OpenCores
URL https://opencores.org/ocsvn/or1k_soc_on_altera_embedded_dev_kit/or1k_soc_on_altera_embedded_dev_kit/trunk

Subversion Repositories or1k_soc_on_altera_embedded_dev_kit

[/] [or1k_soc_on_altera_embedded_dev_kit/] [trunk/] [linux-2.6/] [linux-2.6.24/] [kernel/] [cgroup.c] - Blame information for rev 17

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 3 xianfeng
/*
2
 *  Generic process-grouping system.
3
 *
4
 *  Based originally on the cpuset system, extracted by Paul Menage
5
 *  Copyright (C) 2006 Google, Inc
6
 *
7
 *  Copyright notices from the original cpuset code:
8
 *  --------------------------------------------------
9
 *  Copyright (C) 2003 BULL SA.
10
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
11
 *
12
 *  Portions derived from Patrick Mochel's sysfs code.
13
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
14
 *
15
 *  2003-10-10 Written by Simon Derr.
16
 *  2003-10-22 Updates by Stephen Hemminger.
17
 *  2004 May-July Rework by Paul Jackson.
18
 *  ---------------------------------------------------
19
 *
20
 *  This file is subject to the terms and conditions of the GNU General Public
21
 *  License.  See the file COPYING in the main directory of the Linux
22
 *  distribution for more details.
23
 */
24
 
25
#include <linux/cgroup.h>
26
#include <linux/errno.h>
27
#include <linux/fs.h>
28
#include <linux/kernel.h>
29
#include <linux/list.h>
30
#include <linux/mm.h>
31
#include <linux/mutex.h>
32
#include <linux/mount.h>
33
#include <linux/pagemap.h>
34
#include <linux/proc_fs.h>
35
#include <linux/rcupdate.h>
36
#include <linux/sched.h>
37
#include <linux/backing-dev.h>
38
#include <linux/seq_file.h>
39
#include <linux/slab.h>
40
#include <linux/magic.h>
41
#include <linux/spinlock.h>
42
#include <linux/string.h>
43
#include <linux/sort.h>
44
#include <linux/kmod.h>
45
#include <linux/delayacct.h>
46
#include <linux/cgroupstats.h>
47
 
48
#include <asm/atomic.h>
49
 
50
static DEFINE_MUTEX(cgroup_mutex);
51
 
52
/* Generate an array of cgroup subsystem pointers */
53
#define SUBSYS(_x) &_x ## _subsys,
54
 
55
static struct cgroup_subsys *subsys[] = {
56
#include <linux/cgroup_subsys.h>
57
};
58
 
59
/*
60
 * A cgroupfs_root represents the root of a cgroup hierarchy,
61
 * and may be associated with a superblock to form an active
62
 * hierarchy
63
 */
64
struct cgroupfs_root {
65
        struct super_block *sb;
66
 
67
        /*
68
         * The bitmask of subsystems intended to be attached to this
69
         * hierarchy
70
         */
71
        unsigned long subsys_bits;
72
 
73
        /* The bitmask of subsystems currently attached to this hierarchy */
74
        unsigned long actual_subsys_bits;
75
 
76
        /* A list running through the attached subsystems */
77
        struct list_head subsys_list;
78
 
79
        /* The root cgroup for this hierarchy */
80
        struct cgroup top_cgroup;
81
 
82
        /* Tracks how many cgroups are currently defined in hierarchy.*/
83
        int number_of_cgroups;
84
 
85
        /* A list running through the mounted hierarchies */
86
        struct list_head root_list;
87
 
88
        /* Hierarchy-specific flags */
89
        unsigned long flags;
90
 
91
        /* The path to use for release notifications. No locking
92
         * between setting and use - so if userspace updates this
93
         * while child cgroups exist, you could miss a
94
         * notification. We ensure that it's always a valid
95
         * NUL-terminated string */
96
        char release_agent_path[PATH_MAX];
97
};
98
 
99
 
100
/*
101
 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
102
 * subsystems that are otherwise unattached - it never has more than a
103
 * single cgroup, and all tasks are part of that cgroup.
104
 */
105
static struct cgroupfs_root rootnode;
106
 
107
/* The list of hierarchy roots */
108
 
109
static LIST_HEAD(roots);
110
static int root_count;
111
 
112
/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
113
#define dummytop (&rootnode.top_cgroup)
114
 
115
/* This flag indicates whether tasks in the fork and exit paths should
116
 * take callback_mutex and check for fork/exit handlers to call. This
117
 * avoids us having to do extra work in the fork/exit path if none of the
118
 * subsystems need to be called.
119
 */
120
static int need_forkexit_callback;
121
 
122
/* bits in struct cgroup flags field */
123
enum {
124
        /* Control Group is dead */
125
        CGRP_REMOVED,
126
        /* Control Group has previously had a child cgroup or a task,
127
         * but no longer (only if CGRP_NOTIFY_ON_RELEASE is set) */
128
        CGRP_RELEASABLE,
129
        /* Control Group requires release notifications to userspace */
130
        CGRP_NOTIFY_ON_RELEASE,
131
};
132
 
133
/* convenient tests for these bits */
134
inline int cgroup_is_removed(const struct cgroup *cgrp)
135
{
136
        return test_bit(CGRP_REMOVED, &cgrp->flags);
137
}
138
 
139
/* bits in struct cgroupfs_root flags field */
140
enum {
141
        ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
142
};
143
 
144
inline int cgroup_is_releasable(const struct cgroup *cgrp)
145
{
146
        const int bits =
147
                (1 << CGRP_RELEASABLE) |
148
                (1 << CGRP_NOTIFY_ON_RELEASE);
149
        return (cgrp->flags & bits) == bits;
150
}
151
 
152
inline int notify_on_release(const struct cgroup *cgrp)
153
{
154
        return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
155
}
156
 
157
/*
158
 * for_each_subsys() allows you to iterate on each subsystem attached to
159
 * an active hierarchy
160
 */
161
#define for_each_subsys(_root, _ss) \
162
list_for_each_entry(_ss, &_root->subsys_list, sibling)
163
 
164
/* for_each_root() allows you to iterate across the active hierarchies */
165
#define for_each_root(_root) \
166
list_for_each_entry(_root, &roots, root_list)
167
 
168
/* the list of cgroups eligible for automatic release. Protected by
169
 * release_list_lock */
170
static LIST_HEAD(release_list);
171
static DEFINE_SPINLOCK(release_list_lock);
172
static void cgroup_release_agent(struct work_struct *work);
173
static DECLARE_WORK(release_agent_work, cgroup_release_agent);
174
static void check_for_release(struct cgroup *cgrp);
175
 
176
/* Link structure for associating css_set objects with cgroups */
177
struct cg_cgroup_link {
178
        /*
179
         * List running through cg_cgroup_links associated with a
180
         * cgroup, anchored on cgroup->css_sets
181
         */
182
        struct list_head cgrp_link_list;
183
        /*
184
         * List running through cg_cgroup_links pointing at a
185
         * single css_set object, anchored on css_set->cg_links
186
         */
187
        struct list_head cg_link_list;
188
        struct css_set *cg;
189
};
190
 
191
/* The default css_set - used by init and its children prior to any
192
 * hierarchies being mounted. It contains a pointer to the root state
193
 * for each subsystem. Also used to anchor the list of css_sets. Not
194
 * reference-counted, to improve performance when child cgroups
195
 * haven't been created.
196
 */
197
 
198
static struct css_set init_css_set;
199
static struct cg_cgroup_link init_css_set_link;
200
 
201
/* css_set_lock protects the list of css_set objects, and the
202
 * chain of tasks off each css_set.  Nests outside task->alloc_lock
203
 * due to cgroup_iter_start() */
204
static DEFINE_RWLOCK(css_set_lock);
205
static int css_set_count;
206
 
207
/* We don't maintain the lists running through each css_set to its
208
 * task until after the first call to cgroup_iter_start(). This
209
 * reduces the fork()/exit() overhead for people who have cgroups
210
 * compiled into their kernel but not actually in use */
211
static int use_task_css_set_links;
212
 
213
/* When we create or destroy a css_set, the operation simply
214
 * takes/releases a reference count on all the cgroups referenced
215
 * by subsystems in this css_set. This can end up multiple-counting
216
 * some cgroups, but that's OK - the ref-count is just a
217
 * busy/not-busy indicator; ensuring that we only count each cgroup
218
 * once would require taking a global lock to ensure that no
219
 * subsystems moved between hierarchies while we were doing so.
220
 *
221
 * Possible TODO: decide at boot time based on the number of
222
 * registered subsystems and the number of CPUs or NUMA nodes whether
223
 * it's better for performance to ref-count every subsystem, or to
224
 * take a global lock and only add one ref count to each hierarchy.
225
 */
226
 
227
/*
228
 * unlink a css_set from the list and free it
229
 */
230
static void unlink_css_set(struct css_set *cg)
231
{
232
        write_lock(&css_set_lock);
233
        list_del(&cg->list);
234
        css_set_count--;
235
        while (!list_empty(&cg->cg_links)) {
236
                struct cg_cgroup_link *link;
237
                link = list_entry(cg->cg_links.next,
238
                                  struct cg_cgroup_link, cg_link_list);
239
                list_del(&link->cg_link_list);
240
                list_del(&link->cgrp_link_list);
241
                kfree(link);
242
        }
243
        write_unlock(&css_set_lock);
244
}
245
 
246
static void __release_css_set(struct kref *k, int taskexit)
247
{
248
        int i;
249
        struct css_set *cg = container_of(k, struct css_set, ref);
250
 
251
        unlink_css_set(cg);
252
 
253
        rcu_read_lock();
254
        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
255
                struct cgroup *cgrp = cg->subsys[i]->cgroup;
256
                if (atomic_dec_and_test(&cgrp->count) &&
257
                    notify_on_release(cgrp)) {
258
                        if (taskexit)
259
                                set_bit(CGRP_RELEASABLE, &cgrp->flags);
260
                        check_for_release(cgrp);
261
                }
262
        }
263
        rcu_read_unlock();
264
        kfree(cg);
265
}
266
 
267
static void release_css_set(struct kref *k)
268
{
269
        __release_css_set(k, 0);
270
}
271
 
272
static void release_css_set_taskexit(struct kref *k)
273
{
274
        __release_css_set(k, 1);
275
}
276
 
277
/*
278
 * refcounted get/put for css_set objects
279
 */
280
static inline void get_css_set(struct css_set *cg)
281
{
282
        kref_get(&cg->ref);
283
}
284
 
285
static inline void put_css_set(struct css_set *cg)
286
{
287
        kref_put(&cg->ref, release_css_set);
288
}
289
 
290
static inline void put_css_set_taskexit(struct css_set *cg)
291
{
292
        kref_put(&cg->ref, release_css_set_taskexit);
293
}
294
 
295
/*
296
 * find_existing_css_set() is a helper for
297
 * find_css_set(), and checks to see whether an existing
298
 * css_set is suitable. This currently walks a linked-list for
299
 * simplicity; a later patch will use a hash table for better
300
 * performance
301
 *
302
 * oldcg: the cgroup group that we're using before the cgroup
303
 * transition
304
 *
305
 * cgrp: the cgroup that we're moving into
306
 *
307
 * template: location in which to build the desired set of subsystem
308
 * state objects for the new cgroup group
309
 */
310
 
311
static struct css_set *find_existing_css_set(
312
        struct css_set *oldcg,
313
        struct cgroup *cgrp,
314
        struct cgroup_subsys_state *template[])
315
{
316
        int i;
317
        struct cgroupfs_root *root = cgrp->root;
318
        struct list_head *l = &init_css_set.list;
319
 
320
        /* Built the set of subsystem state objects that we want to
321
         * see in the new css_set */
322
        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
323
                if (root->subsys_bits & (1ull << i)) {
324
                        /* Subsystem is in this hierarchy. So we want
325
                         * the subsystem state from the new
326
                         * cgroup */
327
                        template[i] = cgrp->subsys[i];
328
                } else {
329
                        /* Subsystem is not in this hierarchy, so we
330
                         * don't want to change the subsystem state */
331
                        template[i] = oldcg->subsys[i];
332
                }
333
        }
334
 
335
        /* Look through existing cgroup groups to find one to reuse */
336
        do {
337
                struct css_set *cg =
338
                        list_entry(l, struct css_set, list);
339
 
340
                if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
341
                        /* All subsystems matched */
342
                        return cg;
343
                }
344
                /* Try the next cgroup group */
345
                l = l->next;
346
        } while (l != &init_css_set.list);
347
 
