OpenCores
URL https://opencores.org/ocsvn/or1k_soc_on_altera_embedded_dev_kit/or1k_soc_on_altera_embedded_dev_kit/trunk

Subversion Repositories or1k_soc_on_altera_embedded_dev_kit

[/] [or1k_soc_on_altera_embedded_dev_kit/] [trunk/] [linux-2.6/] [linux-2.6.24/] [drivers/] [base/] [dmapool.c] - Blame information for rev 3

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 3 xianfeng
 
2
#include <linux/device.h>
3
#include <linux/mm.h>
4
#include <asm/io.h>             /* Needed for i386 to build */
5
#include <linux/dma-mapping.h>
6
#include <linux/dmapool.h>
7
#include <linux/slab.h>
8
#include <linux/module.h>
9
#include <linux/poison.h>
10
#include <linux/sched.h>
11
 
12
/*
13
 * Pool allocator ... wraps the dma_alloc_coherent page allocator, so
14
 * small blocks are easily used by drivers for bus mastering controllers.
15
 * This should probably be sharing the guts of the slab allocator.
16
 */
17
 
18
struct dma_pool {       /* the pool */
19
        struct list_head        page_list;
20
        spinlock_t              lock;
21
        size_t                  blocks_per_page;
22
        size_t                  size;
23
        struct device           *dev;
24
        size_t                  allocation;
25
        char                    name [32];
26
        wait_queue_head_t       waitq;
27
        struct list_head        pools;
28
};
29
 
30
struct dma_page {       /* cacheable header for 'allocation' bytes */
31
        struct list_head        page_list;
32
        void                    *vaddr;
33
        dma_addr_t              dma;
34
        unsigned                in_use;
35
        unsigned long           bitmap [0];
36
};
37
 
38
#define POOL_TIMEOUT_JIFFIES    ((100 /* msec */ * HZ) / 1000)
39
 
40
static DEFINE_MUTEX (pools_lock);
41
 
42
static ssize_t
43
show_pools (struct device *dev, struct device_attribute *attr, char *buf)
44
{
45
        unsigned temp;
46
        unsigned size;
47
        char *next;
48
        struct dma_page *page;
49
        struct dma_pool *pool;
50
 
51
        next = buf;
52
        size = PAGE_SIZE;
53
 
54
        temp = scnprintf(next, size, "poolinfo - 0.1\n");
55
        size -= temp;
56
        next += temp;
57
 
58
        mutex_lock(&pools_lock);
59
        list_for_each_entry(pool, &dev->dma_pools, pools) {
60
                unsigned pages = 0;
61
                unsigned blocks = 0;
62
 
63
                list_for_each_entry(page, &pool->page_list, page_list) {
64
                        pages++;
65
                        blocks += page->in_use;
66
                }
67
 
68
                /* per-pool info, no real statistics yet */
69
                temp = scnprintf(next, size, "%-16s %4u %4Zu %4Zu %2u\n",
70
                                pool->name,
71
                                blocks, pages * pool->blocks_per_page,
72
                                pool->size, pages);
73
                size -= temp;
74
                next += temp;
75
        }
76
        mutex_unlock(&pools_lock);
77
 
78
        return PAGE_SIZE - size;
79
}
80
static DEVICE_ATTR (pools, S_IRUGO, show_pools, NULL);
81
 
82
/**
83
 * dma_pool_create - Creates a pool of consistent memory blocks, for dma.
84
 * @name: name of pool, for diagnostics
85
 * @dev: device that will be doing the DMA
86
 * @size: size of the blocks in this pool.
87
 * @align: alignment requirement for blocks; must be a power of two
88
 * @allocation: returned blocks won't cross this boundary (or zero)
89
 * Context: !in_interrupt()
90
 *
91
 * Returns a dma allocation pool with the requested characteristics, or
92
 * null if one can't be created.  Given one of these pools, dma_pool_alloc()
93
 * may be used to allocate memory.  Such memory will all have "consistent"
94
 * DMA mappings, accessible by the device and its driver without using
95
 * cache flushing primitives.  The actual size of blocks allocated may be
96
 * larger than requested because of alignment.
97
 *
98
 * If allocation is nonzero, objects returned from dma_pool_alloc() won't
99
 * cross that size boundary.  This is useful for devices which have
100
 * addressing restrictions on individual DMA transfers, such as not crossing
101
 * boundaries of 4KBytes.
102
 */
103
struct dma_pool *
104
dma_pool_create (const char *name, struct device *dev,
105
        size_t size, size_t align, size_t allocation)
106
{
107
        struct dma_pool         *retval;
108
 
