
                if (cfqd->async_cfqq[1][i])
2076
                        cfq_put_queue(cfqd->async_cfqq[1][i]);
2077
        }
2078
 
2079
        if (cfqd->async_idle_cfqq)
2080
                cfq_put_queue(cfqd->async_idle_cfqq);
2081
}
2082
 
2083
static void cfq_exit_queue(elevator_t *e)
2084
{
2085
        struct cfq_data *cfqd = e->elevator_data;
2086
        struct request_queue *q = cfqd->queue;
2087
 
2088
        cfq_shutdown_timer_wq(cfqd);
2089
 
2090
        spin_lock_irq(q->queue_lock);
2091
 
2092
        if (cfqd->active_queue)
2093
                __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2094
 
2095
        while (!list_empty(&cfqd->cic_list)) {
2096
                struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2097
                                                        struct cfq_io_context,
2098
                                                        queue_list);
2099
 
2100
                __cfq_exit_single_io_context(cfqd, cic);
2101
        }
2102
 
2103
        cfq_put_async_queues(cfqd);
2104
 
2105
        spin_unlock_irq(q->queue_lock);
2106
 
2107
        cfq_shutdown_timer_wq(cfqd);
2108
 
2109
        kfree(cfqd);
2110
}
2111
 
2112
static void *cfq_init_queue(struct request_queue *q)
2113
{
2114
        struct cfq_data *cfqd;
2115
 
2116
        cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2117
        if (!cfqd)
2118
                return NULL;
2119
 
2120
        cfqd->service_tree = CFQ_RB_ROOT;
2121
        INIT_LIST_HEAD(&cfqd->cic_list);
2122
 
2123
        cfqd->queue = q;
2124
 
2125
        init_timer(&cfqd->idle_slice_timer);
2126
        cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2127
        cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2128
 
2129
        init_timer(&cfqd->idle_class_timer);
2130
        cfqd->idle_class_timer.function = cfq_idle_class_timer;
2131
        cfqd->idle_class_timer.data = (unsigned long) cfqd;
2132
 
2133
        INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2134
 
2135
        cfqd->last_end_request = jiffies;
2136
        cfqd->cfq_quantum = cfq_quantum;
2137
        cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2138
        cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2139
        cfqd->cfq_back_max = cfq_back_max;
2140
        cfqd->cfq_back_penalty = cfq_back_penalty;
2141
        cfqd->cfq_slice[0] = cfq_slice_async;
2142
        cfqd->cfq_slice[1] = cfq_slice_sync;
2143
        cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2144
        cfqd->cfq_slice_idle = cfq_slice_idle;
2145
 
2146
        return cfqd;
2147
}
2148
 
2149
static void cfq_slab_kill(void)
2150
{
2151
        if (cfq_pool)
2152
                kmem_cache_destroy(cfq_pool);
2153
        if (cfq_ioc_pool)
2154
                kmem_cache_destroy(cfq_ioc_pool);
2155
}
2156
 
2157
static int __init cfq_slab_setup(void)
2158
{
2159
        cfq_pool = KMEM_CACHE(cfq_queue, 0);
2160
        if (!cfq_pool)
2161
                goto fail;
2162
 
2163
        cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2164
        if (!cfq_ioc_pool)
2165
                goto fail;
2166
 
2167
        return 0;
2168
fail:
2169
        cfq_slab_kill();
2170
        return -ENOMEM;
2171
}
2172
 
2173
/*
2174
 * sysfs parts below -->
2175
 */
2176
static ssize_t
2177
cfq_var_show(unsigned int var, char *page)
2178
{
2179
        return sprintf(page, "%d\n", var);
2180
}
2181
 
2182
static ssize_t
2183
cfq_var_store(unsigned int *var, const char *page, size_t count)
2184
{
2185
        char *p = (char *) page;
2186
 
2187
        *var = simple_strtoul(p, &p, 10);
2188
        return count;
2189
}
2190
 
2191
#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
2192
static ssize_t __FUNC(elevator_t *e, char *page)                        \
2193
{                                                                       \
2194
        struct cfq_data *cfqd = e->elevator_data;                       \
2195
        unsigned int __data = __VAR;                                    \
2196
        if (__CONV)                                                     \
2197
                __data = jiffies_to_msecs(__data);                      \
2198
        return cfq_var_show(__data, (page));                            \
2199
}
2200
SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2201
SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2202
SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2203
SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2204
SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2205
SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2206
SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2207
SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2208
SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2209
#undef SHOW_FUNCTION
2210
 
