OpenCores
URL https://opencores.org/ocsvn/or1k_soc_on_altera_embedded_dev_kit/or1k_soc_on_altera_embedded_dev_kit/trunk

Subversion Repositories or1k_soc_on_altera_embedded_dev_kit

[/] [or1k_soc_on_altera_embedded_dev_kit/] [trunk/] [linux-2.6/] [linux-2.6.24/] [kernel/] [fork.c] - Blame information for rev 3

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 3 xianfeng
/*
2
 *  linux/kernel/fork.c
3
 *
4
 *  Copyright (C) 1991, 1992  Linus Torvalds
5
 */
6
 
7
/*
8
 *  'fork.c' contains the help-routines for the 'fork' system call
9
 * (see also entry.S and others).
10
 * Fork is rather simple, once you get the hang of it, but the memory
11
 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12
 */
13
 
14
#include <linux/slab.h>
15
#include <linux/init.h>
16
#include <linux/unistd.h>
17
#include <linux/module.h>
18
#include <linux/vmalloc.h>
19
#include <linux/completion.h>
20
#include <linux/mnt_namespace.h>
21
#include <linux/personality.h>
22
#include <linux/mempolicy.h>
23
#include <linux/sem.h>
24
#include <linux/file.h>
25
#include <linux/key.h>
26
#include <linux/binfmts.h>
27
#include <linux/mman.h>
28
#include <linux/fs.h>
29
#include <linux/nsproxy.h>
30
#include <linux/capability.h>
31
#include <linux/cpu.h>
32
#include <linux/cgroup.h>
33
#include <linux/security.h>
34
#include <linux/swap.h>
35
#include <linux/syscalls.h>
36
#include <linux/jiffies.h>
37
#include <linux/futex.h>
38
#include <linux/task_io_accounting_ops.h>
39
#include <linux/rcupdate.h>
40
#include <linux/ptrace.h>
41
#include <linux/mount.h>
42
#include <linux/audit.h>
43
#include <linux/profile.h>
44
#include <linux/rmap.h>
45
#include <linux/acct.h>
46
#include <linux/tsacct_kern.h>
47
#include <linux/cn_proc.h>
48
#include <linux/freezer.h>
49
#include <linux/delayacct.h>
50
#include <linux/taskstats_kern.h>
51
#include <linux/random.h>
52
#include <linux/tty.h>
53
#include <linux/proc_fs.h>
54
 
55
#include <asm/pgtable.h>
56
#include <asm/pgalloc.h>
57
#include <asm/uaccess.h>
58
#include <asm/mmu_context.h>
59
#include <asm/cacheflush.h>
60
#include <asm/tlbflush.h>
61
 
62
/*
63
 * Protected counters by write_lock_irq(&tasklist_lock)
64
 */
65
unsigned long total_forks;      /* Handle normal Linux uptimes. */
66
int nr_threads;                 /* The idle threads do not count.. */
67
 
68
int max_threads;                /* tunable limit on nr_threads */
69
 
70
DEFINE_PER_CPU(unsigned long, process_counts) = 0;
71
 
72
__cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
73
 
74
int nr_processes(void)
75
{
76
        int cpu;
77
        int total = 0;
78
 
79
        for_each_online_cpu(cpu)
80
                total += per_cpu(process_counts, cpu);
81
 
82
        return total;
83
}
84
 
85
#ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
86
# define alloc_task_struct()    kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
87
# define free_task_struct(tsk)  kmem_cache_free(task_struct_cachep, (tsk))
88
static struct kmem_cache *task_struct_cachep;
89
#endif
90
 
91
/* SLAB cache for signal_struct structures (tsk->signal) */
92
static struct kmem_cache *signal_cachep;
93
 
94
/* SLAB cache for sighand_struct structures (tsk->sighand) */
95
struct kmem_cache *sighand_cachep;
96
 
97
/* SLAB cache for files_struct structures (tsk->files) */
98
struct kmem_cache *files_cachep;
99
 
100
/* SLAB cache for fs_struct structures (tsk->fs) */
101
struct kmem_cache *fs_cachep;
102
 
103
/* SLAB cache for vm_area_struct structures */
104
struct kmem_cache *vm_area_cachep;
105
 
106
/* SLAB cache for mm_struct structures (tsk->mm) */
107
static struct kmem_cache *mm_cachep;
108
 
109
void free_task(struct task_struct *tsk)
110
{
111
        prop_local_destroy_single(&tsk->dirties);
112
        free_thread_info(tsk->stack);
113
        rt_mutex_debug_task_free(tsk);
114
        free_task_struct(tsk);
115
}
116
EXPORT_SYMBOL(free_task);
117
 
118
void __put_task_struct(struct task_struct *tsk)
119
{
120
        WARN_ON(!tsk->exit_state);
121
        WARN_ON(atomic_read(&tsk->usage));
122
        WARN_ON(tsk == current);
123
 
124
        security_task_free(tsk);
125
        free_uid(tsk->user);
126
        put_group_info(tsk->group_info);
127
        delayacct_tsk_free(tsk);
128
 
129
        if (!profile_handoff_task(tsk))
130
                free_task(tsk);
131
}
132
 
133
void __init fork_init(unsigned long mempages)
134
{
135
#ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
136
#ifndef ARCH_MIN_TASKALIGN
137
#define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
138
#endif
139
        /* create a slab on which task_structs can be allocated */
140
        task_struct_cachep =
141
                kmem_cache_create("task_struct", sizeof(struct task_struct),
142
                        ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
143
#endif
144
 
145
        /*
146
         * The default maximum number of threads is set to a safe
147
         * value: the thread structures can take up at most half
148
         * of memory.
149
         */
150
        max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
151
 
152
        /*
153
         * we need to allow at least 20 threads to boot a system
154
         */
155
        if(max_threads < 20)
156
                max_threads = 20;
157
 
158
        init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
159
        init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
160
        init_task.signal->rlim[RLIMIT_SIGPENDING] =
161
                init_task.signal->rlim[RLIMIT_NPROC];
162
}
163
 
164
static struct task_struct *dup_task_struct(struct task_struct *orig)
165
{
166
        struct task_struct *tsk;
167
        struct thread_info *ti;
168
        int err;
169
 
170
        prepare_to_copy(orig);
171
 
172
        tsk = alloc_task_struct();
173
        if (!tsk)
174
                return NULL;
175
 
176
        ti = alloc_thread_info(tsk);
177
        if (!ti) {
178
                free_task_struct(tsk);
179
                return NULL;
180
        }
181
 
182
        *tsk = *orig;
183
        tsk->stack = ti;
184
 
185
        err = prop_local_init_single(&tsk->dirties);
186
        if (err) {
187
                free_thread_info(ti);
188
                free_task_struct(tsk);
189
                return NULL;
190
        }
191
 
192
        setup_thread_stack(tsk, orig);
193
 
194
#ifdef CONFIG_CC_STACKPROTECTOR
195
        tsk->stack_canary = get_random_int();
196
#endif
197
 
198
        /* One for us, one for whoever does the "release_task()" (usually parent) */
199
        atomic_set(&tsk->usage,2);
200
        atomic_set(&tsk->fs_excl, 0);
201
#ifdef CONFIG_BLK_DEV_IO_TRACE
202
        tsk->btrace_seq = 0;
203
#endif
204
        tsk->splice_pipe = NULL;
205
        return tsk;
206
}
207
 
208
#ifdef CONFIG_MMU
209
static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
210
{
211
        struct vm_area_struct *mpnt, *tmp, **pprev;
212
        struct rb_node **rb_link, *rb_parent;
213
        int retval;
214
        unsigned long charge;
215
        struct mempolicy *pol;
216
 