348
        /* No existing cgroup group matched */
349
        return NULL;
350
}
351
 
352
/*
353
 * allocate_cg_links() allocates "count" cg_cgroup_link structures
354
 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
355
 * success or a negative error
356
 */
357
 
358
static int allocate_cg_links(int count, struct list_head *tmp)
359
{
360
        struct cg_cgroup_link *link;
361
        int i;
362
        INIT_LIST_HEAD(tmp);
363
        for (i = 0; i < count; i++) {
364
                link = kmalloc(sizeof(*link), GFP_KERNEL);
365
                if (!link) {
366
                        while (!list_empty(tmp)) {
367
                                link = list_entry(tmp->next,
368
                                                  struct cg_cgroup_link,
369
                                                  cgrp_link_list);
370
                                list_del(&link->cgrp_link_list);
371
                                kfree(link);
372
                        }
373
                        return -ENOMEM;
374
                }
375
                list_add(&link->cgrp_link_list, tmp);
376
        }
377
        return 0;
378
}
379
 
380
static void free_cg_links(struct list_head *tmp)
381
{
382
        while (!list_empty(tmp)) {
383
                struct cg_cgroup_link *link;
384
                link = list_entry(tmp->next,
385
                                  struct cg_cgroup_link,
386
                                  cgrp_link_list);
387
                list_del(&link->cgrp_link_list);
388
                kfree(link);
389
        }
390
}
391
 
392
/*
393
 * find_css_set() takes an existing cgroup group and a
394
 * cgroup object, and returns a css_set object that's
395
 * equivalent to the old group, but with the given cgroup
396
 * substituted into the appropriate hierarchy. Must be called with
397
 * cgroup_mutex held
398
 */
399
 
400
static struct css_set *find_css_set(
401
        struct css_set *oldcg, struct cgroup *cgrp)
402
{
403
        struct css_set *res;
404
        struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
405
        int i;
406
 
407
        struct list_head tmp_cg_links;
408
        struct cg_cgroup_link *link;
409
 
410
        /* First see if we already have a cgroup group that matches
411
         * the desired set */
412
        write_lock(&css_set_lock);
413
        res = find_existing_css_set(oldcg, cgrp, template);
414
        if (res)
415
                get_css_set(res);
416
        write_unlock(&css_set_lock);
417
 
418
        if (res)
419
                return res;
420
 
421
        res = kmalloc(sizeof(*res), GFP_KERNEL);
422
        if (!res)
423
                return NULL;
424
 
425
        /* Allocate all the cg_cgroup_link objects that we'll need */
426
        if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
427
                kfree(res);
428
                return NULL;
429
        }
430
 
431
        kref_init(&res->ref);
432
        INIT_LIST_HEAD(&res->cg_links);
433
        INIT_LIST_HEAD(&res->tasks);
434
 
435
        /* Copy the set of subsystem state objects generated in
436
         * find_existing_css_set() */
437
        memcpy(res->subsys, template, sizeof(res->subsys));
438
 
439
        write_lock(&css_set_lock);
440
        /* Add reference counts and links from the new css_set. */
441
        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
442
                struct cgroup *cgrp = res->subsys[i]->cgroup;
443
                struct cgroup_subsys *ss = subsys[i];
444
                atomic_inc(&cgrp->count);
445
                /*
446
                 * We want to add a link once per cgroup, so we
447
                 * only do it for the first subsystem in each
448
                 * hierarchy
449
                 */
450
                if (ss->root->subsys_list.next == &ss->sibling) {
451
                        BUG_ON(list_empty(&tmp_cg_links));
452
                        link = list_entry(tmp_cg_links.next,
453
                                          struct cg_cgroup_link,
454
                                          cgrp_link_list);
455
                        list_del(&link->cgrp_link_list);
456
                        list_add(&link->cgrp_link_list, &cgrp->css_sets);
457
                        link->cg = res;
458
                        list_add(&link->cg_link_list, &res->cg_links);
459
                }
460
        }
461
        if (list_empty(&rootnode.subsys_list)) {
462
                link = list_entry(tmp_cg_links.next,
463
                                  struct cg_cgroup_link,
464
                                  cgrp_link_list);
465
                list_del(&link->cgrp_link_list);
466
                list_add(&link->cgrp_link_list, &dummytop->css_sets);
467
                link->cg = res;
468
                list_add(&link->cg_link_list, &res->cg_links);
469
        }
470
 
471
        BUG_ON(!list_empty(&tmp_cg_links));
472
 
473
        /* Link this cgroup group into the list */
474
        list_add(&res->list, &init_css_set.list);
475
        css_set_count++;
476
        INIT_LIST_HEAD(&res->tasks);
477
        write_unlock(&css_set_lock);
478
 
479
        return res;
480
}
481
 
482
/*
483
 * There is one global cgroup mutex. We also require taking
484
 * task_lock() when dereferencing a task's cgroup subsys pointers.
485
 * See "The task_lock() exception", at the end of this comment.
486
 *
487
 * A task must hold cgroup_mutex to modify cgroups.
488
 *
489
 * Any task can increment and decrement the count field without lock.
490
 * So in general, code holding cgroup_mutex can't rely on the count
491
 * field not changing.  However, if the count goes to zero, then only
492
 * attach_task() can increment it again.  Because a count of zero
493
 * means that no tasks are currently attached, therefore there is no
494
 * way a task attached to that cgroup can fork (the other way to
495
 * increment the count).  So code holding cgroup_mutex can safely
496
 * assume that if the count is zero, it will stay zero. Similarly, if
497
 * a task holds cgroup_mutex on a cgroup with zero count, it
498
 * knows that the cgroup won't be removed, as cgroup_rmdir()
499
 * needs that mutex.
500
 *
501
 * The cgroup_common_file_write handler for operations that modify
502
 * the cgroup hierarchy holds cgroup_mutex across the entire operation,
503
 * single threading all such cgroup modifications across the system.
504
 *
505
 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
506
 * (usually) take cgroup_mutex.  These are the two most performance
507
 * critical pieces of code here.  The exception occurs on cgroup_exit(),
508
 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
509
 * is taken, and if the cgroup count is zero, a usermode call made
510
 * to /sbin/cgroup_release_agent with the name of the cgroup (path
511
 * relative to the root of cgroup file system) as the argument.
512
 *
513
 * A cgroup can only be deleted if both its 'count' of using tasks
514
 * is zero, and its list of 'children' cgroups is empty.  Since all
515
 * tasks in the system use _some_ cgroup, and since there is always at
516
 * least one task in the system (init, pid == 1), therefore, top_cgroup
517
 * always has either children cgroups and/or using tasks.  So we don't
518
 * need a special hack to ensure that top_cgroup cannot be deleted.
519
 *
520
 *      The task_lock() exception
521
 *
522
 * The need for this exception arises from the action of
523
 * attach_task(), which overwrites one tasks cgroup pointer with
524
 * another.  It does so using cgroup_mutexe, however there are
525
 * several performance critical places that need to reference
526
 * task->cgroup without the expense of grabbing a system global
527
 * mutex.  Therefore except as noted below, when dereferencing or, as
528
 * in attach_task(), modifying a task'ss cgroup pointer we use
529
 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
530
 * the task_struct routinely used for such matters.
531
 *
532
 * P.S.  One more locking exception.  RCU is used to guard the
533
 * update of a tasks cgroup pointer by attach_task()
534
 */
535
 
536
/**
537
 * cgroup_lock - lock out any changes to cgroup structures
538
 *
539
 */
540
 
541
void cgroup_lock(void)
542
{
543
        mutex_lock(&cgroup_mutex);
544
}
545
 
546
/**
547
 * cgroup_unlock - release lock on cgroup changes
548
 *
549
 * Undo the lock taken in a previous cgroup_lock() call.
550
 */
551
 
552
void cgroup_unlock(void)
553
{
554
        mutex_unlock(&cgroup_mutex);
555
}
556
 
557
/*
558
 * A couple of forward declarations required, due to cyclic reference loop:
559
 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
560
 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
561
 * -> cgroup_mkdir.
562
 */
563
 
564
static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
565
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
566
static int cgroup_populate_dir(struct cgroup *cgrp);
567
static struct inode_operations cgroup_dir_inode_operations;
568
static struct file_operations proc_cgroupstats_operations;
569
 
570
static struct backing_dev_info cgroup_backing_dev_info = {
571
        .capabilities   = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
572
};
573
 
574
static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
575
{
576
        struct inode *inode = new_inode(sb);
577
 
578
        if (inode) {
579
                inode->i_mode = mode;
580
                inode->i_uid = current->fsuid;
581
                inode->i_gid = current->fsgid;
582
                inode->i_blocks = 0;
583
                inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
584
                inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
585
        }
586
        return inode;
587
}
588
 
589
static void cgroup_diput(struct dentry *dentry, struct inode *inode)
590
{
591
        /* is dentry a directory ? if so, kfree() associated cgroup */
592
        if (S_ISDIR(inode->i_mode)) {
593
                struct cgroup *cgrp = dentry->d_fsdata;
594
                BUG_ON(!(cgroup_is_removed(cgrp)));
595
                /* It's possible for external users to be holding css
596
                 * reference counts on a cgroup; css_put() needs to
597
                 * be able to access the cgroup after decrementing
598
                 * the reference count in order to know if it needs to
599
                 * queue the cgroup to be handled by the release
600
                 * agent */
601
                synchronize_rcu();
602
                kfree(cgrp);
603
        }
604
        iput(inode);
605
}
606
 
607
static void remove_dir(struct dentry *d)
608
{
609
        struct dentry *parent = dget(d->d_parent);
610
 
611
        d_delete(d);
612
        simple_rmdir(parent->d_inode, d);
613
        dput(parent);
614
}
615
 
616
static void cgroup_clear_directory(struct dentry *dentry)
617
{
618
        struct list_head *node;
619
 
620
        BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
621
        spin_lock(&dcache_lock);
622
        node = dentry->d_subdirs.next;
623
        while (node != &dentry->d_subdirs) {
624
                struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
625
                list_del_init(node);
626
                if (d->d_inode) {
627
                        /* This should never be called on a cgroup
628
                         * directory with child cgroups */
629
                        BUG_ON(d->d_inode->i_mode & S_IFDIR);
630
                        d = dget_locked(d);
631
                        spin_unlock(&dcache_lock);
632
                        d_delete(d);
633
                        simple_unlink(dentry->d_inode, d);
634
                        dput(d);
635
                        spin_lock(&dcache_lock);
636
                }
637
                node = dentry->d_subdirs.next;
638
        }
639
        spin_unlock(&dcache_lock);
640
}
641
 
642
/*
643
 * NOTE : the dentry must have been dget()'ed
644
 */
645
static void cgroup_d_remove_dir(struct dentry *dentry)
646
{
647
        cgroup_clear_directory(dentry);
648
 
649
        spin_lock(&dcache_lock);
650
        list_del_init(&dentry->d_u.d_child);
651
        spin_unlock(&dcache_lock);
652
        remove_dir(dentry);
653
}
654
 
655
static int rebind_subsystems(struct cgroupfs_root *root,
656
                              unsigned long final_bits)
657
{
658
        unsigned long added_bits, removed_bits;
659
        struct cgroup *cgrp = &root->top_cgroup;
660
        int i;
661
 
662
        removed_bits = root->actual_subsys_bits & ~final_bits;
663
        added_bits = final_bits & ~root->actual_subsys_bits;
664
        /* Check that any added subsystems are currently free */
665
        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
666
                unsigned long long bit = 1ull << i;
667
                struct cgroup_subsys *ss = subsys[i];
668
                if (!(bit & added_bits))
669
                        continue;
670
                if (ss->root != &rootnode) {
671
                        /* Subsystem isn't free */
672
                        return -EBUSY;
673
                }
674
        }
675
 
676
        /* Currently we don't handle adding/removing subsystems when
677
         * any child cgroups exist. This is theoretically supportable
678
         * but involves complex error handling, so it's being left until
679
         * later */
680
        if (!list_empty(&cgrp->children))
681
                return -EBUSY;
682
 
683
        /* Process each subsystem */
684
        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
685
                struct cgroup_subsys *ss = subsys[i];
686
                unsigned long bit = 1UL << i;
687
                if (bit & added_bits) {
688
                        /* We're binding this subsystem to this hierarchy */
689
                        BUG_ON(cgrp->subsys[i]);
690
                        BUG_ON(!dummytop->subsys[i]);
691
                        BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
692
                        cgrp->subsys[i] = dummytop->subsys[i];
693
                        cgrp->subsys[i]->cgroup = cgrp;
694
                        list_add(&ss->sibling, &root->subsys_list);
695
                        rcu_assign_pointer(ss->root, root);
696
                        if (ss->bind)
697
                                ss->bind(ss, cgrp);
698
 
