OpenCores
URL https://opencores.org/ocsvn/or1k_soc_on_altera_embedded_dev_kit/or1k_soc_on_altera_embedded_dev_kit/trunk

Subversion Repositories or1k_soc_on_altera_embedded_dev_kit

[/] [or1k_soc_on_altera_embedded_dev_kit/] [trunk/] [linux-2.6/] [linux-2.6.24/] [kernel/] [posix-timers.c] - Blame information for rev 17

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 3 xianfeng
/*
2
 * linux/kernel/posix-timers.c
3
 *
4
 *
5
 * 2002-10-15  Posix Clocks & timers
6
 *                           by George Anzinger george@mvista.com
7
 *
8
 *                           Copyright (C) 2002 2003 by MontaVista Software.
9
 *
10
 * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11
 *                           Copyright (C) 2004 Boris Hu
12
 *
13
 * This program is free software; you can redistribute it and/or modify
14
 * it under the terms of the GNU General Public License as published by
15
 * the Free Software Foundation; either version 2 of the License, or (at
16
 * your option) any later version.
17
 *
18
 * This program is distributed in the hope that it will be useful, but
19
 * WITHOUT ANY WARRANTY; without even the implied warranty of
20
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21
 * General Public License for more details.
22
 
23
 * You should have received a copy of the GNU General Public License
24
 * along with this program; if not, write to the Free Software
25
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26
 *
27
 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28
 */
29
 
30
/* These are all the functions necessary to implement
31
 * POSIX clocks & timers
32
 */
33
#include <linux/mm.h>
34
#include <linux/interrupt.h>
35
#include <linux/slab.h>
36
#include <linux/time.h>
37
#include <linux/mutex.h>
38
 
39
#include <asm/uaccess.h>
40
#include <asm/semaphore.h>
41
#include <linux/list.h>
42
#include <linux/init.h>
43
#include <linux/compiler.h>
44
#include <linux/idr.h>
45
#include <linux/posix-timers.h>
46
#include <linux/syscalls.h>
47
#include <linux/wait.h>
48
#include <linux/workqueue.h>
49
#include <linux/module.h>
50
 
51
/*
52
 * Management arrays for POSIX timers.   Timers are kept in slab memory
53
 * Timer ids are allocated by an external routine that keeps track of the
54
 * id and the timer.  The external interface is:
55
 *
56
 * void *idr_find(struct idr *idp, int id);           to find timer_id <id>
57
 * int idr_get_new(struct idr *idp, void *ptr);       to get a new id and
58
 *                                                    related it to <ptr>
59
 * void idr_remove(struct idr *idp, int id);          to release <id>
60
 * void idr_init(struct idr *idp);                    to initialize <idp>
61
 *                                                    which we supply.
62
 * The idr_get_new *may* call slab for more memory so it must not be
63
 * called under a spin lock.  Likewise idr_remore may release memory
64
 * (but it may be ok to do this under a lock...).
65
 * idr_find is just a memory look up and is quite fast.  A -1 return
66
 * indicates that the requested id does not exist.
67
 */
68
 
69
/*
70
 * Lets keep our timers in a slab cache :-)
71
 */
72
static struct kmem_cache *posix_timers_cache;
73
static struct idr posix_timers_id;
74
static DEFINE_SPINLOCK(idr_lock);
75
 
76
/*
77
 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
78
 * SIGEV values.  Here we put out an error if this assumption fails.
79
 */
80
#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
81
                       ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
82
#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
83
#endif
84
 
85
 
86
/*
87
 * The timer ID is turned into a timer address by idr_find().
88
 * Verifying a valid ID consists of:
89
 *
90
 * a) checking that idr_find() returns other than -1.
91
 * b) checking that the timer id matches the one in the timer itself.
92
 * c) that the timer owner is in the callers thread group.
93
 */
94
 