217
        down_write(&oldmm->mmap_sem);
218
        flush_cache_dup_mm(oldmm);
219
        /*
220
         * Not linked in yet - no deadlock potential:
221
         */
222
        down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
223
 
224
        mm->locked_vm = 0;
225
        mm->mmap = NULL;
226
        mm->mmap_cache = NULL;
227
        mm->free_area_cache = oldmm->mmap_base;
228
        mm->cached_hole_size = ~0UL;
229
        mm->map_count = 0;
230
        cpus_clear(mm->cpu_vm_mask);
231
        mm->mm_rb = RB_ROOT;
232
        rb_link = &mm->mm_rb.rb_node;
233
        rb_parent = NULL;
234
        pprev = &mm->mmap;
235
 
236
        for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
237
                struct file *file;
238
 
239
                if (mpnt->vm_flags & VM_DONTCOPY) {
240
                        long pages = vma_pages(mpnt);
241
                        mm->total_vm -= pages;
242
                        vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
243
                                                                -pages);
244
                        continue;
245
                }
246
                charge = 0;
247
                if (mpnt->vm_flags & VM_ACCOUNT) {
248
                        unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
249
                        if (security_vm_enough_memory(len))
250
                                goto fail_nomem;
251
                        charge = len;
252
                }
253
                tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
254
                if (!tmp)
255
                        goto fail_nomem;
256
                *tmp = *mpnt;
257
                pol = mpol_copy(vma_policy(mpnt));
258
                retval = PTR_ERR(pol);
259
                if (IS_ERR(pol))
260
                        goto fail_nomem_policy;
261
                vma_set_policy(tmp, pol);
262
                tmp->vm_flags &= ~VM_LOCKED;
263
                tmp->vm_mm = mm;
264
                tmp->vm_next = NULL;
265
                anon_vma_link(tmp);
266
                file = tmp->vm_file;
267
                if (file) {
268
                        struct inode *inode = file->f_path.dentry->d_inode;
269
                        get_file(file);
270
                        if (tmp->vm_flags & VM_DENYWRITE)
271
                                atomic_dec(&inode->i_writecount);
272
 
273
                        /* insert tmp into the share list, just after mpnt */
274
                        spin_lock(&file->f_mapping->i_mmap_lock);
275
                        tmp->vm_truncate_count = mpnt->vm_truncate_count;
276
                        flush_dcache_mmap_lock(file->f_mapping);
277
                        vma_prio_tree_add(tmp, mpnt);
278
                        flush_dcache_mmap_unlock(file->f_mapping);
279
                        spin_unlock(&file->f_mapping->i_mmap_lock);
280
                }
281
 
282
                /*
283
                 * Link in the new vma and copy the page table entries.
284
                 */
285
                *pprev = tmp;
286
                pprev = &tmp->vm_next;
287
 
288
                __vma_link_rb(mm, tmp, rb_link, rb_parent);
289
                rb_link = &tmp->vm_rb.rb_right;
290
                rb_parent = &tmp->vm_rb;
291
 
292
                mm->map_count++;
293
                retval = copy_page_range(mm, oldmm, mpnt);
294
 
295
                if (tmp->vm_ops && tmp->vm_ops->open)
296
                        tmp->vm_ops->open(tmp);
297
 
298
                if (retval)
299
                        goto out;
300
        }
301
        /* a new mm has just been created */
302
        arch_dup_mmap(oldmm, mm);
303
        retval = 0;
304
out:
305
        up_write(&mm->mmap_sem);
306
        flush_tlb_mm(oldmm);
307
        up_write(&oldmm->mmap_sem);
308
        return retval;
309
fail_nomem_policy:
310
        kmem_cache_free(vm_area_cachep, tmp);
311
fail_nomem:
312
        retval = -ENOMEM;
313
        vm_unacct_memory(charge);
314
        goto out;
315
}
316
 
317
static inline int mm_alloc_pgd(struct mm_struct * mm)
318
{
319
        mm->pgd = pgd_alloc(mm);
320
        if (unlikely(!mm->pgd))
321
                return -ENOMEM;
322
        return 0;
323
}
324
 
325
static inline void mm_free_pgd(struct mm_struct * mm)
326
{
327
        pgd_free(mm->pgd);
328
}
329
#else
330
#define dup_mmap(mm, oldmm)     (0)
331
#define mm_alloc_pgd(mm)        (0)
332
#define mm_free_pgd(mm)
333
#endif /* CONFIG_MMU */
334
 
335
__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
336
 
337
#define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
338
#define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
339
 
340
#include <linux/init_task.h>
341
 
342
static struct mm_struct * mm_init(struct mm_struct * mm)
343
{
344
        atomic_set(&mm->mm_users, 1);
345
        atomic_set(&mm->mm_count, 1);
346
        init_rwsem(&mm->mmap_sem);
347
        INIT_LIST_HEAD(&mm->mmlist);
348
        mm->flags = (current->mm) ? current->mm->flags
349
                                  : MMF_DUMP_FILTER_DEFAULT;
350
        mm->core_waiters = 0;
351
        mm->nr_ptes = 0;
352
        set_mm_counter(mm, file_rss, 0);
353
        set_mm_counter(mm, anon_rss, 0);
354
        spin_lock_init(&mm->page_table_lock);
355
        rwlock_init(&mm->ioctx_list_lock);
356
        mm->ioctx_list = NULL;
357
        mm->free_area_cache = TASK_UNMAPPED_BASE;
358
        mm->cached_hole_size = ~0UL;
359
 
360
        if (likely(!mm_alloc_pgd(mm))) {
361
                mm->def_flags = 0;
362
                return mm;
363
        }
364
        free_mm(mm);
365
        return NULL;
366
}
367
 
368
/*
369
 * Allocate and initialize an mm_struct.
370
 */
371
struct mm_struct * mm_alloc(void)
372
{
373
        struct mm_struct * mm;
374
 
375
        mm = allocate_mm();
376
        if (mm) {
377
                memset(mm, 0, sizeof(*mm));
378
                mm = mm_init(mm);
379
        }
380
        return mm;
381
}
382
 
383
/*
384
 * Called when the last reference to the mm
385
 * is dropped: either by a lazy thread or by
386
 * mmput. Free the page directory and the mm.
387
 */
388
void fastcall __mmdrop(struct mm_struct *mm)
389
{
390
        BUG_ON(mm == &init_mm);
391
        mm_free_pgd(mm);
392
        destroy_context(mm);
393
        free_mm(mm);
394
}
395
 
396
/*
397
 * Decrement the use count and release all resources for an mm.
398
 */
399
void mmput(struct mm_struct *mm)
400
{
401
        might_sleep();
402
 
403
        if (atomic_dec_and_test(&mm->mm_users)) {
404
                exit_aio(mm);
405
                exit_mmap(mm);
406
                if (!list_empty(&mm->mmlist)) {
407
                        spin_lock(&mmlist_lock);
408
                        list_del(&mm->mmlist);
409
                        spin_unlock(&mmlist_lock);
410
                }
411
                put_swap_token(mm);
412
                mmdrop(mm);
413
        }
414
}
415
EXPORT_SYMBOL_GPL(mmput);
416
 
417
/**
418
 * get_task_mm - acquire a reference to the task's mm
419
 *
420
 * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
421
 * this kernel workthread has transiently adopted a user mm with use_mm,
422
 * to do its AIO) is not set and if so returns a reference to it, after
423
 * bumping up the use count.  User must release the mm via mmput()
424
 * after use.  Typically used by /proc and ptrace.
425
 */
426
struct mm_struct *get_task_mm(struct task_struct *task)
427
{
428
        struct mm_struct *mm;
429
 