699
                } else if (bit & removed_bits) {
700
                        /* We're removing this subsystem */
701
                        BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
702
                        BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
703
                        if (ss->bind)
704
                                ss->bind(ss, dummytop);
705
                        dummytop->subsys[i]->cgroup = dummytop;
706
                        cgrp->subsys[i] = NULL;
707
                        rcu_assign_pointer(subsys[i]->root, &rootnode);
708
                        list_del(&ss->sibling);
709
                } else if (bit & final_bits) {
710
                        /* Subsystem state should already exist */
711
                        BUG_ON(!cgrp->subsys[i]);
712
                } else {
713
                        /* Subsystem state shouldn't exist */
714
                        BUG_ON(cgrp->subsys[i]);
715
                }
716
        }
717
        root->subsys_bits = root->actual_subsys_bits = final_bits;
718
        synchronize_rcu();
719
 
720
        return 0;
721
}
722
 
723
static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
724
{
725
        struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
726
        struct cgroup_subsys *ss;
727
 
728
        mutex_lock(&cgroup_mutex);
729
        for_each_subsys(root, ss)
730
                seq_printf(seq, ",%s", ss->name);
731
        if (test_bit(ROOT_NOPREFIX, &root->flags))
732
                seq_puts(seq, ",noprefix");
733
        if (strlen(root->release_agent_path))
734
                seq_printf(seq, ",release_agent=%s", root->release_agent_path);
735
        mutex_unlock(&cgroup_mutex);
736
        return 0;
737
}
738
 
739
struct cgroup_sb_opts {
740
        unsigned long subsys_bits;
741
        unsigned long flags;
742
        char *release_agent;
743
};
744
 
745
/* Convert a hierarchy specifier into a bitmask of subsystems and
746
 * flags. */
747
static int parse_cgroupfs_options(char *data,
748
                                     struct cgroup_sb_opts *opts)
749
{
750
        char *token, *o = data ?: "all";
751
 
752
        opts->subsys_bits = 0;
753
        opts->flags = 0;
754
        opts->release_agent = NULL;
755
 
756
        while ((token = strsep(&o, ",")) != NULL) {
757
                if (!*token)
758
                        return -EINVAL;
759
                if (!strcmp(token, "all")) {
760
                        opts->subsys_bits = (1 << CGROUP_SUBSYS_COUNT) - 1;
761
                } else if (!strcmp(token, "noprefix")) {
762
                        set_bit(ROOT_NOPREFIX, &opts->flags);
763
                } else if (!strncmp(token, "release_agent=", 14)) {
764
                        /* Specifying two release agents is forbidden */
765
                        if (opts->release_agent)
766
                                return -EINVAL;
767
                        opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
768
                        if (!opts->release_agent)
769
                                return -ENOMEM;
770
                        strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
771
                        opts->release_agent[PATH_MAX - 1] = 0;
772
                } else {
773
                        struct cgroup_subsys *ss;
774
                        int i;
775
                        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
776
                                ss = subsys[i];
777
                                if (!strcmp(token, ss->name)) {
778
                                        set_bit(i, &opts->subsys_bits);
779
                                        break;
780
                                }
781
                        }
782
                        if (i == CGROUP_SUBSYS_COUNT)
783
                                return -ENOENT;
784
                }
785
        }
786
 
787
        /* We can't have an empty hierarchy */
788
        if (!opts->subsys_bits)
789
                return -EINVAL;
790
 
791
        return 0;
792
}
793
 
794
static int cgroup_remount(struct super_block *sb, int *flags, char *data)
795
{
796
        int ret = 0;
797
        struct cgroupfs_root *root = sb->s_fs_info;
798
        struct cgroup *cgrp = &root->top_cgroup;
799
        struct cgroup_sb_opts opts;
800
 
801
        mutex_lock(&cgrp->dentry->d_inode->i_mutex);
802
        mutex_lock(&cgroup_mutex);
803
 
804
        /* See what subsystems are wanted */
805
        ret = parse_cgroupfs_options(data, &opts);
806
        if (ret)
807
                goto out_unlock;
808
 
809
        /* Don't allow flags to change at remount */
810
        if (opts.flags != root->flags) {
811
                ret = -EINVAL;
812
                goto out_unlock;
813
        }
814
 
815
        ret = rebind_subsystems(root, opts.subsys_bits);
816
 
817
        /* (re)populate subsystem files */
818
        if (!ret)
819
                cgroup_populate_dir(cgrp);
820
 
821
        if (opts.release_agent)
822
                strcpy(root->release_agent_path, opts.release_agent);
823
 out_unlock:
824
        if (opts.release_agent)
825
                kfree(opts.release_agent);
826
        mutex_unlock(&cgroup_mutex);
827
        mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
828
        return ret;
829
}
830
 
831
static struct super_operations cgroup_ops = {
832
        .statfs = simple_statfs,
833
        .drop_inode = generic_delete_inode,
834
        .show_options = cgroup_show_options,
835
        .remount_fs = cgroup_remount,
836
};
837
 
838
static void init_cgroup_root(struct cgroupfs_root *root)
839
{
840
        struct cgroup *cgrp = &root->top_cgroup;
841
        INIT_LIST_HEAD(&root->subsys_list);
842
        INIT_LIST_HEAD(&root->root_list);
843
        root->number_of_cgroups = 1;
844
        cgrp->root = root;
845
        cgrp->top_cgroup = cgrp;
846
        INIT_LIST_HEAD(&cgrp->sibling);
847
        INIT_LIST_HEAD(&cgrp->children);
848
        INIT_LIST_HEAD(&cgrp->css_sets);
849
        INIT_LIST_HEAD(&cgrp->release_list);
850
}
851
 
852
static int cgroup_test_super(struct super_block *sb, void *data)
853
{
854
        struct cgroupfs_root *new = data;
855
        struct cgroupfs_root *root = sb->s_fs_info;
856
 
857
        /* First check subsystems */
858
        if (new->subsys_bits != root->subsys_bits)
859
            return 0;
860
 
861
        /* Next check flags */
862
        if (new->flags != root->flags)
863
                return 0;
864
 
865
        return 1;
866
}
867
 
868
static int cgroup_set_super(struct super_block *sb, void *data)
869
{
870
        int ret;
871
        struct cgroupfs_root *root = data;
872
 
873
        ret = set_anon_super(sb, NULL);
874
        if (ret)
875
                return ret;
876
 
877
        sb->s_fs_info = root;
878
        root->sb = sb;
879
 
880
        sb->s_blocksize = PAGE_CACHE_SIZE;
881
        sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
882
        sb->s_magic = CGROUP_SUPER_MAGIC;
883
        sb->s_op = &cgroup_ops;
884
 
885
        return 0;
886
}
887
 
888
static int cgroup_get_rootdir(struct super_block *sb)
889
{
890
        struct inode *inode =
891
                cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
892
        struct dentry *dentry;
893
 
894
        if (!inode)
895
                return -ENOMEM;
896
 
897
        inode->i_op = &simple_dir_inode_operations;
898
        inode->i_fop = &simple_dir_operations;
899
        inode->i_op = &cgroup_dir_inode_operations;
900
        /* directories start off with i_nlink == 2 (for "." entry) */
901
        inc_nlink(inode);
902
        dentry = d_alloc_root(inode);
903
        if (!dentry) {
904
                iput(inode);
905
                return -ENOMEM;
906
        }
907
        sb->s_root = dentry;
908
        return 0;
909
}
910
 
911
static int cgroup_get_sb(struct file_system_type *fs_type,
912
                         int flags, const char *unused_dev_name,
913
                         void *data, struct vfsmount *mnt)
914
{
915
        struct cgroup_sb_opts opts;
916
        int ret = 0;
917
        struct super_block *sb;
918
        struct cgroupfs_root *root;
919
        struct list_head tmp_cg_links, *l;
920
        INIT_LIST_HEAD(&tmp_cg_links);
921
 
922
        /* First find the desired set of subsystems */
923
        ret = parse_cgroupfs_options(data, &opts);
924
        if (ret) {
925
                if (opts.release_agent)
926
                        kfree(opts.release_agent);
927
                return ret;
928
        }
929
 
930
        root = kzalloc(sizeof(*root), GFP_KERNEL);
931
        if (!root)
932
                return -ENOMEM;
933
 
934
        init_cgroup_root(root);
935
        root->subsys_bits = opts.subsys_bits;
936
        root->flags = opts.flags;
937
        if (opts.release_agent) {
938
                strcpy(root->release_agent_path, opts.release_agent);
939
                kfree(opts.release_agent);
940
        }
941
 
942
        sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);
943
 
944
        if (IS_ERR(sb)) {
945
                kfree(root);
946
                return PTR_ERR(sb);
947
        }
948
 
949
        if (sb->s_fs_info != root) {
950
                /* Reusing an existing superblock */
951
                BUG_ON(sb->s_root == NULL);
952
                kfree(root);
953
                root = NULL;
954
        } else {
955
                /* New superblock */
956
                struct cgroup *cgrp = &root->top_cgroup;
957
                struct inode *inode;
958
 
959
                BUG_ON(sb->s_root != NULL);
960
 
961
                ret = cgroup_get_rootdir(sb);
962
                if (ret)
963
                        goto drop_new_super;
964
                inode = sb->s_root->d_inode;
965
 
966
                mutex_lock(&inode->i_mutex);
967
                mutex_lock(&cgroup_mutex);
968
 
969
                /*
970
                 * We're accessing css_set_count without locking
971
                 * css_set_lock here, but that's OK - it can only be
972
                 * increased by someone holding cgroup_lock, and
973
                 * that's us. The worst that can happen is that we
974
                 * have some link structures left over
975
                 */
976
                ret = allocate_cg_links(css_set_count, &tmp_cg_links);
977
                if (ret) {
978
                        mutex_unlock(&cgroup_mutex);
979
                        mutex_unlock(&inode->i_mutex);
980
                        goto drop_new_super;
981
                }
982
 
983
                ret = rebind_subsystems(root, root->subsys_bits);
984
                if (ret == -EBUSY) {
985
                        mutex_unlock(&cgroup_mutex);
986
                        mutex_unlock(&inode->i_mutex);
987
                        goto drop_new_super;
988
                }
989
 
990
                /* EBUSY should be the only error here */
991
                BUG_ON(ret);
992
 
993
                list_add(&root->root_list, &roots);
994
                root_count++;
995
 
996
                sb->s_root->d_fsdata = &root->top_cgroup;
997
                root->top_cgroup.dentry = sb->s_root;
998
 
999
                /* Link the top cgroup in this hierarchy into all
1000
                 * the css_set objects */
1001
                write_lock(&css_set_lock);
1002
                l = &init_css_set.list;
1003
                do {
1004
                        struct css_set *cg;
1005
                        struct cg_cgroup_link *link;
1006
                        cg = list_entry(l, struct css_set, list);
1007
                        BUG_ON(list_empty(&tmp_cg_links));
1008
                        link = list_entry(tmp_cg_links.next,
1009
                                          struct cg_cgroup_link,
1010
                                          cgrp_link_list);
1011
                        list_del(&link->cgrp_link_list);
1012
                        link->cg = cg;
1013
                        list_add(&link->cgrp_link_list,
1014
                                 &root->top_cgroup.css_sets);
1015
                        list_add(&link->cg_link_list, &cg->cg_links);
1016
                        l = l->next;
1017
                } while (l != &init_css_set.list);
1018
                write_unlock(&css_set_lock);
1019
 
1020
                free_cg_links(&tmp_cg_links);
1021
 
1022
                BUG_ON(!list_empty(&cgrp->sibling));
1023
                BUG_ON(!list_empty(&cgrp->children));
1024
                BUG_ON(root->number_of_cgroups != 1);
1025
 
1026
                cgroup_populate_dir(cgrp);
1027
                mutex_unlock(&inode->i_mutex);
1028
                mutex_unlock(&cgroup_mutex);
1029
        }
1030
 
1031
        return simple_set_mnt(mnt, sb);
1032
 
1033
 drop_new_super:
1034
        up_write(&sb->s_umount);
1035
        deactivate_super(sb);
1036
        free_cg_links(&tmp_cg_links);
1037
        return ret;
1038
}
1039
 