95
/*
96
 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
97
 *          to implement others.  This structure defines the various
98
 *          clocks and allows the possibility of adding others.  We
99
 *          provide an interface to add clocks to the table and expect
100
 *          the "arch" code to add at least one clock that is high
101
 *          resolution.  Here we define the standard CLOCK_REALTIME as a
102
 *          1/HZ resolution clock.
103
 *
104
 * RESOLUTION: Clock resolution is used to round up timer and interval
105
 *          times, NOT to report clock times, which are reported with as
106
 *          much resolution as the system can muster.  In some cases this
107
 *          resolution may depend on the underlying clock hardware and
108
 *          may not be quantifiable until run time, and only then is the
109
 *          necessary code is written.  The standard says we should say
110
 *          something about this issue in the documentation...
111
 *
112
 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
113
 *          various clock functions.  For clocks that use the standard
114
 *          system timer code these entries should be NULL.  This will
115
 *          allow dispatch without the overhead of indirect function
116
 *          calls.  CLOCKS that depend on other sources (e.g. WWV or GPS)
117
 *          must supply functions here, even if the function just returns
118
 *          ENOSYS.  The standard POSIX timer management code assumes the
119
 *          following: 1.) The k_itimer struct (sched.h) is used for the
120
 *          timer.  2.) The list, it_lock, it_clock, it_id and it_process
121
 *          fields are not modified by timer code.
122
 *
123
 *          At this time all functions EXCEPT clock_nanosleep can be
124
 *          redirected by the CLOCKS structure.  Clock_nanosleep is in
125
 *          there, but the code ignores it.
126
 *
127
 * Permissions: It is assumed that the clock_settime() function defined
128
 *          for each clock will take care of permission checks.  Some
129
 *          clocks may be set able by any user (i.e. local process
130
 *          clocks) others not.  Currently the only set able clock we
131
 *          have is CLOCK_REALTIME and its high res counter part, both of
132
 *          which we beg off on and pass to do_sys_settimeofday().
133
 */
134
 
135
static struct k_clock posix_clocks[MAX_CLOCKS];
136
 
137
/*
138
 * These ones are defined below.
139
 */
140
static int common_nsleep(const clockid_t, int flags, struct timespec *t,
141
                         struct timespec __user *rmtp);
142
static void common_timer_get(struct k_itimer *, struct itimerspec *);
143
static int common_timer_set(struct k_itimer *, int,
144
                            struct itimerspec *, struct itimerspec *);
145
static int common_timer_del(struct k_itimer *timer);
146
 
147
static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
148
 
149
static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
150
 
151
static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
152
{
153
        spin_unlock_irqrestore(&timr->it_lock, flags);
154
}
155
 
156
/*
157
 * Call the k_clock hook function if non-null, or the default function.
158
 */
159
#define CLOCK_DISPATCH(clock, call, arglist) \
160
        ((clock) < 0 ? posix_cpu_##call arglist : \
161
         (posix_clocks[clock].call != NULL \
162
          ? (*posix_clocks[clock].call) arglist : common_##call arglist))
163
 
164
/*
165
 * Default clock hook functions when the struct k_clock passed
166
 * to register_posix_clock leaves a function pointer null.
167
 *
168
 * The function common_CALL is the default implementation for
169
 * the function pointer CALL in struct k_clock.
170
 */
171
 
172
static inline int common_clock_getres(const clockid_t which_clock,
173
                                      struct timespec *tp)
174
{
175
        tp->tv_sec = 0;
176
        tp->tv_nsec = posix_clocks[which_clock].res;
177
        return 0;
178
}
179
 
180
/*
181
 * Get real time for posix timers
182
 */
183
static int common_clock_get(clockid_t which_clock, struct timespec *tp)
184
{
185
        ktime_get_real_ts(tp);
186
        return 0;
187
}
188
 
189
static inline int common_clock_set(const clockid_t which_clock,
190
                                   struct timespec *tp)
191
{
192
        return do_sys_settimeofday(tp, NULL);
193
}
194
 
195
static int common_timer_create(struct k_itimer *new_timer)
196
{
197
        hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
198
        return 0;
199
}
200
 
201
/*
202
 * Return nonzero if we know a priori this clockid_t value is bogus.
203
 */
204
static inline int invalid_clockid(const clockid_t which_clock)
205
{
206
        if (which_clock < 0)     /* CPU clock, posix_cpu_* will check it */
207
                return 0;
208
        if ((unsigned) which_clock >= MAX_CLOCKS)
209
                return 1;
210
        if (posix_clocks[which_clock].clock_getres != NULL)
211
                return 0;
212
        if (posix_clocks[which_clock].res != 0)
213
                return 0;
214
        return 1;
215
}
216
 