430
        task_lock(task);
431
        mm = task->mm;
432
        if (mm) {
433
                if (task->flags & PF_BORROWED_MM)
434
                        mm = NULL;
435
                else
436
                        atomic_inc(&mm->mm_users);
437
        }
438
        task_unlock(task);
439
        return mm;
440
}
441
EXPORT_SYMBOL_GPL(get_task_mm);
442
 
443
/* Please note the differences between mmput and mm_release.
444
 * mmput is called whenever we stop holding onto a mm_struct,
445
 * error success whatever.
446
 *
447
 * mm_release is called after a mm_struct has been removed
448
 * from the current process.
449
 *
450
 * This difference is important for error handling, when we
451
 * only half set up a mm_struct for a new process and need to restore
452
 * the old one.  Because we mmput the new mm_struct before
453
 * restoring the old one. . .
454
 * Eric Biederman 10 January 1998
455
 */
456
void mm_release(struct task_struct *tsk, struct mm_struct *mm)
457
{
458
        struct completion *vfork_done = tsk->vfork_done;
459
 
460
        /* Get rid of any cached register state */
461
        deactivate_mm(tsk, mm);
462
 
463
        /* notify parent sleeping on vfork() */
464
        if (vfork_done) {
465
                tsk->vfork_done = NULL;
466
                complete(vfork_done);
467
        }
468
 
469
        /*
470
         * If we're exiting normally, clear a user-space tid field if
471
         * requested.  We leave this alone when dying by signal, to leave
472
         * the value intact in a core dump, and to save the unnecessary
473
         * trouble otherwise.  Userland only wants this done for a sys_exit.
474
         */
475
        if (tsk->clear_child_tid
476
            && !(tsk->flags & PF_SIGNALED)
477
            && atomic_read(&mm->mm_users) > 1) {
478
                u32 __user * tidptr = tsk->clear_child_tid;
479
                tsk->clear_child_tid = NULL;
480
 
481
                /*
482
                 * We don't check the error code - if userspace has
483
                 * not set up a proper pointer then tough luck.
484
                 */
485
                put_user(0, tidptr);
486
                sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
487
        }
488
}
489
 
490
/*
491
 * Allocate a new mm structure and copy contents from the
492
 * mm structure of the passed in task structure.
493
 */
494
static struct mm_struct *dup_mm(struct task_struct *tsk)
495
{
496
        struct mm_struct *mm, *oldmm = current->mm;
497
        int err;
498
 
499
        if (!oldmm)
500
                return NULL;
501
 
502
        mm = allocate_mm();
503
        if (!mm)
504
                goto fail_nomem;
505
 
506
        memcpy(mm, oldmm, sizeof(*mm));
507
 
508
        /* Initializing for Swap token stuff */
509
        mm->token_priority = 0;
510
        mm->last_interval = 0;
511
 
512
        if (!mm_init(mm))
513
                goto fail_nomem;
514
 
515
        if (init_new_context(tsk, mm))
516
                goto fail_nocontext;
517
 
518
        err = dup_mmap(mm, oldmm);
519
        if (err)
520
                goto free_pt;
521
 
522
        mm->hiwater_rss = get_mm_rss(mm);
523
        mm->hiwater_vm = mm->total_vm;
524
 
525
        return mm;
526
 
527
free_pt:
528
        mmput(mm);
529
 
530
fail_nomem:
531
        return NULL;
532
 
533
fail_nocontext:
534
        /*
535
         * If init_new_context() failed, we cannot use mmput() to free the mm
536
         * because it calls destroy_context()
537
         */
538
        mm_free_pgd(mm);
539
        free_mm(mm);
540
        return NULL;
541
}
542
 
543
static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
544
{
545
        struct mm_struct * mm, *oldmm;
546
        int retval;
547
 
548
        tsk->min_flt = tsk->maj_flt = 0;
549
        tsk->nvcsw = tsk->nivcsw = 0;
550
 
551
        tsk->mm = NULL;
552
        tsk->active_mm = NULL;
553
 
554
        /*
555
         * Are we cloning a kernel thread?
556
         *
557
         * We need to steal a active VM for that..
558
         */
559
        oldmm = current->mm;
560
        if (!oldmm)
561
                return 0;
562
 
563
        if (clone_flags & CLONE_VM) {
564
                atomic_inc(&oldmm->mm_users);
565
                mm = oldmm;
566
                goto good_mm;
567
        }
568
 
569
        retval = -ENOMEM;
570
        mm = dup_mm(tsk);
571
        if (!mm)
572
                goto fail_nomem;
573
 
574
good_mm:
575
        /* Initializing for Swap token stuff */
576
        mm->token_priority = 0;
577
        mm->last_interval = 0;
578
 
579
        tsk->mm = mm;
580
        tsk->active_mm = mm;
581
        return 0;
582
 
583
fail_nomem:
584
        return retval;
585
}
586
 
587
static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
588
{
589
        struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
590
        /* We don't need to lock fs - think why ;-) */
591
        if (fs) {
592
                atomic_set(&fs->count, 1);
593
                rwlock_init(&fs->lock);
594
                fs->umask = old->umask;
595
                read_lock(&old->lock);
596
                fs->rootmnt = mntget(old->rootmnt);
597
                fs->root = dget(old->root);
598
                fs->pwdmnt = mntget(old->pwdmnt);
599
                fs->pwd = dget(old->pwd);
600
                if (old->altroot) {
601
                        fs->altrootmnt = mntget(old->altrootmnt);
602
                        fs->altroot = dget(old->altroot);
603
                } else {
604
                        fs->altrootmnt = NULL;
605
                        fs->altroot = NULL;
606
                }
607
                read_unlock(&old->lock);
608
        }
609
        return fs;
610
}
611
 
612
struct fs_struct *copy_fs_struct(struct fs_struct *old)
613
{
614
        return __copy_fs_struct(old);
615
}
616
 
617
EXPORT_SYMBOL_GPL(copy_fs_struct);
618
 
619
static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
620
{
621
        if (clone_flags & CLONE_FS) {
622
                atomic_inc(&current->fs->count);
623
                return 0;
624
        }
625
        tsk->fs = __copy_fs_struct(current->fs);
626
        if (!tsk->fs)
627
                return -ENOMEM;
628
        return 0;
629
}
630
 
631
static int count_open_files(struct fdtable *fdt)
632
{
633
        int size = fdt->max_fds;
634
        int i;
635
 
636
        /* Find the last open fd */
637
        for (i = size/(8*sizeof(long)); i > 0; ) {
638
                if (fdt->open_fds->fds_bits[--i])
639
                        break;
640
        }
641
        i = (i+1) * 8 * sizeof(long);
642
        return i;
643
}
644
 
645
static struct files_struct *alloc_files(void)
646
{
647
        struct files_struct *newf;
648
        struct fdtable *fdt;
649
 
650
        newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
651
        if (!newf)
652
                goto out;
653
 
654
        atomic_set(&newf->count, 1);
655
 
656
        spin_lock_init(&newf->file_lock);
657
        newf->next_fd = 0;
658
        fdt = &newf->fdtab;
659
        fdt->max_fds = NR_OPEN_DEFAULT;
660
        fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
661
        fdt->open_fds = (fd_set *)&newf->open_fds_init;
662
        fdt->fd = &newf->fd_array[0];
663
        INIT_RCU_HEAD(&fdt->rcu);
664
        fdt->next = NULL;
665
        rcu_assign_pointer(newf->fdt, fdt);
666
out:
667
        return newf;
668
}
669
 
670
/*
671
 * Allocate a new files structure and copy contents from the
672
 * passed in files structure.
673
 * errorp will be valid only when the returned files_struct is NULL.
674
 */
675
static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
676
{
677
        struct files_struct *newf;
678
        struct file **old_fds, **new_fds;
679
        int open_files, size, i;
680
        struct fdtable *old_fdt, *new_fdt;
681
 