1040
static void cgroup_kill_sb(struct super_block *sb) {
1041
        struct cgroupfs_root *root = sb->s_fs_info;
1042
        struct cgroup *cgrp = &root->top_cgroup;
1043
        int ret;
1044
 
1045
        BUG_ON(!root);
1046
 
1047
        BUG_ON(root->number_of_cgroups != 1);
1048
        BUG_ON(!list_empty(&cgrp->children));
1049
        BUG_ON(!list_empty(&cgrp->sibling));
1050
 
1051
        mutex_lock(&cgroup_mutex);
1052
 
1053
        /* Rebind all subsystems back to the default hierarchy */
1054
        ret = rebind_subsystems(root, 0);
1055
        /* Shouldn't be able to fail ... */
1056
        BUG_ON(ret);
1057
 
1058
        /*
1059
         * Release all the links from css_sets to this hierarchy's
1060
         * root cgroup
1061
         */
1062
        write_lock(&css_set_lock);
1063
        while (!list_empty(&cgrp->css_sets)) {
1064
                struct cg_cgroup_link *link;
1065
                link = list_entry(cgrp->css_sets.next,
1066
                                  struct cg_cgroup_link, cgrp_link_list);
1067
                list_del(&link->cg_link_list);
1068
                list_del(&link->cgrp_link_list);
1069
                kfree(link);
1070
        }
1071
        write_unlock(&css_set_lock);
1072
 
1073
        if (!list_empty(&root->root_list)) {
1074
                list_del(&root->root_list);
1075
                root_count--;
1076
        }
1077
        mutex_unlock(&cgroup_mutex);
1078
 
1079
        kfree(root);
1080
        kill_litter_super(sb);
1081
}
1082
 
1083
static struct file_system_type cgroup_fs_type = {
1084
        .name = "cgroup",
1085
        .get_sb = cgroup_get_sb,
1086
        .kill_sb = cgroup_kill_sb,
1087
};
1088
 
1089
static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1090
{
1091
        return dentry->d_fsdata;
1092
}
1093
 
1094
static inline struct cftype *__d_cft(struct dentry *dentry)
1095
{
1096
        return dentry->d_fsdata;
1097
}
1098
 
1099
/*
1100
 * Called with cgroup_mutex held.  Writes path of cgroup into buf.
1101
 * Returns 0 on success, -errno on error.
1102
 */
1103
int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1104
{
1105
        char *start;
1106
 
1107
        if (cgrp == dummytop) {
1108
                /*
1109
                 * Inactive subsystems have no dentry for their root
1110
                 * cgroup
1111
                 */
1112
                strcpy(buf, "/");
1113
                return 0;
1114
        }
1115
 
1116
        start = buf + buflen;
1117
 
1118
        *--start = '\0';
1119
        for (;;) {
1120
                int len = cgrp->dentry->d_name.len;
1121
                if ((start -= len) < buf)
1122
                        return -ENAMETOOLONG;
1123
                memcpy(start, cgrp->dentry->d_name.name, len);
1124
                cgrp = cgrp->parent;
1125
                if (!cgrp)
1126
                        break;
1127
                if (!cgrp->parent)
1128
                        continue;
1129
                if (--start < buf)
1130
                        return -ENAMETOOLONG;
1131
                *start = '/';
1132
        }
1133
        memmove(buf, start, buf + buflen - start);
1134
        return 0;
1135
}
1136
 
1137
/*
1138
 * Return the first subsystem attached to a cgroup's hierarchy, and
1139
 * its subsystem id.
1140
 */
1141
 
1142
static void get_first_subsys(const struct cgroup *cgrp,
1143
                        struct cgroup_subsys_state **css, int *subsys_id)
1144
{
1145
        const struct cgroupfs_root *root = cgrp->root;
1146
        const struct cgroup_subsys *test_ss;
1147
        BUG_ON(list_empty(&root->subsys_list));
1148
        test_ss = list_entry(root->subsys_list.next,
1149
                             struct cgroup_subsys, sibling);
1150
        if (css) {
1151
                *css = cgrp->subsys[test_ss->subsys_id];
1152
                BUG_ON(!*css);
1153
        }
1154
        if (subsys_id)
1155
                *subsys_id = test_ss->subsys_id;
1156
}
1157
 
1158
/*
1159
 * Attach task 'tsk' to cgroup 'cgrp'
1160
 *
1161
 * Call holding cgroup_mutex.  May take task_lock of
1162
 * the task 'pid' during call.
1163
 */
1164
static int attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1165
{
1166
        int retval = 0;
1167
        struct cgroup_subsys *ss;
1168
        struct cgroup *oldcgrp;
1169
        struct css_set *cg = tsk->cgroups;
1170
        struct css_set *newcg;
1171
        struct cgroupfs_root *root = cgrp->root;
1172
        int subsys_id;
1173
 
1174
        get_first_subsys(cgrp, NULL, &subsys_id);
1175
 
1176
        /* Nothing to do if the task is already in that cgroup */
1177
        oldcgrp = task_cgroup(tsk, subsys_id);
1178
        if (cgrp == oldcgrp)
1179
                return 0;
1180
 
1181
        for_each_subsys(root, ss) {
1182
                if (ss->can_attach) {
1183
                        retval = ss->can_attach(ss, cgrp, tsk);
1184
                        if (retval) {
1185
                                return retval;
1186
                        }
1187
                }
1188
        }
1189
 
1190
        /*
1191
         * Locate or allocate a new css_set for this task,
1192
         * based on its final set of cgroups
1193
         */
1194
        newcg = find_css_set(cg, cgrp);
1195
        if (!newcg) {
1196
                return -ENOMEM;
1197
        }
1198
 
1199
        task_lock(tsk);
1200
        if (tsk->flags & PF_EXITING) {
1201
                task_unlock(tsk);
1202
                put_css_set(newcg);
1203
                return -ESRCH;
1204
        }
1205
        rcu_assign_pointer(tsk->cgroups, newcg);
1206
        task_unlock(tsk);
1207
 
1208
        /* Update the css_set linked lists if we're using them */
1209
        write_lock(&css_set_lock);
1210
        if (!list_empty(&tsk->cg_list)) {
1211
                list_del(&tsk->cg_list);
1212
                list_add(&tsk->cg_list, &newcg->tasks);
1213
        }
1214
        write_unlock(&css_set_lock);
1215
 
1216
        for_each_subsys(root, ss) {
1217
                if (ss->attach) {
1218
                        ss->attach(ss, cgrp, oldcgrp, tsk);
1219
                }
1220
        }
1221
        set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1222
        synchronize_rcu();
1223
        put_css_set(cg);
1224
        return 0;
1225
}
1226
 
1227
/*
1228
 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with
1229
 * cgroup_mutex, may take task_lock of task
1230
 */
1231
static int attach_task_by_pid(struct cgroup *cgrp, char *pidbuf)
1232
{
1233
        pid_t pid;
1234
        struct task_struct *tsk;
1235
        int ret;
1236
 
1237
        if (sscanf(pidbuf, "%d", &pid) != 1)
1238
                return -EIO;
1239
 
1240
        if (pid) {
1241
                rcu_read_lock();
1242
                tsk = find_task_by_pid(pid);
1243
                if (!tsk || tsk->flags & PF_EXITING) {
1244
                        rcu_read_unlock();
1245
                        return -ESRCH;
1246
                }
1247
                get_task_struct(tsk);
1248
                rcu_read_unlock();
1249
 
1250
                if ((current->euid) && (current->euid != tsk->uid)
1251
                    && (current->euid != tsk->suid)) {
1252
                        put_task_struct(tsk);
1253
                        return -EACCES;
1254
                }
1255
        } else {
1256
                tsk = current;
1257
                get_task_struct(tsk);
1258
        }
1259
 
1260
        ret = attach_task(cgrp, tsk);
1261
        put_task_struct(tsk);
1262
        return ret;
1263
}
1264
 
1265
/* The various types of files and directories in a cgroup file system */
1266
 
1267
enum cgroup_filetype {
1268
        FILE_ROOT,
1269
        FILE_DIR,
1270
        FILE_TASKLIST,
1271
        FILE_NOTIFY_ON_RELEASE,
1272
        FILE_RELEASABLE,
1273
        FILE_RELEASE_AGENT,
1274
};
1275
 
1276
static ssize_t cgroup_write_uint(struct cgroup *cgrp, struct cftype *cft,
1277
                                 struct file *file,
1278
                                 const char __user *userbuf,
1279
                                 size_t nbytes, loff_t *unused_ppos)
1280
{
1281
        char buffer[64];
1282
        int retval = 0;
1283
        u64 val;
1284
        char *end;
1285
 
1286
        if (!nbytes)
1287
                return -EINVAL;
1288
        if (nbytes >= sizeof(buffer))
1289
                return -E2BIG;
1290
        if (copy_from_user(buffer, userbuf, nbytes))
1291
                return -EFAULT;
1292
 
1293
        buffer[nbytes] = 0;     /* nul-terminate */
1294
 
1295
        /* strip newline if necessary */
1296
        if (nbytes && (buffer[nbytes-1] == '\n'))
1297
                buffer[nbytes-1] = 0;
1298
        val = simple_strtoull(buffer, &end, 0);
1299
        if (*end)
1300
                return -EINVAL;
1301
 
1302
        /* Pass to subsystem */
1303
        retval = cft->write_uint(cgrp, cft, val);
1304
        if (!retval)
1305
                retval = nbytes;
1306
        return retval;
1307
}
1308
 
1309
static ssize_t cgroup_common_file_write(struct cgroup *cgrp,
1310
                                           struct cftype *cft,
1311
                                           struct file *file,
1312
                                           const char __user *userbuf,
1313
                                           size_t nbytes, loff_t *unused_ppos)
1314
{
1315
        enum cgroup_filetype type = cft->private;
1316
        char *buffer;
1317
        int retval = 0;
1318
 
1319
        if (nbytes >= PATH_MAX)
1320
                return -E2BIG;
1321
 
1322
        /* +1 for nul-terminator */
1323
        buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1324
        if (buffer == NULL)
1325
                return -ENOMEM;
1326
 
1327
        if (copy_from_user(buffer, userbuf, nbytes)) {
1328
                retval = -EFAULT;
1329
                goto out1;
1330
        }
1331
        buffer[nbytes] = 0;      /* nul-terminate */
1332
 
1333
        mutex_lock(&cgroup_mutex);
1334
 
1335
        if (cgroup_is_removed(cgrp)) {
1336
                retval = -ENODEV;
1337
                goto out2;
1338
        }
1339
 
1340
        switch (type) {
1341
        case FILE_TASKLIST:
1342
                retval = attach_task_by_pid(cgrp, buffer);
1343
                break;
1344
        case FILE_NOTIFY_ON_RELEASE:
1345
                clear_bit(CGRP_RELEASABLE, &cgrp->flags);
1346
                if (simple_strtoul(buffer, NULL, 10) != 0)
1347
                        set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
1348
                else
1349
                        clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
1350
                break;
1351
        case FILE_RELEASE_AGENT:
1352
        {
1353
                struct cgroupfs_root *root = cgrp->root;
1354
                /* Strip trailing newline */
1355
                if (nbytes && (buffer[nbytes-1] == '\n')) {
1356
                        buffer[nbytes-1] = 0;
1357
                }
1358
                if (nbytes < sizeof(root->release_agent_path)) {
1359
                        /* We never write anything other than '\0'
1360
                         * into the last char of release_agent_path,
1361
                         * so it always remains a NUL-terminated
1362
                         * string */
1363
                        strncpy(root->release_agent_path, buffer, nbytes);
1364
                        root->release_agent_path[nbytes] = 0;
1365
                } else {
1366
                        retval = -ENOSPC;
1367
                }
1368
                break;
1369
        }
1370
        default:
1371
                retval = -EINVAL;
1372
                goto out2;
1373
        }
1374
 
1375
        if (retval == 0)
1376
                retval = nbytes;
1377
out2:
1378
        mutex_unlock(&cgroup_mutex);
1379
out1:
1380
        kfree(buffer);
1381
        return retval;
1382
}
1383
 
1384
static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
1385
                                                size_t nbytes, loff_t *ppos)
1386
{
1387
        struct cftype *cft = __d_cft(file->f_dentry);
1388
        struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1389
 
1390
        if (!cft)
1391
                return -ENODEV;
1392
        if (cft->write)
1393
                return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1394
        if (cft->write_uint)
1395
                return cgroup_write_uint(cgrp, cft, file, buf, nbytes, ppos);
1396
        return -EINVAL;
1397
}
1398
 