2211
#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
2212
static ssize_t __FUNC(elevator_t *e, const char *page, size_t count)    \
2213
{                                                                       \
2214
        struct cfq_data *cfqd = e->elevator_data;                       \
2215
        unsigned int __data;                                            \
2216
        int ret = cfq_var_store(&__data, (page), count);                \
2217
        if (__data < (MIN))                                             \
2218
                __data = (MIN);                                         \
2219
        else if (__data > (MAX))                                        \
2220
                __data = (MAX);                                         \
2221
        if (__CONV)                                                     \
2222
                *(__PTR) = msecs_to_jiffies(__data);                    \
2223
        else                                                            \
2224
                *(__PTR) = __data;                                      \
2225
        return ret;                                                     \
2226
}
2227
STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2228
STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2229
STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2230
STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2231
STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2232
STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2233
STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2234
STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2235
STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2236
#undef STORE_FUNCTION
2237
 
2238
#define CFQ_ATTR(name) \
2239
        __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2240
 
2241
static struct elv_fs_entry cfq_attrs[] = {
2242
        CFQ_ATTR(quantum),
2243
        CFQ_ATTR(fifo_expire_sync),
2244
        CFQ_ATTR(fifo_expire_async),
2245
        CFQ_ATTR(back_seek_max),
2246
        CFQ_ATTR(back_seek_penalty),
2247
        CFQ_ATTR(slice_sync),
2248
        CFQ_ATTR(slice_async),
2249
        CFQ_ATTR(slice_async_rq),
2250
        CFQ_ATTR(slice_idle),
2251
        __ATTR_NULL
2252
};
2253
 
2254
static struct elevator_type iosched_cfq = {
2255
        .ops = {
2256
                .elevator_merge_fn =            cfq_merge,
2257
                .elevator_merged_fn =           cfq_merged_request,
2258
                .elevator_merge_req_fn =        cfq_merged_requests,
2259
                .elevator_allow_merge_fn =      cfq_allow_merge,
2260
                .elevator_dispatch_fn =         cfq_dispatch_requests,
2261
                .elevator_add_req_fn =          cfq_insert_request,
2262
                .elevator_activate_req_fn =     cfq_activate_request,
2263
                .elevator_deactivate_req_fn =   cfq_deactivate_request,
2264
                .elevator_queue_empty_fn =      cfq_queue_empty,
2265
                .elevator_completed_req_fn =    cfq_completed_request,
2266
                .elevator_former_req_fn =       elv_rb_former_request,
2267
                .elevator_latter_req_fn =       elv_rb_latter_request,
2268
                .elevator_set_req_fn =          cfq_set_request,
2269
                .elevator_put_req_fn =          cfq_put_request,
2270
                .elevator_may_queue_fn =        cfq_may_queue,
2271
                .elevator_init_fn =             cfq_init_queue,
2272
                .elevator_exit_fn =             cfq_exit_queue,
2273
                .trim =                         cfq_free_io_context,
2274
        },
2275
        .elevator_attrs =       cfq_attrs,
2276
        .elevator_name =        "cfq",
2277
        .elevator_owner =       THIS_MODULE,
2278
};
2279
 
2280
static int __init cfq_init(void)
2281
{
2282
        /*
2283
         * could be 0 on HZ < 1000 setups
2284
         */
2285
        if (!cfq_slice_async)
2286
                cfq_slice_async = 1;
2287
        if (!cfq_slice_idle)
2288
                cfq_slice_idle = 1;
2289
 
2290
        if (cfq_slab_setup())
2291
                return -ENOMEM;
2292
 
2293
        elv_register(&iosched_cfq);
2294
 
2295
        return 0;
2296
}
2297
 
2298
static void __exit cfq_exit(void)
2299
{
2300
        DECLARE_COMPLETION_ONSTACK(all_gone);
2301
        elv_unregister(&iosched_cfq);
2302
        ioc_gone = &all_gone;
2303
        /* ioc_gone's update must be visible before reading ioc_count */
2304
        smp_wmb();
2305
        if (elv_ioc_count_read(ioc_count))
2306
                wait_for_completion(ioc_gone);
2307
        synchronize_rcu();
2308
        cfq_slab_kill();
2309
}
2310
 
2311
module_init(cfq_init);
2312
module_exit(cfq_exit);
2313
 
2314
MODULE_AUTHOR("Jens Axboe");
2315
MODULE_LICENSE("GPL");
2316
MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.