682
        *errorp = -ENOMEM;
683
        newf = alloc_files();
684
        if (!newf)
685
                goto out;
686
 
687
        spin_lock(&oldf->file_lock);
688
        old_fdt = files_fdtable(oldf);
689
        new_fdt = files_fdtable(newf);
690
        open_files = count_open_files(old_fdt);
691
 
692
        /*
693
         * Check whether we need to allocate a larger fd array and fd set.
694
         * Note: we're not a clone task, so the open count won't change.
695
         */
696
        if (open_files > new_fdt->max_fds) {
697
                new_fdt->max_fds = 0;
698
                spin_unlock(&oldf->file_lock);
699
                spin_lock(&newf->file_lock);
700
                *errorp = expand_files(newf, open_files-1);
701
                spin_unlock(&newf->file_lock);
702
                if (*errorp < 0)
703
                        goto out_release;
704
                new_fdt = files_fdtable(newf);
705
                /*
706
                 * Reacquire the oldf lock and a pointer to its fd table
707
                 * who knows it may have a new bigger fd table. We need
708
                 * the latest pointer.
709
                 */
710
                spin_lock(&oldf->file_lock);
711
                old_fdt = files_fdtable(oldf);
712
        }
713
 
714
        old_fds = old_fdt->fd;
715
        new_fds = new_fdt->fd;
716
 
717
        memcpy(new_fdt->open_fds->fds_bits,
718
                old_fdt->open_fds->fds_bits, open_files/8);
719
        memcpy(new_fdt->close_on_exec->fds_bits,
720
                old_fdt->close_on_exec->fds_bits, open_files/8);
721
 
722
        for (i = open_files; i != 0; i--) {
723
                struct file *f = *old_fds++;
724
                if (f) {
725
                        get_file(f);
726
                } else {
727
                        /*
728
                         * The fd may be claimed in the fd bitmap but not yet
729
                         * instantiated in the files array if a sibling thread
730
                         * is partway through open().  So make sure that this
731
                         * fd is available to the new process.
732
                         */
733
                        FD_CLR(open_files - i, new_fdt->open_fds);
734
                }
735
                rcu_assign_pointer(*new_fds++, f);
736
        }
737
        spin_unlock(&oldf->file_lock);
738
 
739
        /* compute the remainder to be cleared */
740
        size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
741
 
742
        /* This is long word aligned thus could use a optimized version */
743
        memset(new_fds, 0, size);
744
 
745
        if (new_fdt->max_fds > open_files) {
746
                int left = (new_fdt->max_fds-open_files)/8;
747
                int start = open_files / (8 * sizeof(unsigned long));
748
 
749
                memset(&new_fdt->open_fds->fds_bits[start], 0, left);
750
                memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
751
        }
752
 
753
        return newf;
754
 
755
out_release:
756
        kmem_cache_free(files_cachep, newf);
757
out:
758
        return NULL;
759
}
760
 
761
static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
762
{
763
        struct files_struct *oldf, *newf;
764
        int error = 0;
765
 
766
        /*
767
         * A background process may not have any files ...
768
         */
769
        oldf = current->files;
770
        if (!oldf)
771
                goto out;
772
 
773
        if (clone_flags & CLONE_FILES) {
774
                atomic_inc(&oldf->count);
775
                goto out;
776
        }
777
 
778
        /*
779
         * Note: we may be using current for both targets (See exec.c)
780
         * This works because we cache current->files (old) as oldf. Don't
781
         * break this.
782
         */
783
        tsk->files = NULL;
784
        newf = dup_fd(oldf, &error);
785
        if (!newf)
786
                goto out;
787
 
788
        tsk->files = newf;
789
        error = 0;
790
out:
791
        return error;
792
}
793
 
794
/*
795
 *      Helper to unshare the files of the current task.
796
 *      We don't want to expose copy_files internals to
797
 *      the exec layer of the kernel.
798
 */
799
 
800
int unshare_files(void)
801
{
802
        struct files_struct *files  = current->files;
803
        int rc;
804
 
805
        BUG_ON(!files);
806
 
807
        /* This can race but the race causes us to copy when we don't
808
           need to and drop the copy */
809
        if(atomic_read(&files->count) == 1)
810
        {
811
                atomic_inc(&files->count);
812
                return 0;
813
        }
814
        rc = copy_files(0, current);
815
        if(rc)
816
                current->files = files;
817
        return rc;
818
}
819
 
820
EXPORT_SYMBOL(unshare_files);
821
 
822
static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
823
{
824
        struct sighand_struct *sig;
825
 
826
        if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
827
                atomic_inc(&current->sighand->count);
828
                return 0;
829
        }
830
        sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
831
        rcu_assign_pointer(tsk->sighand, sig);
832
        if (!sig)
833
                return -ENOMEM;
834
        atomic_set(&sig->count, 1);
835
        memcpy(sig->action, current->sighand->action, sizeof(sig->action));
836
        return 0;
837
}
838
 
839
void __cleanup_sighand(struct sighand_struct *sighand)
840
{
841
        if (atomic_dec_and_test(&sighand->count))
842
                kmem_cache_free(sighand_cachep, sighand);
843
}
844
 
845
static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
846
{
847
        struct signal_struct *sig;
848
        int ret;
849
 
850
        if (clone_flags & CLONE_THREAD) {
851
                atomic_inc(&current->signal->count);
852
                atomic_inc(&current->signal->live);
853
                return 0;
854
        }
855
        sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
856
        tsk->signal = sig;
857
        if (!sig)
858
                return -ENOMEM;
859
 
860
        ret = copy_thread_group_keys(tsk);
861
        if (ret < 0) {
862
                kmem_cache_free(signal_cachep, sig);
863
                return ret;
864
        }
865
 
866
        atomic_set(&sig->count, 1);
867
        atomic_set(&sig->live, 1);
868
        init_waitqueue_head(&sig->wait_chldexit);
869
        sig->flags = 0;
870
        sig->group_exit_code = 0;
871
        sig->group_exit_task = NULL;
872
        sig->group_stop_count = 0;
873
        sig->curr_target = NULL;
874
        init_sigpending(&sig->shared_pending);
875
        INIT_LIST_HEAD(&sig->posix_timers);
876
 
877
        hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
878
        sig->it_real_incr.tv64 = 0;
879
        sig->real_timer.function = it_real_fn;
880
        sig->tsk = tsk;
881
 
882
        sig->it_virt_expires = cputime_zero;
883
        sig->it_virt_incr = cputime_zero;
884
        sig->it_prof_expires = cputime_zero;
885
        sig->it_prof_incr = cputime_zero;
886
 
887
        sig->leader = 0; /* session leadership doesn't inherit */
888
        sig->tty_old_pgrp = NULL;
889
 
890
        sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
891
        sig->gtime = cputime_zero;
892
        sig->cgtime = cputime_zero;
893
        sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
894
        sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
895
        sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
896
        sig->sum_sched_runtime = 0;
897
        INIT_LIST_HEAD(&sig->cpu_timers[0]);
898
        INIT_LIST_HEAD(&sig->cpu_timers[1]);
899
        INIT_LIST_HEAD(&sig->cpu_timers[2]);
900
        taskstats_tgid_init(sig);
901
 
902
        task_lock(current->group_leader);
903
        memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
904
        task_unlock(current->group_leader);
905
 
906
        if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
907
                /*
908
                 * New sole thread in the process gets an expiry time
909
                 * of the whole CPU time limit.
910
                 */
911
                tsk->it_prof_expires =
912
                        secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
913
        }
914
        acct_init_pacct(&sig->pacct);
915
 