1399
static ssize_t cgroup_read_uint(struct cgroup *cgrp, struct cftype *cft,
1400
                                   struct file *file,
1401
                                   char __user *buf, size_t nbytes,
1402
                                   loff_t *ppos)
1403
{
1404
        char tmp[64];
1405
        u64 val = cft->read_uint(cgrp, cft);
1406
        int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
1407
 
1408
        return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1409
}
1410
 
1411
static ssize_t cgroup_common_file_read(struct cgroup *cgrp,
1412
                                          struct cftype *cft,
1413
                                          struct file *file,
1414
                                          char __user *buf,
1415
                                          size_t nbytes, loff_t *ppos)
1416
{
1417
        enum cgroup_filetype type = cft->private;
1418
        char *page;
1419
        ssize_t retval = 0;
1420
        char *s;
1421
 
1422
        if (!(page = (char *)__get_free_page(GFP_KERNEL)))
1423
                return -ENOMEM;
1424
 
1425
        s = page;
1426
 
1427
        switch (type) {
1428
        case FILE_RELEASE_AGENT:
1429
        {
1430
                struct cgroupfs_root *root;
1431
                size_t n;
1432
                mutex_lock(&cgroup_mutex);
1433
                root = cgrp->root;
1434
                n = strnlen(root->release_agent_path,
1435
                            sizeof(root->release_agent_path));
1436
                n = min(n, (size_t) PAGE_SIZE);
1437
                strncpy(s, root->release_agent_path, n);
1438
                mutex_unlock(&cgroup_mutex);
1439
                s += n;
1440
                break;
1441
        }
1442
        default:
1443
                retval = -EINVAL;
1444
                goto out;
1445
        }
1446
        *s++ = '\n';
1447
 
1448
        retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1449
out:
1450
        free_page((unsigned long)page);
1451
        return retval;
1452
}
1453
 
1454
static ssize_t cgroup_file_read(struct file *file, char __user *buf,
1455
                                   size_t nbytes, loff_t *ppos)
1456
{
1457
        struct cftype *cft = __d_cft(file->f_dentry);
1458
        struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1459
 
1460
        if (!cft)
1461
                return -ENODEV;
1462
 
1463
        if (cft->read)
1464
                return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1465
        if (cft->read_uint)
1466
                return cgroup_read_uint(cgrp, cft, file, buf, nbytes, ppos);
1467
        return -EINVAL;
1468
}
1469
 
1470
static int cgroup_file_open(struct inode *inode, struct file *file)
1471
{
1472
        int err;
1473
        struct cftype *cft;
1474
 
1475
        err = generic_file_open(inode, file);
1476
        if (err)
1477
                return err;
1478
 
1479
        cft = __d_cft(file->f_dentry);
1480
        if (!cft)
1481
                return -ENODEV;
1482
        if (cft->open)
1483
                err = cft->open(inode, file);
1484
        else
1485
                err = 0;
1486
 
1487
        return err;
1488
}
1489
 
1490
static int cgroup_file_release(struct inode *inode, struct file *file)
1491
{
1492
        struct cftype *cft = __d_cft(file->f_dentry);
1493
        if (cft->release)
1494
                return cft->release(inode, file);
1495
        return 0;
1496
}
1497
 
1498
/*
1499
 * cgroup_rename - Only allow simple rename of directories in place.
1500
 */
1501
static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
1502
                            struct inode *new_dir, struct dentry *new_dentry)
1503
{
1504
        if (!S_ISDIR(old_dentry->d_inode->i_mode))
1505
                return -ENOTDIR;
1506
        if (new_dentry->d_inode)
1507
                return -EEXIST;
1508
        if (old_dir != new_dir)
1509
                return -EIO;
1510
        return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1511
}
1512
 
1513
static struct file_operations cgroup_file_operations = {
1514
        .read = cgroup_file_read,
1515
        .write = cgroup_file_write,
1516
        .llseek = generic_file_llseek,
1517
        .open = cgroup_file_open,
1518
        .release = cgroup_file_release,
1519
};
1520
 
1521
static struct inode_operations cgroup_dir_inode_operations = {
1522
        .lookup = simple_lookup,
1523
        .mkdir = cgroup_mkdir,
1524
        .rmdir = cgroup_rmdir,
1525
        .rename = cgroup_rename,
1526
};
1527
 
1528
static int cgroup_create_file(struct dentry *dentry, int mode,
1529
                                struct super_block *sb)
1530
{
1531
        static struct dentry_operations cgroup_dops = {
1532
                .d_iput = cgroup_diput,
1533
        };
1534
 
1535
        struct inode *inode;
1536
 
1537
        if (!dentry)
1538
                return -ENOENT;
1539
        if (dentry->d_inode)
1540
                return -EEXIST;
1541
 
1542
        inode = cgroup_new_inode(mode, sb);
1543
        if (!inode)
1544
                return -ENOMEM;
1545
 
1546
        if (S_ISDIR(mode)) {
1547
                inode->i_op = &cgroup_dir_inode_operations;
1548
                inode->i_fop = &simple_dir_operations;
1549
 
1550
                /* start off with i_nlink == 2 (for "." entry) */
1551
                inc_nlink(inode);
1552
 
1553
                /* start with the directory inode held, so that we can
1554
                 * populate it without racing with another mkdir */
1555
                mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1556
        } else if (S_ISREG(mode)) {
1557
                inode->i_size = 0;
1558
                inode->i_fop = &cgroup_file_operations;
1559
        }
1560
        dentry->d_op = &cgroup_dops;
1561
        d_instantiate(dentry, inode);
1562
        dget(dentry);   /* Extra count - pin the dentry in core */
1563
        return 0;
1564
}
1565
 
1566
/*
1567
 *      cgroup_create_dir - create a directory for an object.
1568
 *      cgrp:   the cgroup we create the directory for.
1569
 *              It must have a valid ->parent field
1570
 *              And we are going to fill its ->dentry field.
1571
 *      dentry: dentry of the new cgroup
1572
 *      mode:   mode to set on new directory.
1573
 */
1574
static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
1575
                                int mode)
1576
{
1577
        struct dentry *parent;
1578
        int error = 0;
1579
 
1580
        parent = cgrp->parent->dentry;
1581
        error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1582
        if (!error) {
1583
                dentry->d_fsdata = cgrp;
1584
                inc_nlink(parent->d_inode);
1585
                cgrp->dentry = dentry;
1586
                dget(dentry);
1587
        }
1588
        dput(dentry);
1589
 
1590
        return error;
1591
}
1592
 
1593
int cgroup_add_file(struct cgroup *cgrp,
1594
                       struct cgroup_subsys *subsys,
1595
                       const struct cftype *cft)
1596
{
1597
        struct dentry *dir = cgrp->dentry;
1598
        struct dentry *dentry;
1599
        int error;
1600
 
1601
        char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
1602
        if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
1603
                strcpy(name, subsys->name);
1604
                strcat(name, ".");
1605
        }
1606
        strcat(name, cft->name);
1607
        BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
1608
        dentry = lookup_one_len(name, dir, strlen(name));
1609
        if (!IS_ERR(dentry)) {
1610
                error = cgroup_create_file(dentry, 0644 | S_IFREG,
1611
                                                cgrp->root->sb);
1612
                if (!error)
1613
                        dentry->d_fsdata = (void *)cft;
1614
                dput(dentry);
1615
        } else
1616
                error = PTR_ERR(dentry);
1617
        return error;
1618
}
1619
 
1620
int cgroup_add_files(struct cgroup *cgrp,
1621
                        struct cgroup_subsys *subsys,
1622
                        const struct cftype cft[],
1623
                        int count)
1624
{
1625
        int i, err;
1626
        for (i = 0; i < count; i++) {
1627
                err = cgroup_add_file(cgrp, subsys, &cft[i]);
1628
                if (err)
1629
                        return err;
1630
        }
1631
        return 0;
1632
}
1633
 
1634
/* Count the number of tasks in a cgroup. */
1635
 
1636
int cgroup_task_count(const struct cgroup *cgrp)
1637
{
1638
        int count = 0;
1639
        struct list_head *l;
1640
 
1641
        read_lock(&css_set_lock);
1642
        l = cgrp->css_sets.next;
1643
        while (l != &cgrp->css_sets) {
1644
                struct cg_cgroup_link *link =
1645
                        list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1646
                count += atomic_read(&link->cg->ref.refcount);
1647
                l = l->next;
1648
        }
1649
        read_unlock(&css_set_lock);
1650
        return count;
1651
}
1652
 
1653
/*
1654
 * Advance a list_head iterator.  The iterator should be positioned at
1655
 * the start of a css_set
1656
 */
1657
static void cgroup_advance_iter(struct cgroup *cgrp,
1658
                                          struct cgroup_iter *it)
1659
{
1660
        struct list_head *l = it->cg_link;
1661
        struct cg_cgroup_link *link;
1662
        struct css_set *cg;
1663
 
1664
        /* Advance to the next non-empty css_set */
1665
        do {
1666
                l = l->next;
1667
                if (l == &cgrp->css_sets) {
1668
                        it->cg_link = NULL;
1669
                        return;
1670
                }
1671
                link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1672
                cg = link->cg;
1673
        } while (list_empty(&cg->tasks));
1674
        it->cg_link = l;
1675
        it->task = cg->tasks.next;
1676
}
1677
 
1678
void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
1679
{
1680
        /*
1681
         * The first time anyone tries to iterate across a cgroup,
1682
         * we need to enable the list linking each css_set to its
1683
         * tasks, and fix up all existing tasks.
1684
         */
1685
        if (!use_task_css_set_links) {
1686
                struct task_struct *p, *g;
1687
                write_lock(&css_set_lock);
1688
                use_task_css_set_links = 1;
1689
                do_each_thread(g, p) {
1690
                        task_lock(p);
1691
                        if (list_empty(&p->cg_list))
1692
                                list_add(&p->cg_list, &p->cgroups->tasks);
1693
                        task_unlock(p);
1694
                } while_each_thread(g, p);
1695
                write_unlock(&css_set_lock);
1696
        }
1697
        read_lock(&css_set_lock);
1698
        it->cg_link = &cgrp->css_sets;
1699
        cgroup_advance_iter(cgrp, it);
1700
}
1701
 
1702
struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
1703
                                        struct cgroup_iter *it)
1704
{
1705
        struct task_struct *res;
1706
        struct list_head *l = it->task;
1707
 
1708
        /* If the iterator cg is NULL, we have no tasks */
1709
        if (!it->cg_link)
1710
                return NULL;
1711
        res = list_entry(l, struct task_struct, cg_list);
1712
        /* Advance iterator to find next entry */
1713
        l = l->next;
1714
        if (l == &res->cgroups->tasks) {
1715
                /* We reached the end of this task list - move on to
1716
                 * the next cg_cgroup_link */
1717
                cgroup_advance_iter(cgrp, it);
1718
        } else {
1719
                it->task = l;
1720
        }
1721
        return res;
1722
}
1723
 
1724
void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
1725
{
1726
        read_unlock(&css_set_lock);
1727
}
1728
 
1729
/*
1730
 * Stuff for reading the 'tasks' file.
1731
 *
1732
 * Reading this file can return large amounts of data if a cgroup has
1733
 * *lots* of attached tasks. So it may need several calls to read(),
1734
 * but we cannot guarantee that the information we produce is correct
1735
 * unless we produce it entirely atomically.
1736
 *
1737
 * Upon tasks file open(), a struct ctr_struct is allocated, that
1738
 * will have a pointer to an array (also allocated here).  The struct
1739
 * ctr_struct * is stored in file->private_data.  Its resources will
1740
 * be freed by release() when the file is closed.  The array is used
1741
 * to sprintf the PIDs and then used by read().
1742
 */
1743
struct ctr_struct {
1744
        char *buf;
1745
        int bufsz;
1746
};
1747
 
1748
/*
1749
 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
1750
 * 'cgrp'.  Return actual number of pids loaded.  No need to
1751
 * task_lock(p) when reading out p->cgroup, since we're in an RCU
1752
 * read section, so the css_set can't go away, and is
1753
 * immutable after creation.
1754
 */
1755
static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
1756
{
1757
        int n = 0;
1758
        struct cgroup_iter it;
1759
        struct task_struct *tsk;
1760
        cgroup_iter_start(cgrp, &it);
1761
        while ((tsk = cgroup_iter_next(cgrp, &it))) {
1762
                if (unlikely(n == npids))
1763
                        break;
1764
                pidarray[n++] = task_pid_nr(tsk);
1765
        }
1766
        cgroup_iter_end(cgrp, &it);
1767
        return n;
1768
}
1769
 