109
        if (align == 0)
110
                align = 1;
111
        if (size == 0)
112
                return NULL;
113
        else if (size < align)
114
                size = align;
115
        else if ((size % align) != 0) {
116
                size += align + 1;
117
                size &= ~(align - 1);
118
        }
119
 
120
        if (allocation == 0) {
121
                if (PAGE_SIZE < size)
122
                        allocation = size;
123
                else
124
                        allocation = PAGE_SIZE;
125
                // FIXME: round up for less fragmentation
126
        } else if (allocation < size)
127
                return NULL;
128
 
129
        if (!(retval = kmalloc_node (sizeof *retval, GFP_KERNEL, dev_to_node(dev))))
130
                return retval;
131
 
132
        strlcpy (retval->name, name, sizeof retval->name);
133
 
134
        retval->dev = dev;
135
 
136
        INIT_LIST_HEAD (&retval->page_list);
137
        spin_lock_init (&retval->lock);
138
        retval->size = size;
139
        retval->allocation = allocation;
140
        retval->blocks_per_page = allocation / size;
141
        init_waitqueue_head (&retval->waitq);
142
 
143
        if (dev) {
144
                int ret;
145
 
146
                mutex_lock(&pools_lock);
147
                if (list_empty (&dev->dma_pools))
148
                        ret = device_create_file (dev, &dev_attr_pools);
149
                else
150
                        ret = 0;
151
                /* note:  not currently insisting "name" be unique */
152
                if (!ret)
153
                        list_add (&retval->pools, &dev->dma_pools);
154
                else {
155
                        kfree(retval);
156
                        retval = NULL;
157
                }
158
                mutex_unlock(&pools_lock);
159
        } else
160
                INIT_LIST_HEAD (&retval->pools);
161
 
162
        return retval;
163
}
164
 
165
 
166
static struct dma_page *
167
pool_alloc_page (struct dma_pool *pool, gfp_t mem_flags)
168
{
169
        struct dma_page *page;
170
        int             mapsize;
171
 
172
        mapsize = pool->blocks_per_page;
173
        mapsize = (mapsize + BITS_PER_LONG - 1) / BITS_PER_LONG;
174
        mapsize *= sizeof (long);
175
 
176
        page = kmalloc(mapsize + sizeof *page, mem_flags);
177
        if (!page)
178
                return NULL;
179
        page->vaddr = dma_alloc_coherent (pool->dev,
180
                                            pool->allocation,
181
                                            &page->dma,
182
                                            mem_flags);
183
        if (page->vaddr) {
184
                memset (page->bitmap, 0xff, mapsize);   // bit set == free
185
#ifdef  CONFIG_DEBUG_SLAB
186
                memset (page->vaddr, POOL_POISON_FREED, pool->allocation);
187
#endif
188
                list_add (&page->page_list, &pool->page_list);
189
                page->in_use = 0;
190
        } else {
191
                kfree (page);
192
                page = NULL;
193
        }
194
        return page;
195
}
196
 
197
 
198
static inline int
199
is_page_busy (int blocks, unsigned long *bitmap)
200
{
201
        while (blocks > 0) {
202
                if (*bitmap++ != ~0UL)
203
                        return 1;
204
                blocks -= BITS_PER_LONG;
205
        }
206
        return 0;
207
}
208
 
209
static void
210
pool_free_page (struct dma_pool *pool, struct dma_page *page)
211
{
212
        dma_addr_t      dma = page->dma;
213
 
214
#ifdef  CONFIG_DEBUG_SLAB
215
        memset (page->vaddr, POOL_POISON_FREED, pool->allocation);
216
#endif
217
        dma_free_coherent (pool->dev, pool->allocation, page->vaddr, dma);
218
        list_del (&page->page_list);
219
        kfree (page);
220
}
221
 
222
 
223
/**
224
 * dma_pool_destroy - destroys a pool of dma memory blocks.
225
 * @pool: dma pool that will be destroyed
226
 * Context: !in_interrupt()
227
 *
228
 * Caller guarantees that no more memory from the pool is in use,
229
 * and that nothing will try to use the pool after this call.
230
 */
231
void
232
dma_pool_destroy (struct dma_pool *pool)
233
{
234
        mutex_lock(&pools_lock);
235
        list_del (&pool->pools);
236
        if (pool->dev && list_empty (&pool->dev->dma_pools))
237
                device_remove_file (pool->dev, &dev_attr_pools);
238
        mutex_unlock(&pools_lock);
239
 