916
        tty_audit_fork(sig);
917
 
918
        return 0;
919
}
920
 
921
void __cleanup_signal(struct signal_struct *sig)
922
{
923
        exit_thread_group_keys(sig);
924
        kmem_cache_free(signal_cachep, sig);
925
}
926
 
927
static void cleanup_signal(struct task_struct *tsk)
928
{
929
        struct signal_struct *sig = tsk->signal;
930
 
931
        atomic_dec(&sig->live);
932
 
933
        if (atomic_dec_and_test(&sig->count))
934
                __cleanup_signal(sig);
935
}
936
 
937
static void copy_flags(unsigned long clone_flags, struct task_struct *p)
938
{
939
        unsigned long new_flags = p->flags;
940
 
941
        new_flags &= ~PF_SUPERPRIV;
942
        new_flags |= PF_FORKNOEXEC;
943
        if (!(clone_flags & CLONE_PTRACE))
944
                p->ptrace = 0;
945
        p->flags = new_flags;
946
        clear_freeze_flag(p);
947
}
948
 
949
asmlinkage long sys_set_tid_address(int __user *tidptr)
950
{
951
        current->clear_child_tid = tidptr;
952
 
953
        return task_pid_vnr(current);
954
}
955
 
956
static void rt_mutex_init_task(struct task_struct *p)
957
{
958
        spin_lock_init(&p->pi_lock);
959
#ifdef CONFIG_RT_MUTEXES
960
        plist_head_init(&p->pi_waiters, &p->pi_lock);
961
        p->pi_blocked_on = NULL;
962
#endif
963
}
964
 
965
/*
966
 * This creates a new process as a copy of the old one,
967
 * but does not actually start it yet.
968
 *
969
 * It copies the registers, and all the appropriate
970
 * parts of the process environment (as per the clone
971
 * flags). The actual kick-off is left to the caller.
972
 */
973
static struct task_struct *copy_process(unsigned long clone_flags,
974
                                        unsigned long stack_start,
975
                                        struct pt_regs *regs,
976
                                        unsigned long stack_size,
977
                                        int __user *child_tidptr,
978
                                        struct pid *pid)
979
{
980
        int retval;
981
        struct task_struct *p;
982
        int cgroup_callbacks_done = 0;
983
 
984
        if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
985
                return ERR_PTR(-EINVAL);
986
 
987
        /*
988
         * Thread groups must share signals as well, and detached threads
989
         * can only be started up within the thread group.
990
         */
991
        if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
992
                return ERR_PTR(-EINVAL);
993
 
994
        /*
995
         * Shared signal handlers imply shared VM. By way of the above,
996
         * thread groups also imply shared VM. Blocking this case allows
997
         * for various simplifications in other code.
998
         */
999
        if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1000
                return ERR_PTR(-EINVAL);
1001
 
1002
        retval = security_task_create(clone_flags);
1003
        if (retval)
1004
                goto fork_out;
1005
 
1006
        retval = -ENOMEM;
1007
        p = dup_task_struct(current);
1008
        if (!p)
1009
                goto fork_out;
1010
 
1011
        rt_mutex_init_task(p);
1012
 
1013
#ifdef CONFIG_TRACE_IRQFLAGS
1014
        DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1015
        DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1016
#endif
1017
        retval = -EAGAIN;
1018
        if (atomic_read(&p->user->processes) >=
1019
                        p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1020
                if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1021
                    p->user != current->nsproxy->user_ns->root_user)
1022
                        goto bad_fork_free;
1023
        }
1024
 
1025
        atomic_inc(&p->user->__count);
1026
        atomic_inc(&p->user->processes);
1027
        get_group_info(p->group_info);
1028
 
1029
        /*
1030
         * If multiple threads are within copy_process(), then this check
1031
         * triggers too late. This doesn't hurt, the check is only there
1032
         * to stop root fork bombs.
1033
         */
1034
        if (nr_threads >= max_threads)
1035
                goto bad_fork_cleanup_count;
1036
 
1037
        if (!try_module_get(task_thread_info(p)->exec_domain->module))
1038
                goto bad_fork_cleanup_count;
1039
 
1040
        if (p->binfmt && !try_module_get(p->binfmt->module))
1041
                goto bad_fork_cleanup_put_domain;
1042
 
1043
        p->did_exec = 0;
1044
        delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1045
        copy_flags(clone_flags, p);
1046
        INIT_LIST_HEAD(&p->children);
1047
        INIT_LIST_HEAD(&p->sibling);
1048
        p->vfork_done = NULL;
1049
        spin_lock_init(&p->alloc_lock);
1050
 
1051
        clear_tsk_thread_flag(p, TIF_SIGPENDING);
1052
        init_sigpending(&p->pending);
1053
 
1054
        p->utime = cputime_zero;
1055
        p->stime = cputime_zero;
1056
        p->gtime = cputime_zero;
1057
        p->utimescaled = cputime_zero;
1058
        p->stimescaled = cputime_zero;
1059
        p->prev_utime = cputime_zero;
1060
        p->prev_stime = cputime_zero;
1061
 
1062
#ifdef CONFIG_TASK_XACCT
1063
        p->rchar = 0;            /* I/O counter: bytes read */
1064
        p->wchar = 0;            /* I/O counter: bytes written */
1065
        p->syscr = 0;            /* I/O counter: read syscalls */
1066
        p->syscw = 0;            /* I/O counter: write syscalls */
1067
#endif
1068
        task_io_accounting_init(p);
1069
        acct_clear_integrals(p);
1070
 
1071
        p->it_virt_expires = cputime_zero;
1072
        p->it_prof_expires = cputime_zero;
1073
        p->it_sched_expires = 0;
1074
        INIT_LIST_HEAD(&p->cpu_timers[0]);
1075
        INIT_LIST_HEAD(&p->cpu_timers[1]);
1076
        INIT_LIST_HEAD(&p->cpu_timers[2]);
1077
 
1078
        p->lock_depth = -1;             /* -1 = no lock */
1079
        do_posix_clock_monotonic_gettime(&p->start_time);
1080
        p->real_start_time = p->start_time;
1081
        monotonic_to_bootbased(&p->real_start_time);
1082
#ifdef CONFIG_SECURITY
1083
        p->security = NULL;
1084
#endif
1085
        p->io_context = NULL;
1086
        p->audit_context = NULL;
1087
        cgroup_fork(p);
1088
#ifdef CONFIG_NUMA
1089
        p->mempolicy = mpol_copy(p->mempolicy);
1090
        if (IS_ERR(p->mempolicy)) {
1091
                retval = PTR_ERR(p->mempolicy);
1092
                p->mempolicy = NULL;
1093
                goto bad_fork_cleanup_cgroup;
1094
        }
1095
        mpol_fix_fork_child_flag(p);
1096
#endif
1097
#ifdef CONFIG_TRACE_IRQFLAGS
1098
        p->irq_events = 0;
1099
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1100
        p->hardirqs_enabled = 1;
1101
#else
1102
        p->hardirqs_enabled = 0;
1103
#endif
1104
        p->hardirq_enable_ip = 0;
1105
        p->hardirq_enable_event = 0;
1106
        p->hardirq_disable_ip = _THIS_IP_;
1107
        p->hardirq_disable_event = 0;
1108
        p->softirqs_enabled = 1;
1109
        p->softirq_enable_ip = _THIS_IP_;
1110
        p->softirq_enable_event = 0;
1111
        p->softirq_disable_ip = 0;
1112
        p->softirq_disable_event = 0;
1113
        p->hardirq_context = 0;
1114
        p->softirq_context = 0;
1115
#endif
1116
#ifdef CONFIG_LOCKDEP
1117
        p->lockdep_depth = 0; /* no locks held yet */
1118
        p->curr_chain_key = 0;
1119
        p->lockdep_recursion = 0;
1120
#endif
1121
 