1770
/**
1771
 * Build and fill cgroupstats so that taskstats can export it to user
1772
 * space.
1773
 *
1774
 * @stats: cgroupstats to fill information into
1775
 * @dentry: A dentry entry belonging to the cgroup for which stats have
1776
 * been requested.
1777
 */
1778
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
1779
{
1780
        int ret = -EINVAL;
1781
        struct cgroup *cgrp;
1782
        struct cgroup_iter it;
1783
        struct task_struct *tsk;
1784
        /*
1785
         * Validate dentry by checking the superblock operations
1786
         */
1787
        if (dentry->d_sb->s_op != &cgroup_ops)
1788
                 goto err;
1789
 
1790
        ret = 0;
1791
        cgrp = dentry->d_fsdata;
1792
        rcu_read_lock();
1793
 
1794
        cgroup_iter_start(cgrp, &it);
1795
        while ((tsk = cgroup_iter_next(cgrp, &it))) {
1796
                switch (tsk->state) {
1797
                case TASK_RUNNING:
1798
                        stats->nr_running++;
1799
                        break;
1800
                case TASK_INTERRUPTIBLE:
1801
                        stats->nr_sleeping++;
1802
                        break;
1803
                case TASK_UNINTERRUPTIBLE:
1804
                        stats->nr_uninterruptible++;
1805
                        break;
1806
                case TASK_STOPPED:
1807
                        stats->nr_stopped++;
1808
                        break;
1809
                default:
1810
                        if (delayacct_is_task_waiting_on_io(tsk))
1811
                                stats->nr_io_wait++;
1812
                        break;
1813
                }
1814
        }
1815
        cgroup_iter_end(cgrp, &it);
1816
 
1817
        rcu_read_unlock();
1818
err:
1819
        return ret;
1820
}
1821
 
1822
static int cmppid(const void *a, const void *b)
1823
{
1824
        return *(pid_t *)a - *(pid_t *)b;
1825
}
1826
 
1827
/*
1828
 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
1829
 * decimal pids in 'buf'.  Don't write more than 'sz' chars, but return
1830
 * count 'cnt' of how many chars would be written if buf were large enough.
1831
 */
1832
static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
1833
{
1834
        int cnt = 0;
1835
        int i;
1836
 
1837
        for (i = 0; i < npids; i++)
1838
                cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
1839
        return cnt;
1840
}
1841
 
1842
/*
1843
 * Handle an open on 'tasks' file.  Prepare a buffer listing the
1844
 * process id's of tasks currently attached to the cgroup being opened.
1845
 *
1846
 * Does not require any specific cgroup mutexes, and does not take any.
1847
 */
1848
static int cgroup_tasks_open(struct inode *unused, struct file *file)
1849
{
1850
        struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1851
        struct ctr_struct *ctr;
1852
        pid_t *pidarray;
1853
        int npids;
1854
        char c;
1855
 
1856
        if (!(file->f_mode & FMODE_READ))
1857
                return 0;
1858
 
1859
        ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
1860
        if (!ctr)
1861
                goto err0;
1862
 
1863
        /*
1864
         * If cgroup gets more users after we read count, we won't have
1865
         * enough space - tough.  This race is indistinguishable to the
1866
         * caller from the case that the additional cgroup users didn't
1867
         * show up until sometime later on.
1868
         */
1869
        npids = cgroup_task_count(cgrp);
1870
        if (npids) {
1871
                pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
1872
                if (!pidarray)
1873
                        goto err1;
1874
 
1875
                npids = pid_array_load(pidarray, npids, cgrp);
1876
                sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
1877
 
1878
                /* Call pid_array_to_buf() twice, first just to get bufsz */
1879
                ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
1880
                ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
1881
                if (!ctr->buf)
1882
                        goto err2;
1883
                ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
1884
 
1885
                kfree(pidarray);
1886
        } else {
1887
                ctr->buf = 0;
1888
                ctr->bufsz = 0;
1889
        }
1890
        file->private_data = ctr;
1891
        return 0;
1892
 
1893
err2:
1894
        kfree(pidarray);
1895
err1:
1896
        kfree(ctr);
1897
err0:
1898
        return -ENOMEM;
1899
}
1900
 
1901
static ssize_t cgroup_tasks_read(struct cgroup *cgrp,
1902
                                    struct cftype *cft,
1903
                                    struct file *file, char __user *buf,
1904
                                    size_t nbytes, loff_t *ppos)
1905
{
1906
        struct ctr_struct *ctr = file->private_data;
1907
 
1908
        return simple_read_from_buffer(buf, nbytes, ppos, ctr->buf, ctr->bufsz);
1909
}
1910
 
1911
static int cgroup_tasks_release(struct inode *unused_inode,
1912
                                        struct file *file)
1913
{
1914
        struct ctr_struct *ctr;
1915
 
1916
        if (file->f_mode & FMODE_READ) {
1917
                ctr = file->private_data;
1918
                kfree(ctr->buf);
1919
                kfree(ctr);
1920
        }
1921
        return 0;
1922
}
1923
 
1924
static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
1925
                                            struct cftype *cft)
1926
{
1927
        return notify_on_release(cgrp);
1928
}
1929
 
1930
static u64 cgroup_read_releasable(struct cgroup *cgrp, struct cftype *cft)
1931
{
1932
        return test_bit(CGRP_RELEASABLE, &cgrp->flags);
1933
}
1934
 
1935
/*
1936
 * for the common functions, 'private' gives the type of file
1937
 */
1938
static struct cftype files[] = {
1939
        {
1940
                .name = "tasks",
1941
                .open = cgroup_tasks_open,
1942
                .read = cgroup_tasks_read,
1943
                .write = cgroup_common_file_write,
1944
                .release = cgroup_tasks_release,
1945
                .private = FILE_TASKLIST,
1946
        },
1947
 
1948
        {
1949
                .name = "notify_on_release",
1950
                .read_uint = cgroup_read_notify_on_release,
1951
                .write = cgroup_common_file_write,
1952
                .private = FILE_NOTIFY_ON_RELEASE,
1953
        },
1954
 
1955
        {
1956
                .name = "releasable",
1957
                .read_uint = cgroup_read_releasable,
1958
                .private = FILE_RELEASABLE,
1959
        }
1960
};
1961
 
1962
static struct cftype cft_release_agent = {
1963
        .name = "release_agent",
1964
        .read = cgroup_common_file_read,
1965
        .write = cgroup_common_file_write,
1966
        .private = FILE_RELEASE_AGENT,
1967
};
1968
 
1969
static int cgroup_populate_dir(struct cgroup *cgrp)
1970
{
1971
        int err;
1972
        struct cgroup_subsys *ss;
1973
 
1974
        /* First clear out any existing files */
1975
        cgroup_clear_directory(cgrp->dentry);
1976
 
1977
        err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
1978
        if (err < 0)
1979
                return err;
1980
 
1981
        if (cgrp == cgrp->top_cgroup) {
1982
                if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
1983
                        return err;
1984
        }
1985
 
1986
        for_each_subsys(cgrp->root, ss) {
1987
                if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
1988
                        return err;
1989
        }
1990
 
1991
        return 0;
1992
}
1993
 
1994
static void init_cgroup_css(struct cgroup_subsys_state *css,
1995
                               struct cgroup_subsys *ss,
1996
                               struct cgroup *cgrp)
1997
{
1998
        css->cgroup = cgrp;
1999
        atomic_set(&css->refcnt, 0);
2000
        css->flags = 0;
2001
        if (cgrp == dummytop)
2002
                set_bit(CSS_ROOT, &css->flags);
2003
        BUG_ON(cgrp->subsys[ss->subsys_id]);
2004
        cgrp->subsys[ss->subsys_id] = css;
2005
}
2006
 
2007
/*
2008
 *      cgroup_create - create a cgroup
2009
 *      parent: cgroup that will be parent of the new cgroup.
2010
 *      name:           name of the new cgroup. Will be strcpy'ed.
2011
 *      mode:           mode to set on new inode
2012
 *
2013
 *      Must be called with the mutex on the parent inode held
2014
 */
2015
 
2016
static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
2017
                             int mode)
2018
{
2019
        struct cgroup *cgrp;
2020
        struct cgroupfs_root *root = parent->root;
2021
        int err = 0;
2022
        struct cgroup_subsys *ss;
2023
        struct super_block *sb = root->sb;
2024
 
2025
        cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
2026
        if (!cgrp)
2027
                return -ENOMEM;
2028
 
2029
        /* Grab a reference on the superblock so the hierarchy doesn't
2030
         * get deleted on unmount if there are child cgroups.  This
2031
         * can be done outside cgroup_mutex, since the sb can't
2032
         * disappear while someone has an open control file on the
2033
         * fs */
2034
        atomic_inc(&sb->s_active);
2035
 
2036
        mutex_lock(&cgroup_mutex);
2037
 
2038
        cgrp->flags = 0;
2039
        INIT_LIST_HEAD(&cgrp->sibling);
2040
        INIT_LIST_HEAD(&cgrp->children);
2041
        INIT_LIST_HEAD(&cgrp->css_sets);
2042
        INIT_LIST_HEAD(&cgrp->release_list);
2043
 
2044
        cgrp->parent = parent;
2045
        cgrp->root = parent->root;
2046
        cgrp->top_cgroup = parent->top_cgroup;
2047
 
2048
        for_each_subsys(root, ss) {
2049
                struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2050
                if (IS_ERR(css)) {
2051
                        err = PTR_ERR(css);
2052
                        goto err_destroy;
2053
                }
2054
                init_cgroup_css(css, ss, cgrp);
2055
        }
2056
 
2057
        list_add(&cgrp->sibling, &cgrp->parent->children);
2058
        root->number_of_cgroups++;
2059
 
2060
        err = cgroup_create_dir(cgrp, dentry, mode);
2061
        if (err < 0)
2062
                goto err_remove;
2063
 
2064
        /* The cgroup directory was pre-locked for us */
2065
        BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2066
 
2067
        err = cgroup_populate_dir(cgrp);
2068
        /* If err < 0, we have a half-filled directory - oh well ;) */
2069
 
2070
        mutex_unlock(&cgroup_mutex);
2071
        mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2072
 
2073
        return 0;
2074
 
2075
 err_remove:
2076
 
2077
        list_del(&cgrp->sibling);
2078
        root->number_of_cgroups--;
2079
 
2080
 err_destroy:
2081
 
2082
        for_each_subsys(root, ss) {
2083
                if (cgrp->subsys[ss->subsys_id])
2084
                        ss->destroy(ss, cgrp);
2085
        }
2086
 
2087
        mutex_unlock(&cgroup_mutex);
2088
 
2089
        /* Release the reference count that we took on the superblock */
2090
        deactivate_super(sb);
2091
 
2092
        kfree(cgrp);
2093
        return err;
2094
}
2095
 
2096
static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2097
{
2098
        struct cgroup *c_parent = dentry->d_parent->d_fsdata;
2099
 
2100
        /* the vfs holds inode->i_mutex already */
2101
        return cgroup_create(c_parent, dentry, mode | S_IFDIR);
2102
}
2103
 
2104
static inline int cgroup_has_css_refs(struct cgroup *cgrp)
2105
{
2106
        /* Check the reference count on each subsystem. Since we
2107
         * already established that there are no tasks in the
2108
         * cgroup, if the css refcount is also 0, then there should
2109
         * be no outstanding references, so the subsystem is safe to
2110
         * destroy. We scan across all subsystems rather than using
2111
         * the per-hierarchy linked list of mounted subsystems since
2112
         * we can be called via check_for_release() with no
2113
         * synchronization other than RCU, and the subsystem linked
2114
         * list isn't RCU-safe */
2115
        int i;
2116
        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2117
                struct cgroup_subsys *ss = subsys[i];
2118
                struct cgroup_subsys_state *css;
2119
                /* Skip subsystems not in this hierarchy */
2120
                if (ss->root != cgrp->root)
2121
                        continue;
2122
                css = cgrp->subsys[ss->subsys_id];
2123
                /* When called from check_for_release() it's possible
2124
                 * that by this point the cgroup has been removed
2125
                 * and the css deleted. But a false-positive doesn't
2126
                 * matter, since it can only happen if the cgroup
2127
                 * has been deleted and hence no longer needs the
2128
                 * release agent to be called anyway. */
2129
                if (css && atomic_read(&css->refcnt)) {
2130
                        return 1;
2131
                }
2132
        }
2133
        return 0;
2134
}
2135
 