240
        while (!list_empty (&pool->page_list)) {
241
                struct dma_page         *page;
242
                page = list_entry (pool->page_list.next,
243
                                struct dma_page, page_list);
244
                if (is_page_busy (pool->blocks_per_page, page->bitmap)) {
245
                        if (pool->dev)
246
                                dev_err(pool->dev, "dma_pool_destroy %s, %p busy\n",
247
                                        pool->name, page->vaddr);
248
                        else
249
                                printk (KERN_ERR "dma_pool_destroy %s, %p busy\n",
250
                                        pool->name, page->vaddr);
251
                        /* leak the still-in-use consistent memory */
252
                        list_del (&page->page_list);
253
                        kfree (page);
254
                } else
255
                        pool_free_page (pool, page);
256
        }
257
 
258
        kfree (pool);
259
}
260
 
261
 
262
/**
263
 * dma_pool_alloc - get a block of consistent memory
264
 * @pool: dma pool that will produce the block
265
 * @mem_flags: GFP_* bitmask
266
 * @handle: pointer to dma address of block
267
 *
268
 * This returns the kernel virtual address of a currently unused block,
269
 * and reports its dma address through the handle.
270
 * If such a memory block can't be allocated, null is returned.
271
 */
272
void *
273
dma_pool_alloc (struct dma_pool *pool, gfp_t mem_flags, dma_addr_t *handle)
274
{
275
        unsigned long           flags;
276
        struct dma_page         *page;
277
        int                     map, block;
278
        size_t                  offset;
279
        void                    *retval;
280
 
281
restart:
282
        spin_lock_irqsave (&pool->lock, flags);
283
        list_for_each_entry(page, &pool->page_list, page_list) {
284
                int             i;
285
                /* only cachable accesses here ... */
286
                for (map = 0, i = 0;
287
                                i < pool->blocks_per_page;
288
                                i += BITS_PER_LONG, map++) {
289
                        if (page->bitmap [map] == 0)
290
                                continue;
291
                        block = ffz (~ page->bitmap [map]);
292
                        if ((i + block) < pool->blocks_per_page) {
293
                                clear_bit (block, &page->bitmap [map]);
294
                                offset = (BITS_PER_LONG * map) + block;
295
                                offset *= pool->size;
296
                                goto ready;
297
                        }
298
                }
299
        }
300
        if (!(page = pool_alloc_page (pool, GFP_ATOMIC))) {
301
                if (mem_flags & __GFP_WAIT) {
302
                        DECLARE_WAITQUEUE (wait, current);
303
 
304
                        __set_current_state(TASK_INTERRUPTIBLE);
305
                        add_wait_queue (&pool->waitq, &wait);
306
                        spin_unlock_irqrestore (&pool->lock, flags);
307
 
308
                        schedule_timeout (POOL_TIMEOUT_JIFFIES);
309
 
310
                        remove_wait_queue (&pool->waitq, &wait);
311
                        goto restart;
312
                }
313
                retval = NULL;
314
                goto done;
315
        }
316
 
317
        clear_bit (0, &page->bitmap [0]);
318
        offset = 0;
319
ready:
320
        page->in_use++;
321
        retval = offset + page->vaddr;
322
        *handle = offset + page->dma;
323
#ifdef  CONFIG_DEBUG_SLAB
324
        memset (retval, POOL_POISON_ALLOCATED, pool->size);
325
#endif
326
done:
327
        spin_unlock_irqrestore (&pool->lock, flags);
328
        return retval;
329
}
330
 
331
 
332
static struct dma_page *
333
pool_find_page (struct dma_pool *pool, dma_addr_t dma)
334
{
335
        unsigned long           flags;
336
        struct dma_page         *page;
337
 
338
        spin_lock_irqsave (&pool->lock, flags);
339
        list_for_each_entry(page, &pool->page_list, page_list) {
340
                if (dma < page->dma)
341
                        continue;
342
                if (dma < (page->dma + pool->allocation))
343
                        goto done;
344
        }
345
        page = NULL;
346
done:
347
        spin_unlock_irqrestore (&pool->lock, flags);
348
        return page;
349
}
350
 
351
 
352
/**
353
 * dma_pool_free - put block back into dma pool
354
 * @pool: the dma pool holding the block
355
 * @vaddr: virtual address of block
356
 * @dma: dma address of block
357
 *
358
 * Caller promises neither device nor driver will again touch this block
359
 * unless it is first re-allocated.
360
 */
361
void
362
dma_pool_free (struct dma_pool *pool, void *vaddr, dma_addr_t dma)
363
{
364
        struct dma_page         *page;
365
        unsigned long           flags;
366
        int                     map, block;
367
 