1122
#ifdef CONFIG_DEBUG_MUTEXES
1123
        p->blocked_on = NULL; /* not blocked yet */
1124
#endif
1125
 
1126
        /* Perform scheduler related setup. Assign this task to a CPU. */
1127
        sched_fork(p, clone_flags);
1128
 
1129
        if ((retval = security_task_alloc(p)))
1130
                goto bad_fork_cleanup_policy;
1131
        if ((retval = audit_alloc(p)))
1132
                goto bad_fork_cleanup_security;
1133
        /* copy all the process information */
1134
        if ((retval = copy_semundo(clone_flags, p)))
1135
                goto bad_fork_cleanup_audit;
1136
        if ((retval = copy_files(clone_flags, p)))
1137
                goto bad_fork_cleanup_semundo;
1138
        if ((retval = copy_fs(clone_flags, p)))
1139
                goto bad_fork_cleanup_files;
1140
        if ((retval = copy_sighand(clone_flags, p)))
1141
                goto bad_fork_cleanup_fs;
1142
        if ((retval = copy_signal(clone_flags, p)))
1143
                goto bad_fork_cleanup_sighand;
1144
        if ((retval = copy_mm(clone_flags, p)))
1145
                goto bad_fork_cleanup_signal;
1146
        if ((retval = copy_keys(clone_flags, p)))
1147
                goto bad_fork_cleanup_mm;
1148
        if ((retval = copy_namespaces(clone_flags, p)))
1149
                goto bad_fork_cleanup_keys;
1150
        retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1151
        if (retval)
1152
                goto bad_fork_cleanup_namespaces;
1153
 
1154
        if (pid != &init_struct_pid) {
1155
                retval = -ENOMEM;
1156
                pid = alloc_pid(task_active_pid_ns(p));
1157
                if (!pid)
1158
                        goto bad_fork_cleanup_namespaces;
1159
 
1160
                if (clone_flags & CLONE_NEWPID) {
1161
                        retval = pid_ns_prepare_proc(task_active_pid_ns(p));
1162
                        if (retval < 0)
1163
                                goto bad_fork_free_pid;
1164
                }
1165
        }
1166
 
1167
        p->pid = pid_nr(pid);
1168
        p->tgid = p->pid;
1169
        if (clone_flags & CLONE_THREAD)
1170
                p->tgid = current->tgid;
1171
 
1172
        p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1173
        /*
1174
         * Clear TID on mm_release()?
1175
         */
1176
        p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1177
#ifdef CONFIG_FUTEX
1178
        p->robust_list = NULL;
1179
#ifdef CONFIG_COMPAT
1180
        p->compat_robust_list = NULL;
1181
#endif
1182
        INIT_LIST_HEAD(&p->pi_state_list);
1183
        p->pi_state_cache = NULL;
1184
#endif
1185
        /*
1186
         * sigaltstack should be cleared when sharing the same VM
1187
         */
1188
        if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1189
                p->sas_ss_sp = p->sas_ss_size = 0;
1190
 
1191
        /*
1192
         * Syscall tracing should be turned off in the child regardless
1193
         * of CLONE_PTRACE.
1194
         */
1195
        clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1196
#ifdef TIF_SYSCALL_EMU
1197
        clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1198
#endif
1199
 
1200
        /* Our parent execution domain becomes current domain
1201
           These must match for thread signalling to apply */
1202
        p->parent_exec_id = p->self_exec_id;
1203
 
1204
        /* ok, now we should be set up.. */
1205
        p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1206
        p->pdeath_signal = 0;
1207
        p->exit_state = 0;
1208
 
1209
        /*
1210
         * Ok, make it visible to the rest of the system.
1211
         * We dont wake it up yet.
1212
         */
1213
        p->group_leader = p;
1214
        INIT_LIST_HEAD(&p->thread_group);
1215
        INIT_LIST_HEAD(&p->ptrace_children);
1216
        INIT_LIST_HEAD(&p->ptrace_list);
1217
 
1218
        /* Now that the task is set up, run cgroup callbacks if
1219
         * necessary. We need to run them before the task is visible
1220
         * on the tasklist. */
1221
        cgroup_fork_callbacks(p);
1222
        cgroup_callbacks_done = 1;
1223
 
1224
        /* Need tasklist lock for parent etc handling! */
1225
        write_lock_irq(&tasklist_lock);
1226
 
1227
        /* for sys_ioprio_set(IOPRIO_WHO_PGRP) */
1228
        p->ioprio = current->ioprio;
1229
 
1230
        /*
1231
         * The task hasn't been attached yet, so its cpus_allowed mask will
1232
         * not be changed, nor will its assigned CPU.
1233
         *
1234
         * The cpus_allowed mask of the parent may have changed after it was
1235
         * copied first time - so re-copy it here, then check the child's CPU
1236
         * to ensure it is on a valid CPU (and if not, just force it back to
1237
         * parent's CPU). This avoids alot of nasty races.
1238
         */
1239
        p->cpus_allowed = current->cpus_allowed;
1240
        if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1241
                        !cpu_online(task_cpu(p))))
1242
                set_task_cpu(p, smp_processor_id());
1243
 
1244
        /* CLONE_PARENT re-uses the old parent */
1245
        if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1246
                p->real_parent = current->real_parent;
1247
        else
1248
                p->real_parent = current;
1249
        p->parent = p->real_parent;
1250
 
1251
        spin_lock(&current->sighand->siglock);
1252
 
1253
        /*
1254
         * Process group and session signals need to be delivered to just the
1255
         * parent before the fork or both the parent and the child after the
1256
         * fork. Restart if a signal comes in before we add the new process to
1257
         * it's process group.
1258
         * A fatal signal pending means that current will exit, so the new
1259
         * thread can't slip out of an OOM kill (or normal SIGKILL).
1260
         */
1261
        recalc_sigpending();
1262
        if (signal_pending(current)) {
1263
                spin_unlock(&current->sighand->siglock);
1264
                write_unlock_irq(&tasklist_lock);
1265
                retval = -ERESTARTNOINTR;
1266
                goto bad_fork_free_pid;
1267
        }
1268
 
1269
        if (clone_flags & CLONE_THREAD) {
1270
                p->group_leader = current->group_leader;
1271
                list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1272
 
1273
                if (!cputime_eq(current->signal->it_virt_expires,
1274
                                cputime_zero) ||
1275
                    !cputime_eq(current->signal->it_prof_expires,
1276
                                cputime_zero) ||
1277
                    current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1278
                    !list_empty(&current->signal->cpu_timers[0]) ||
1279
                    !list_empty(&current->signal->cpu_timers[1]) ||
1280
                    !list_empty(&current->signal->cpu_timers[2])) {
1281
                        /*
1282
                         * Have child wake up on its first tick to check
1283
                         * for process CPU timers.
1284
                         */
1285
                        p->it_prof_expires = jiffies_to_cputime(1);
1286
                }
1287
        }
1288
 
1289
        if (likely(p->pid)) {
1290
                add_parent(p);
1291
                if (unlikely(p->ptrace & PT_PTRACED))
1292
                        __ptrace_link(p, current->parent);
1293
 
1294
                if (thread_group_leader(p)) {
1295
                        if (clone_flags & CLONE_NEWPID)
1296
                                p->nsproxy->pid_ns->child_reaper = p;
1297
 