2136
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
2137
{
2138
        struct cgroup *cgrp = dentry->d_fsdata;
2139
        struct dentry *d;
2140
        struct cgroup *parent;
2141
        struct cgroup_subsys *ss;
2142
        struct super_block *sb;
2143
        struct cgroupfs_root *root;
2144
 
2145
        /* the vfs holds both inode->i_mutex already */
2146
 
2147
        mutex_lock(&cgroup_mutex);
2148
        if (atomic_read(&cgrp->count) != 0) {
2149
                mutex_unlock(&cgroup_mutex);
2150
                return -EBUSY;
2151
        }
2152
        if (!list_empty(&cgrp->children)) {
2153
                mutex_unlock(&cgroup_mutex);
2154
                return -EBUSY;
2155
        }
2156
 
2157
        parent = cgrp->parent;
2158
        root = cgrp->root;
2159
        sb = root->sb;
2160
 
2161
        if (cgroup_has_css_refs(cgrp)) {
2162
                mutex_unlock(&cgroup_mutex);
2163
                return -EBUSY;
2164
        }
2165
 
2166
        for_each_subsys(root, ss) {
2167
                if (cgrp->subsys[ss->subsys_id])
2168
                        ss->destroy(ss, cgrp);
2169
        }
2170
 
2171
        spin_lock(&release_list_lock);
2172
        set_bit(CGRP_REMOVED, &cgrp->flags);
2173
        if (!list_empty(&cgrp->release_list))
2174
                list_del(&cgrp->release_list);
2175
        spin_unlock(&release_list_lock);
2176
        /* delete my sibling from parent->children */
2177
        list_del(&cgrp->sibling);
2178
        spin_lock(&cgrp->dentry->d_lock);
2179
        d = dget(cgrp->dentry);
2180
        cgrp->dentry = NULL;
2181
        spin_unlock(&d->d_lock);
2182
 
2183
        cgroup_d_remove_dir(d);
2184
        dput(d);
2185
        root->number_of_cgroups--;
2186
 
2187
        set_bit(CGRP_RELEASABLE, &parent->flags);
2188
        check_for_release(parent);
2189
 
2190
        mutex_unlock(&cgroup_mutex);
2191
        /* Drop the active superblock reference that we took when we
2192
         * created the cgroup */
2193
        deactivate_super(sb);
2194
        return 0;
2195
}
2196
 
2197
static void cgroup_init_subsys(struct cgroup_subsys *ss)
2198
{
2199
        struct cgroup_subsys_state *css;
2200
        struct list_head *l;
2201
 
2202
        printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
2203
 
2204
        /* Create the top cgroup state for this subsystem */
2205
        ss->root = &rootnode;
2206
        css = ss->create(ss, dummytop);
2207
        /* We don't handle early failures gracefully */
2208
        BUG_ON(IS_ERR(css));
2209
        init_cgroup_css(css, ss, dummytop);
2210
 
2211
        /* Update all cgroup groups to contain a subsys
2212
         * pointer to this state - since the subsystem is
2213
         * newly registered, all tasks and hence all cgroup
2214
         * groups are in the subsystem's top cgroup. */
2215
        write_lock(&css_set_lock);
2216
        l = &init_css_set.list;
2217
        do {
2218
                struct css_set *cg =
2219
                        list_entry(l, struct css_set, list);
2220
                cg->subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
2221
                l = l->next;
2222
        } while (l != &init_css_set.list);
2223
        write_unlock(&css_set_lock);
2224
 
2225
        /* If this subsystem requested that it be notified with fork
2226
         * events, we should send it one now for every process in the
2227
         * system */
2228
        if (ss->fork) {
2229
                struct task_struct *g, *p;
2230
 
2231
                read_lock(&tasklist_lock);
2232
                do_each_thread(g, p) {
2233
                        ss->fork(ss, p);
2234
                } while_each_thread(g, p);
2235
                read_unlock(&tasklist_lock);
2236
        }
2237
 
2238
        need_forkexit_callback |= ss->fork || ss->exit;
2239
 
2240
        ss->active = 1;
2241
}
2242
 
2243
/**
2244
 * cgroup_init_early - initialize cgroups at system boot, and
2245
 * initialize any subsystems that request early init.
2246
 */
2247
int __init cgroup_init_early(void)
2248
{
2249
        int i;
2250
        kref_init(&init_css_set.ref);
2251
        kref_get(&init_css_set.ref);
2252
        INIT_LIST_HEAD(&init_css_set.list);
2253
        INIT_LIST_HEAD(&init_css_set.cg_links);
2254
        INIT_LIST_HEAD(&init_css_set.tasks);
2255
        css_set_count = 1;
2256
        init_cgroup_root(&rootnode);
2257
        list_add(&rootnode.root_list, &roots);
2258
        root_count = 1;
2259
        init_task.cgroups = &init_css_set;
2260
 
2261
        init_css_set_link.cg = &init_css_set;
2262
        list_add(&init_css_set_link.cgrp_link_list,
2263
                 &rootnode.top_cgroup.css_sets);
2264
        list_add(&init_css_set_link.cg_link_list,
2265
                 &init_css_set.cg_links);
2266
 
2267
        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2268
                struct cgroup_subsys *ss = subsys[i];
2269
 
2270
                BUG_ON(!ss->name);
2271
                BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
2272
                BUG_ON(!ss->create);
2273
                BUG_ON(!ss->destroy);
2274
                if (ss->subsys_id != i) {
2275
                        printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
2276
                               ss->name, ss->subsys_id);
2277
                        BUG();
2278
                }
2279
 
2280
                if (ss->early_init)
2281
                        cgroup_init_subsys(ss);
2282
        }
2283
        return 0;
2284
}
2285
 
2286
/**
2287
 * cgroup_init - register cgroup filesystem and /proc file, and
2288
 * initialize any subsystems that didn't request early init.
2289
 */
2290
int __init cgroup_init(void)
2291
{
2292
        int err;
2293
        int i;
2294
        struct proc_dir_entry *entry;
2295
 
2296
        err = bdi_init(&cgroup_backing_dev_info);
2297
        if (err)
2298
                return err;
2299
 
2300
        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2301
                struct cgroup_subsys *ss = subsys[i];
2302
                if (!ss->early_init)
2303
                        cgroup_init_subsys(ss);
2304
        }
2305
 
2306
        err = register_filesystem(&cgroup_fs_type);
2307
        if (err < 0)
2308
                goto out;
2309
 
2310
        entry = create_proc_entry("cgroups", 0, NULL);
2311
        if (entry)
2312
                entry->proc_fops = &proc_cgroupstats_operations;
2313
 
2314
out:
2315
        if (err)
2316
                bdi_destroy(&cgroup_backing_dev_info);
2317
 
2318
        return err;
2319
}
2320
 
2321
/*
2322
 * proc_cgroup_show()
2323
 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
2324
 *  - Used for /proc/<pid>/cgroup.
2325
 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
2326
 *    doesn't really matter if tsk->cgroup changes after we read it,
2327
 *    and we take cgroup_mutex, keeping attach_task() from changing it
2328
 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
2329
 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
2330
 *    cgroup to top_cgroup.
2331
 */
2332
 
2333
/* TODO: Use a proper seq_file iterator */
2334
static int proc_cgroup_show(struct seq_file *m, void *v)
2335
{
2336
        struct pid *pid;
2337
        struct task_struct *tsk;
2338
        char *buf;
2339
        int retval;
2340
        struct cgroupfs_root *root;
2341
 
2342
        retval = -ENOMEM;
2343
        buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2344
        if (!buf)
2345
                goto out;
2346
 
2347
        retval = -ESRCH;
2348
        pid = m->private;
2349
        tsk = get_pid_task(pid, PIDTYPE_PID);
2350
        if (!tsk)
2351
                goto out_free;
2352
 
2353
        retval = 0;
2354
 
2355
        mutex_lock(&cgroup_mutex);
2356
 
2357
        for_each_root(root) {
2358
                struct cgroup_subsys *ss;
2359
                struct cgroup *cgrp;
2360
                int subsys_id;
2361
                int count = 0;
2362
 
2363
                /* Skip this hierarchy if it has no active subsystems */
2364
                if (!root->actual_subsys_bits)
2365
                        continue;
2366
                for_each_subsys(root, ss)
2367
                        seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
2368
                seq_putc(m, ':');
2369
                get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
2370
                cgrp = task_cgroup(tsk, subsys_id);
2371
                retval = cgroup_path(cgrp, buf, PAGE_SIZE);
2372
                if (retval < 0)
2373
                        goto out_unlock;
2374
                seq_puts(m, buf);
2375
                seq_putc(m, '\n');
2376
        }
2377
 
2378
out_unlock:
2379
        mutex_unlock(&cgroup_mutex);
2380
        put_task_struct(tsk);
2381
out_free:
2382
        kfree(buf);
2383
out:
2384
        return retval;
2385
}
2386
 
2387
static int cgroup_open(struct inode *inode, struct file *file)
2388
{
2389
        struct pid *pid = PROC_I(inode)->pid;
2390
        return single_open(file, proc_cgroup_show, pid);
2391
}
2392
 
2393
struct file_operations proc_cgroup_operations = {
2394
        .open           = cgroup_open,
2395
        .read           = seq_read,
2396
        .llseek         = seq_lseek,
2397
        .release        = single_release,
2398
};
2399
 
2400
/* Display information about each subsystem and each hierarchy */
2401
static int proc_cgroupstats_show(struct seq_file *m, void *v)
2402
{
2403
        int i;
2404
 
2405
        seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\n");
2406
        mutex_lock(&cgroup_mutex);
2407
        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2408
                struct cgroup_subsys *ss = subsys[i];
2409
                seq_printf(m, "%s\t%lu\t%d\n",
2410
                           ss->name, ss->root->subsys_bits,
2411
                           ss->root->number_of_cgroups);
2412
        }
2413
        mutex_unlock(&cgroup_mutex);
2414
        return 0;
2415
}
2416
 
2417
static int cgroupstats_open(struct inode *inode, struct file *file)
2418
{
2419
        return single_open(file, proc_cgroupstats_show, 0);
2420
}
2421
 
2422
static struct file_operations proc_cgroupstats_operations = {
2423
        .open = cgroupstats_open,
2424
        .read = seq_read,
2425
        .llseek = seq_lseek,
2426
        .release = single_release,
2427
};
2428
 
2429
/**
2430
 * cgroup_fork - attach newly forked task to its parents cgroup.
2431
 * @tsk: pointer to task_struct of forking parent process.
2432
 *
2433
 * Description: A task inherits its parent's cgroup at fork().
2434
 *
2435
 * A pointer to the shared css_set was automatically copied in
2436
 * fork.c by dup_task_struct().  However, we ignore that copy, since
2437
 * it was not made under the protection of RCU or cgroup_mutex, so
2438
 * might no longer be a valid cgroup pointer.  attach_task() might
2439
 * have already changed current->cgroups, allowing the previously
2440
 * referenced cgroup group to be removed and freed.
2441
 *
2442
 * At the point that cgroup_fork() is called, 'current' is the parent
2443
 * task, and the passed argument 'child' points to the child task.
2444
 */
2445
void cgroup_fork(struct task_struct *child)
2446
{
2447
        task_lock(current);
2448
        child->cgroups = current->cgroups;
2449
        get_css_set(child->cgroups);
2450
        task_unlock(current);
2451
        INIT_LIST_HEAD(&child->cg_list);
2452
}
2453
 
2454
/**
2455
 * cgroup_fork_callbacks - called on a new task very soon before
2456
 * adding it to the tasklist. No need to take any locks since no-one
2457
 * can be operating on this task
2458
 */
2459
void cgroup_fork_callbacks(struct task_struct *child)
2460
{
2461
        if (need_forkexit_callback) {
2462
                int i;
2463
                for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2464
                        struct cgroup_subsys *ss = subsys[i];
2465
                        if (ss->fork)
2466
                                ss->fork(ss, child);
2467
                }
2468
        }
2469
}
2470
 