368
        if ((page = pool_find_page(pool, dma)) == NULL) {
369
                if (pool->dev)
370
                        dev_err(pool->dev, "dma_pool_free %s, %p/%lx (bad dma)\n",
371
                                pool->name, vaddr, (unsigned long) dma);
372
                else
373
                        printk (KERN_ERR "dma_pool_free %s, %p/%lx (bad dma)\n",
374
                                pool->name, vaddr, (unsigned long) dma);
375
                return;
376
        }
377
 
378
        block = dma - page->dma;
379
        block /= pool->size;
380
        map = block / BITS_PER_LONG;
381
        block %= BITS_PER_LONG;
382
 
383
#ifdef  CONFIG_DEBUG_SLAB
384
        if (((dma - page->dma) + (void *)page->vaddr) != vaddr) {
385
                if (pool->dev)
386
                        dev_err(pool->dev, "dma_pool_free %s, %p (bad vaddr)/%Lx\n",
387
                                pool->name, vaddr, (unsigned long long) dma);
388
                else
389
                        printk (KERN_ERR "dma_pool_free %s, %p (bad vaddr)/%Lx\n",
390
                                pool->name, vaddr, (unsigned long long) dma);
391
                return;
392
        }
393
        if (page->bitmap [map] & (1UL << block)) {
394
                if (pool->dev)
395
                        dev_err(pool->dev, "dma_pool_free %s, dma %Lx already free\n",
396
                                pool->name, (unsigned long long)dma);
397
                else
398
                        printk (KERN_ERR "dma_pool_free %s, dma %Lx already free\n",
399
                                pool->name, (unsigned long long)dma);
400
                return;
401
        }
402
        memset (vaddr, POOL_POISON_FREED, pool->size);
403
#endif
404
 
405
        spin_lock_irqsave (&pool->lock, flags);
406
        page->in_use--;
407
        set_bit (block, &page->bitmap [map]);
408
        if (waitqueue_active (&pool->waitq))
409
                wake_up (&pool->waitq);
410
        /*
411
         * Resist a temptation to do
412
         *    if (!is_page_busy(bpp, page->bitmap)) pool_free_page(pool, page);
413
         * Better have a few empty pages hang around.
414
         */
415
        spin_unlock_irqrestore (&pool->lock, flags);
416
}
417
 
418
/*
419
 * Managed DMA pool
420
 */
421
static void dmam_pool_release(struct device *dev, void *res)
422
{
423
        struct dma_pool *pool = *(struct dma_pool **)res;
424
 
425
        dma_pool_destroy(pool);
426
}
427
 
428
static int dmam_pool_match(struct device *dev, void *res, void *match_data)
429
{
430
        return *(struct dma_pool **)res == match_data;
431
}
432
 
433
/**
434
 * dmam_pool_create - Managed dma_pool_create()
435
 * @name: name of pool, for diagnostics
436
 * @dev: device that will be doing the DMA
437
 * @size: size of the blocks in this pool.
438
 * @align: alignment requirement for blocks; must be a power of two
439
 * @allocation: returned blocks won't cross this boundary (or zero)
440
 *
441
 * Managed dma_pool_create().  DMA pool created with this function is
442
 * automatically destroyed on driver detach.
443
 */
444
struct dma_pool *dmam_pool_create(const char *name, struct device *dev,
445
                                  size_t size, size_t align, size_t allocation)
446
{
447
        struct dma_pool **ptr, *pool;
448
 
449
        ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL);
450
        if (!ptr)
451
                return NULL;
452
 
453
        pool = *ptr = dma_pool_create(name, dev, size, align, allocation);
454
        if (pool)
455
                devres_add(dev, ptr);
456
        else
457
                devres_free(ptr);
458
 
459
        return pool;
460
}
461
 
462
/**
463
 * dmam_pool_destroy - Managed dma_pool_destroy()
464
 * @pool: dma pool that will be destroyed
465
 *
466
 * Managed dma_pool_destroy().
467
 */
468
void dmam_pool_destroy(struct dma_pool *pool)
469
{
470
        struct device *dev = pool->dev;
471
 
472
        dma_pool_destroy(pool);
473
        WARN_ON(devres_destroy(dev, dmam_pool_release, dmam_pool_match, pool));
474
}
475
 
476
EXPORT_SYMBOL (dma_pool_create);
477
EXPORT_SYMBOL (dma_pool_destroy);
478
EXPORT_SYMBOL (dma_pool_alloc);
479
EXPORT_SYMBOL (dma_pool_free);
480
EXPORT_SYMBOL (dmam_pool_create);
481
EXPORT_SYMBOL (dmam_pool_destroy);

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.