1298
                        p->signal->tty = current->signal->tty;
1299
                        set_task_pgrp(p, task_pgrp_nr(current));
1300
                        set_task_session(p, task_session_nr(current));
1301
                        attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1302
                        attach_pid(p, PIDTYPE_SID, task_session(current));
1303
                        list_add_tail_rcu(&p->tasks, &init_task.tasks);
1304
                        __get_cpu_var(process_counts)++;
1305
                }
1306
                attach_pid(p, PIDTYPE_PID, pid);
1307
                nr_threads++;
1308
        }
1309
 
1310
        total_forks++;
1311
        spin_unlock(&current->sighand->siglock);
1312
        write_unlock_irq(&tasklist_lock);
1313
        proc_fork_connector(p);
1314
        cgroup_post_fork(p);
1315
        return p;
1316
 
1317
bad_fork_free_pid:
1318
        if (pid != &init_struct_pid)
1319
                free_pid(pid);
1320
bad_fork_cleanup_namespaces:
1321
        exit_task_namespaces(p);
1322
bad_fork_cleanup_keys:
1323
        exit_keys(p);
1324
bad_fork_cleanup_mm:
1325
        if (p->mm)
1326
                mmput(p->mm);
1327
bad_fork_cleanup_signal:
1328
        cleanup_signal(p);
1329
bad_fork_cleanup_sighand:
1330
        __cleanup_sighand(p->sighand);
1331
bad_fork_cleanup_fs:
1332
        exit_fs(p); /* blocking */
1333
bad_fork_cleanup_files:
1334
        exit_files(p); /* blocking */
1335
bad_fork_cleanup_semundo:
1336
        exit_sem(p);
1337
bad_fork_cleanup_audit:
1338
        audit_free(p);
1339
bad_fork_cleanup_security:
1340
        security_task_free(p);
1341
bad_fork_cleanup_policy:
1342
#ifdef CONFIG_NUMA
1343
        mpol_free(p->mempolicy);
1344
bad_fork_cleanup_cgroup:
1345
#endif
1346
        cgroup_exit(p, cgroup_callbacks_done);
1347
        delayacct_tsk_free(p);
1348
        if (p->binfmt)
1349
                module_put(p->binfmt->module);
1350
bad_fork_cleanup_put_domain:
1351
        module_put(task_thread_info(p)->exec_domain->module);
1352
bad_fork_cleanup_count:
1353
        put_group_info(p->group_info);
1354
        atomic_dec(&p->user->processes);
1355
        free_uid(p->user);
1356
bad_fork_free:
1357
        free_task(p);
1358
fork_out:
1359
        return ERR_PTR(retval);
1360
}
1361
 
1362
noinline struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1363
{
1364
        memset(regs, 0, sizeof(struct pt_regs));
1365
        return regs;
1366
}
1367
 
1368
struct task_struct * __cpuinit fork_idle(int cpu)
1369
{
1370
        struct task_struct *task;
1371
        struct pt_regs regs;
1372
 
1373
        task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1374
                                &init_struct_pid);
1375
        if (!IS_ERR(task))
1376
                init_idle(task, cpu);
1377
 
1378
        return task;
1379
}
1380
 
1381
static int fork_traceflag(unsigned clone_flags)
1382
{
1383
        if (clone_flags & CLONE_UNTRACED)
1384
                return 0;
1385
        else if (clone_flags & CLONE_VFORK) {
1386
                if (current->ptrace & PT_TRACE_VFORK)
1387
                        return PTRACE_EVENT_VFORK;
1388
        } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1389
                if (current->ptrace & PT_TRACE_CLONE)
1390
                        return PTRACE_EVENT_CLONE;
1391
        } else if (current->ptrace & PT_TRACE_FORK)
1392
                return PTRACE_EVENT_FORK;
1393
 
1394
        return 0;
1395
}
1396
 
1397
/*
1398
 *  Ok, this is the main fork-routine.
1399
 *
1400
 * It copies the process, and if successful kick-starts
1401
 * it and waits for it to finish using the VM if required.
1402
 */
1403
long do_fork(unsigned long clone_flags,
1404
              unsigned long stack_start,
1405
              struct pt_regs *regs,
1406
              unsigned long stack_size,
1407
              int __user *parent_tidptr,
1408
              int __user *child_tidptr)
1409
{
1410
        struct task_struct *p;
1411
        int trace = 0;
1412
        long nr;
1413
 
1414
        if (unlikely(current->ptrace)) {
1415
                trace = fork_traceflag (clone_flags);
1416
                if (trace)
1417
                        clone_flags |= CLONE_PTRACE;
1418
        }
1419
 
1420
        p = copy_process(clone_flags, stack_start, regs, stack_size,
1421
                        child_tidptr, NULL);
1422
        /*
1423
         * Do this prior waking up the new thread - the thread pointer
1424
         * might get invalid after that point, if the thread exits quickly.
1425
         */
1426
        if (!IS_ERR(p)) {
1427
                struct completion vfork;
1428
 
1429
                /*
1430
                 * this is enough to call pid_nr_ns here, but this if
1431
                 * improves optimisation of regular fork()
1432
                 */
1433
                nr = (clone_flags & CLONE_NEWPID) ?
1434
                        task_pid_nr_ns(p, current->nsproxy->pid_ns) :
1435
                                task_pid_vnr(p);
1436
 
1437
                if (clone_flags & CLONE_PARENT_SETTID)
1438
                        put_user(nr, parent_tidptr);
1439
 
1440
                if (clone_flags & CLONE_VFORK) {
1441
                        p->vfork_done = &vfork;
1442
                        init_completion(&vfork);
1443
                }
1444
 
1445
                if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1446
                        /*
1447
                         * We'll start up with an immediate SIGSTOP.
1448
                         */
1449
                        sigaddset(&p->pending.signal, SIGSTOP);
1450
                        set_tsk_thread_flag(p, TIF_SIGPENDING);
1451
                }
1452
 
1453
                if (!(clone_flags & CLONE_STOPPED))
1454
                        wake_up_new_task(p, clone_flags);
1455
                else
1456
                        p->state = TASK_STOPPED;
1457
 
1458
                if (unlikely (trace)) {
1459
                        current->ptrace_message = nr;
1460
                        ptrace_notify ((trace << 8) | SIGTRAP);
1461
                }
1462
 
1463
                if (clone_flags & CLONE_VFORK) {
1464
                        freezer_do_not_count();
1465
                        wait_for_completion(&vfork);
1466
                        freezer_count();
1467
                        if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1468
                                current->ptrace_message = nr;
1469
                                ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1470
                        }
1471
                }
1472
        } else {
1473
                nr = PTR_ERR(p);
1474
        }
1475
        return nr;
1476
}
1477
 
1478
#ifndef ARCH_MIN_MMSTRUCT_ALIGN
1479
#define ARCH_MIN_MMSTRUCT_ALIGN 0
1480
#endif
1481
 
1482
static void sighand_ctor(struct kmem_cache *cachep, void *data)
1483
{
1484
        struct sighand_struct *sighand = data;
1485
 
1486
        spin_lock_init(&sighand->siglock);
1487
        init_waitqueue_head(&sighand->signalfd_wqh);
1488
}
1489
 
1490
void __init proc_caches_init(void)
1491
{
1492
        sighand_cachep = kmem_cache_create("sighand_cache",
1493
                        sizeof(struct sighand_struct), 0,
1494
                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1495
                        sighand_ctor);
1496
        signal_cachep = kmem_cache_create("signal_cache",
1497
                        sizeof(struct signal_struct), 0,
1498
                        SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1499
        files_cachep = kmem_cache_create("files_cache",
1500
                        sizeof(struct files_struct), 0,
1501
                        SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1502
        fs_cachep = kmem_cache_create("fs_cache",
1503
                        sizeof(struct fs_struct), 0,
1504
                        SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1505
        vm_area_cachep = kmem_cache_create("vm_area_struct",
1506
                        sizeof(struct vm_area_struct), 0,
1507
                        SLAB_PANIC, NULL);
1508
        mm_cachep = kmem_cache_create("mm_struct",
1509
                        sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1510
                        SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1511
}
1512
 