2471
/**
2472
 * cgroup_post_fork - called on a new task after adding it to the
2473
 * task list. Adds the task to the list running through its css_set
2474
 * if necessary. Has to be after the task is visible on the task list
2475
 * in case we race with the first call to cgroup_iter_start() - to
2476
 * guarantee that the new task ends up on its list. */
2477
void cgroup_post_fork(struct task_struct *child)
2478
{
2479
        if (use_task_css_set_links) {
2480
                write_lock(&css_set_lock);
2481
                if (list_empty(&child->cg_list))
2482
                        list_add(&child->cg_list, &child->cgroups->tasks);
2483
                write_unlock(&css_set_lock);
2484
        }
2485
}
2486
/**
2487
 * cgroup_exit - detach cgroup from exiting task
2488
 * @tsk: pointer to task_struct of exiting process
2489
 *
2490
 * Description: Detach cgroup from @tsk and release it.
2491
 *
2492
 * Note that cgroups marked notify_on_release force every task in
2493
 * them to take the global cgroup_mutex mutex when exiting.
2494
 * This could impact scaling on very large systems.  Be reluctant to
2495
 * use notify_on_release cgroups where very high task exit scaling
2496
 * is required on large systems.
2497
 *
2498
 * the_top_cgroup_hack:
2499
 *
2500
 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
2501
 *
2502
 *    We call cgroup_exit() while the task is still competent to
2503
 *    handle notify_on_release(), then leave the task attached to the
2504
 *    root cgroup in each hierarchy for the remainder of its exit.
2505
 *
2506
 *    To do this properly, we would increment the reference count on
2507
 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
2508
 *    code we would add a second cgroup function call, to drop that
2509
 *    reference.  This would just create an unnecessary hot spot on
2510
 *    the top_cgroup reference count, to no avail.
2511
 *
2512
 *    Normally, holding a reference to a cgroup without bumping its
2513
 *    count is unsafe.   The cgroup could go away, or someone could
2514
 *    attach us to a different cgroup, decrementing the count on
2515
 *    the first cgroup that we never incremented.  But in this case,
2516
 *    top_cgroup isn't going away, and either task has PF_EXITING set,
2517
 *    which wards off any attach_task() attempts, or task is a failed
2518
 *    fork, never visible to attach_task.
2519
 *
2520
 */
2521
void cgroup_exit(struct task_struct *tsk, int run_callbacks)
2522
{
2523
        int i;
2524
        struct css_set *cg;
2525
 
2526
        if (run_callbacks && need_forkexit_callback) {
2527
                for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2528
                        struct cgroup_subsys *ss = subsys[i];
2529
                        if (ss->exit)
2530
                                ss->exit(ss, tsk);
2531
                }
2532
        }
2533
 
2534
        /*
2535
         * Unlink from the css_set task list if necessary.
2536
         * Optimistically check cg_list before taking
2537
         * css_set_lock
2538
         */
2539
        if (!list_empty(&tsk->cg_list)) {
2540
                write_lock(&css_set_lock);
2541
                if (!list_empty(&tsk->cg_list))
2542
                        list_del(&tsk->cg_list);
2543
                write_unlock(&css_set_lock);
2544
        }
2545
 
2546
        /* Reassign the task to the init_css_set. */
2547
        task_lock(tsk);
2548
        cg = tsk->cgroups;
2549
        tsk->cgroups = &init_css_set;
2550
        task_unlock(tsk);
2551
        if (cg)
2552
                put_css_set_taskexit(cg);
2553
}
2554
 
2555
/**
2556
 * cgroup_clone - duplicate the current cgroup in the hierarchy
2557
 * that the given subsystem is attached to, and move this task into
2558
 * the new child
2559
 */
2560
int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys)
2561
{
2562
        struct dentry *dentry;
2563
        int ret = 0;
2564
        char nodename[MAX_CGROUP_TYPE_NAMELEN];
2565
        struct cgroup *parent, *child;
2566
        struct inode *inode;
2567
        struct css_set *cg;
2568
        struct cgroupfs_root *root;
2569
        struct cgroup_subsys *ss;
2570
 
2571
        /* We shouldn't be called by an unregistered subsystem */
2572
        BUG_ON(!subsys->active);
2573
 
2574
        /* First figure out what hierarchy and cgroup we're dealing
2575
         * with, and pin them so we can drop cgroup_mutex */
2576
        mutex_lock(&cgroup_mutex);
2577
 again:
2578
        root = subsys->root;
2579
        if (root == &rootnode) {
2580
                printk(KERN_INFO
2581
                       "Not cloning cgroup for unused subsystem %s\n",
2582
                       subsys->name);
2583
                mutex_unlock(&cgroup_mutex);
2584
                return 0;
2585
        }
2586
        cg = tsk->cgroups;
2587
        parent = task_cgroup(tsk, subsys->subsys_id);
2588
 
2589
        snprintf(nodename, MAX_CGROUP_TYPE_NAMELEN, "node_%d", tsk->pid);
2590
 
2591
        /* Pin the hierarchy */
2592
        atomic_inc(&parent->root->sb->s_active);
2593
 
2594
        /* Keep the cgroup alive */
2595
        get_css_set(cg);
2596
        mutex_unlock(&cgroup_mutex);
2597
 
2598
        /* Now do the VFS work to create a cgroup */
2599
        inode = parent->dentry->d_inode;
2600
 
2601
        /* Hold the parent directory mutex across this operation to
2602
         * stop anyone else deleting the new cgroup */
2603
        mutex_lock(&inode->i_mutex);
2604
        dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
2605
        if (IS_ERR(dentry)) {
2606
                printk(KERN_INFO
2607
                       "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
2608
                       PTR_ERR(dentry));
2609
                ret = PTR_ERR(dentry);
2610
                goto out_release;
2611
        }
2612
 
2613
        /* Create the cgroup directory, which also creates the cgroup */
2614
        ret = vfs_mkdir(inode, dentry, S_IFDIR | 0755);
2615
        child = __d_cgrp(dentry);
2616
        dput(dentry);
2617
        if (ret) {
2618
                printk(KERN_INFO
2619
                       "Failed to create cgroup %s: %d\n", nodename,
2620
                       ret);
2621
                goto out_release;
2622
        }
2623
 
2624
        if (!child) {
2625
                printk(KERN_INFO
2626
                       "Couldn't find new cgroup %s\n", nodename);
2627
                ret = -ENOMEM;
2628
                goto out_release;
2629
        }
2630
 
2631
        /* The cgroup now exists. Retake cgroup_mutex and check
2632
         * that we're still in the same state that we thought we
2633
         * were. */
2634
        mutex_lock(&cgroup_mutex);
2635
        if ((root != subsys->root) ||
2636
            (parent != task_cgroup(tsk, subsys->subsys_id))) {
2637
                /* Aargh, we raced ... */
2638
                mutex_unlock(&inode->i_mutex);
2639
                put_css_set(cg);
2640
 
2641
                deactivate_super(parent->root->sb);
2642
                /* The cgroup is still accessible in the VFS, but
2643
                 * we're not going to try to rmdir() it at this
2644
                 * point. */
2645
                printk(KERN_INFO
2646
                       "Race in cgroup_clone() - leaking cgroup %s\n",
2647
                       nodename);
2648
                goto again;
2649
        }
2650
 
2651
        /* do any required auto-setup */
2652
        for_each_subsys(root, ss) {
2653
                if (ss->post_clone)
2654
                        ss->post_clone(ss, child);
2655
        }
2656
 
2657
        /* All seems fine. Finish by moving the task into the new cgroup */
2658
        ret = attach_task(child, tsk);
2659
        mutex_unlock(&cgroup_mutex);
2660
 
2661
 out_release:
2662
        mutex_unlock(&inode->i_mutex);
2663
 
2664
        mutex_lock(&cgroup_mutex);
2665
        put_css_set(cg);
2666
        mutex_unlock(&cgroup_mutex);
2667
        deactivate_super(parent->root->sb);
2668
        return ret;
2669
}
2670
 
2671
/*
2672
 * See if "cgrp" is a descendant of the current task's cgroup in
2673
 * the appropriate hierarchy
2674
 *
2675
 * If we are sending in dummytop, then presumably we are creating
2676
 * the top cgroup in the subsystem.
2677
 *
2678
 * Called only by the ns (nsproxy) cgroup.
2679
 */
2680
int cgroup_is_descendant(const struct cgroup *cgrp)
2681
{
2682
        int ret;
2683
        struct cgroup *target;
2684
        int subsys_id;
2685
 
2686
        if (cgrp == dummytop)
2687
                return 1;
2688
 
2689
        get_first_subsys(cgrp, NULL, &subsys_id);
2690
        target = task_cgroup(current, subsys_id);
2691
        while (cgrp != target && cgrp!= cgrp->top_cgroup)
2692
                cgrp = cgrp->parent;
2693
        ret = (cgrp == target);
2694
        return ret;
2695
}
2696
 
2697
static void check_for_release(struct cgroup *cgrp)
2698
{
2699
        /* All of these checks rely on RCU to keep the cgroup
2700
         * structure alive */
2701
        if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
2702
            && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
2703
                /* Control Group is currently removeable. If it's not
2704
                 * already queued for a userspace notification, queue
2705
                 * it now */
2706
                int need_schedule_work = 0;
2707
                spin_lock(&release_list_lock);
2708
                if (!cgroup_is_removed(cgrp) &&
2709
                    list_empty(&cgrp->release_list)) {
2710
                        list_add(&cgrp->release_list, &release_list);
2711
                        need_schedule_work = 1;
2712
                }
2713
                spin_unlock(&release_list_lock);
2714
                if (need_schedule_work)
2715
                        schedule_work(&release_agent_work);
2716
        }
2717
}
2718
 
2719
void __css_put(struct cgroup_subsys_state *css)
2720
{
2721
        struct cgroup *cgrp = css->cgroup;
2722
        rcu_read_lock();
2723
        if (atomic_dec_and_test(&css->refcnt) && notify_on_release(cgrp)) {
2724
                set_bit(CGRP_RELEASABLE, &cgrp->flags);
2725
                check_for_release(cgrp);
2726
        }
2727
        rcu_read_unlock();
2728
}
2729
 
2730
/*
2731
 * Notify userspace when a cgroup is released, by running the
2732
 * configured release agent with the name of the cgroup (path
2733
 * relative to the root of cgroup file system) as the argument.
2734
 *
2735
 * Most likely, this user command will try to rmdir this cgroup.
2736
 *
2737
 * This races with the possibility that some other task will be
2738
 * attached to this cgroup before it is removed, or that some other
2739
 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
2740
 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
2741
 * unused, and this cgroup will be reprieved from its death sentence,
2742
 * to continue to serve a useful existence.  Next time it's released,
2743
 * we will get notified again, if it still has 'notify_on_release' set.
2744
 *
2745
 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
2746
 * means only wait until the task is successfully execve()'d.  The
2747
 * separate release agent task is forked by call_usermodehelper(),
2748
 * then control in this thread returns here, without waiting for the
2749
 * release agent task.  We don't bother to wait because the caller of
2750
 * this routine has no use for the exit status of the release agent
2751
 * task, so no sense holding our caller up for that.
2752
 *
2753
 */
2754
 
2755
static void cgroup_release_agent(struct work_struct *work)
2756
{
2757
        BUG_ON(work != &release_agent_work);
2758
        mutex_lock(&cgroup_mutex);
2759
        spin_lock(&release_list_lock);
2760
        while (!list_empty(&release_list)) {
2761
                char *argv[3], *envp[3];
2762
                int i;
2763
                char *pathbuf;
2764
                struct cgroup *cgrp = list_entry(release_list.next,
2765
                                                    struct cgroup,
2766
                                                    release_list);
2767
                list_del_init(&cgrp->release_list);
2768
                spin_unlock(&release_list_lock);
2769
                pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2770
                if (!pathbuf) {
2771
                        spin_lock(&release_list_lock);
2772
                        continue;
2773
                }
2774
 
2775
                if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0) {
2776
                        kfree(pathbuf);
2777
                        spin_lock(&release_list_lock);
2778
                        continue;
2779
                }
2780
 
2781
                i = 0;
2782
                argv[i++] = cgrp->root->release_agent_path;
2783
                argv[i++] = (char *)pathbuf;
2784
                argv[i] = NULL;
2785
 
2786
                i = 0;
2787
                /* minimal command environment */
2788
                envp[i++] = "HOME=/";
2789
                envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
2790
                envp[i] = NULL;
2791
 
2792
                /* Drop the lock while we invoke the usermode helper,
2793
                 * since the exec could involve hitting disk and hence
2794
                 * be a slow process */
2795
                mutex_unlock(&cgroup_mutex);
2796
                call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
2797
                kfree(pathbuf);
2798
                mutex_lock(&cgroup_mutex);
2799
                spin_lock(&release_list_lock);
2800
        }
2801
        spin_unlock(&release_list_lock);
2802
        mutex_unlock(&cgroup_mutex);
2803
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.