1513
/*
1514
 * Check constraints on flags passed to the unshare system call and
1515
 * force unsharing of additional process context as appropriate.
1516
 */
1517
static void check_unshare_flags(unsigned long *flags_ptr)
1518
{
1519
        /*
1520
         * If unsharing a thread from a thread group, must also
1521
         * unshare vm.
1522
         */
1523
        if (*flags_ptr & CLONE_THREAD)
1524
                *flags_ptr |= CLONE_VM;
1525
 
1526
        /*
1527
         * If unsharing vm, must also unshare signal handlers.
1528
         */
1529
        if (*flags_ptr & CLONE_VM)
1530
                *flags_ptr |= CLONE_SIGHAND;
1531
 
1532
        /*
1533
         * If unsharing signal handlers and the task was created
1534
         * using CLONE_THREAD, then must unshare the thread
1535
         */
1536
        if ((*flags_ptr & CLONE_SIGHAND) &&
1537
            (atomic_read(&current->signal->count) > 1))
1538
                *flags_ptr |= CLONE_THREAD;
1539
 
1540
        /*
1541
         * If unsharing namespace, must also unshare filesystem information.
1542
         */
1543
        if (*flags_ptr & CLONE_NEWNS)
1544
                *flags_ptr |= CLONE_FS;
1545
}
1546
 
1547
/*
1548
 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1549
 */
1550
static int unshare_thread(unsigned long unshare_flags)
1551
{
1552
        if (unshare_flags & CLONE_THREAD)
1553
                return -EINVAL;
1554
 
1555
        return 0;
1556
}
1557
 
1558
/*
1559
 * Unshare the filesystem structure if it is being shared
1560
 */
1561
static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1562
{
1563
        struct fs_struct *fs = current->fs;
1564
 
1565
        if ((unshare_flags & CLONE_FS) &&
1566
            (fs && atomic_read(&fs->count) > 1)) {
1567
                *new_fsp = __copy_fs_struct(current->fs);
1568
                if (!*new_fsp)
1569
                        return -ENOMEM;
1570
        }
1571
 
1572
        return 0;
1573
}
1574
 
1575
/*
1576
 * Unsharing of sighand is not supported yet
1577
 */
1578
static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1579
{
1580
        struct sighand_struct *sigh = current->sighand;
1581
 
1582
        if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1583
                return -EINVAL;
1584
        else
1585
                return 0;
1586
}
1587
 
1588
/*
1589
 * Unshare vm if it is being shared
1590
 */
1591
static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1592
{
1593
        struct mm_struct *mm = current->mm;
1594
 
1595
        if ((unshare_flags & CLONE_VM) &&
1596
            (mm && atomic_read(&mm->mm_users) > 1)) {
1597
                return -EINVAL;
1598
        }
1599
 
1600
        return 0;
1601
}
1602
 
1603
/*
1604
 * Unshare file descriptor table if it is being shared
1605
 */
1606
static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1607
{
1608
        struct files_struct *fd = current->files;
1609
        int error = 0;
1610
 
1611
        if ((unshare_flags & CLONE_FILES) &&
1612
            (fd && atomic_read(&fd->count) > 1)) {
1613
                *new_fdp = dup_fd(fd, &error);
1614
                if (!*new_fdp)
1615
                        return error;
1616
        }
1617
 
1618
        return 0;
1619
}
1620
 
1621
/*
1622
 * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1623
 * supported yet
1624
 */
1625
static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1626
{
1627
        if (unshare_flags & CLONE_SYSVSEM)
1628
                return -EINVAL;
1629
 
1630
        return 0;
1631
}
1632
 
1633
/*
1634
 * unshare allows a process to 'unshare' part of the process
1635
 * context which was originally shared using clone.  copy_*
1636
 * functions used by do_fork() cannot be used here directly
1637
 * because they modify an inactive task_struct that is being
1638
 * constructed. Here we are modifying the current, active,
1639
 * task_struct.
1640
 */
1641
asmlinkage long sys_unshare(unsigned long unshare_flags)
1642
{
1643
        int err = 0;
1644
        struct fs_struct *fs, *new_fs = NULL;
1645
        struct sighand_struct *new_sigh = NULL;
1646
        struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1647
        struct files_struct *fd, *new_fd = NULL;
1648
        struct sem_undo_list *new_ulist = NULL;
1649
        struct nsproxy *new_nsproxy = NULL;
1650
 
1651
        check_unshare_flags(&unshare_flags);
1652
 
1653
        /* Return -EINVAL for all unsupported flags */
1654
        err = -EINVAL;
1655
        if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1656
                                CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1657
                                CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
1658
                                CLONE_NEWNET))
1659
                goto bad_unshare_out;
1660
 
1661
        if ((err = unshare_thread(unshare_flags)))
1662
                goto bad_unshare_out;
1663
        if ((err = unshare_fs(unshare_flags, &new_fs)))
1664
                goto bad_unshare_cleanup_thread;
1665
        if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1666
                goto bad_unshare_cleanup_fs;
1667
        if ((err = unshare_vm(unshare_flags, &new_mm)))
1668
                goto bad_unshare_cleanup_sigh;
1669
        if ((err = unshare_fd(unshare_flags, &new_fd)))
1670
                goto bad_unshare_cleanup_vm;
1671
        if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1672
                goto bad_unshare_cleanup_fd;
1673
        if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1674
                        new_fs)))
1675
                goto bad_unshare_cleanup_semundo;
1676
 
1677
        if (new_fs ||  new_mm || new_fd || new_ulist || new_nsproxy) {
1678
 
1679
                if (new_nsproxy) {
1680
                        switch_task_namespaces(current, new_nsproxy);
1681
                        new_nsproxy = NULL;
1682
                }
1683
 
1684
                task_lock(current);
1685
 
1686
                if (new_fs) {
1687
                        fs = current->fs;
1688
                        current->fs = new_fs;
1689
                        new_fs = fs;
1690
                }
1691
 
1692
                if (new_mm) {
1693
                        mm = current->mm;
1694
                        active_mm = current->active_mm;
1695
                        current->mm = new_mm;
1696
                        current->active_mm = new_mm;
1697
                        activate_mm(active_mm, new_mm);
1698
                        new_mm = mm;
1699
                }
1700
 
1701
                if (new_fd) {
1702
                        fd = current->files;
1703
                        current->files = new_fd;
1704
                        new_fd = fd;
1705
                }
1706
 
1707
                task_unlock(current);
1708
        }
1709
 
1710
        if (new_nsproxy)
1711
                put_nsproxy(new_nsproxy);
1712
 
1713
bad_unshare_cleanup_semundo:
1714
bad_unshare_cleanup_fd:
1715
        if (new_fd)
1716
                put_files_struct(new_fd);
1717
 
1718
bad_unshare_cleanup_vm:
1719
        if (new_mm)
1720
                mmput(new_mm);
1721
 
1722
bad_unshare_cleanup_sigh:
1723
        if (new_sigh)
1724
                if (atomic_dec_and_test(&new_sigh->count))
1725
                        kmem_cache_free(sighand_cachep, new_sigh);
1726
 
1727
bad_unshare_cleanup_fs:
1728
        if (new_fs)
1729
                put_fs_struct(new_fs);
1730
 
1731
bad_unshare_cleanup_thread:
1732
bad_unshare_out:
1733
        return err;
1734
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.