217
/*
218
 * Get monotonic time for posix timers
219
 */
220
static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
221
{
222
        ktime_get_ts(tp);
223
        return 0;
224
}
225
 
226
/*
227
 * Initialize everything, well, just everything in Posix clocks/timers ;)
228
 */
229
static __init int init_posix_timers(void)
230
{
231
        struct k_clock clock_realtime = {
232
                .clock_getres = hrtimer_get_res,
233
        };
234
        struct k_clock clock_monotonic = {
235
                .clock_getres = hrtimer_get_res,
236
                .clock_get = posix_ktime_get_ts,
237
                .clock_set = do_posix_clock_nosettime,
238
        };
239
 
240
        register_posix_clock(CLOCK_REALTIME, &clock_realtime);
241
        register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
242
 
243
        posix_timers_cache = kmem_cache_create("posix_timers_cache",
244
                                        sizeof (struct k_itimer), 0, SLAB_PANIC,
245
                                        NULL);
246
        idr_init(&posix_timers_id);
247
        return 0;
248
}
249
 
250
__initcall(init_posix_timers);
251
 
252
static void schedule_next_timer(struct k_itimer *timr)
253
{
254
        struct hrtimer *timer = &timr->it.real.timer;
255
 
256
        if (timr->it.real.interval.tv64 == 0)
257
                return;
258
 
259
        timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
260
                                            timr->it.real.interval);
261
 
262
        timr->it_overrun_last = timr->it_overrun;
263
        timr->it_overrun = -1;
264
        ++timr->it_requeue_pending;
265
        hrtimer_restart(timer);
266
}
267
 
268
/*
269
 * This function is exported for use by the signal deliver code.  It is
270
 * called just prior to the info block being released and passes that
271
 * block to us.  It's function is to update the overrun entry AND to
272
 * restart the timer.  It should only be called if the timer is to be
273
 * restarted (i.e. we have flagged this in the sys_private entry of the
274
 * info block).
275
 *
276
 * To protect aginst the timer going away while the interrupt is queued,
277
 * we require that the it_requeue_pending flag be set.
278
 */
279
void do_schedule_next_timer(struct siginfo *info)
280
{
281
        struct k_itimer *timr;
282
        unsigned long flags;
283
 
284
        timr = lock_timer(info->si_tid, &flags);
285
 
286
        if (timr && timr->it_requeue_pending == info->si_sys_private) {
287
                if (timr->it_clock < 0)
288
                        posix_cpu_timer_schedule(timr);
289
                else
290
                        schedule_next_timer(timr);
291
 
292
                info->si_overrun = timr->it_overrun_last;
293
        }
294
 
295
        if (timr)
296
                unlock_timer(timr, flags);
297
}
298
 
299
int posix_timer_event(struct k_itimer *timr,int si_private)
300
{
301
        memset(&timr->sigq->info, 0, sizeof(siginfo_t));
302
        timr->sigq->info.si_sys_private = si_private;
303
        /* Send signal to the process that owns this timer.*/
304
 
305
        timr->sigq->info.si_signo = timr->it_sigev_signo;
306
        timr->sigq->info.si_errno = 0;
307
        timr->sigq->info.si_code = SI_TIMER;
308
        timr->sigq->info.si_tid = timr->it_id;
309
        timr->sigq->info.si_value = timr->it_sigev_value;
310
 
311
        if (timr->it_sigev_notify & SIGEV_THREAD_ID) {
312
                struct task_struct *leader;
313
                int ret = send_sigqueue(timr->it_sigev_signo, timr->sigq,
314
                                        timr->it_process);
315
 
316
                if (likely(ret >= 0))
317
                        return ret;
318
 
319
                timr->it_sigev_notify = SIGEV_SIGNAL;
320
                leader = timr->it_process->group_leader;
321
                put_task_struct(timr->it_process);
322
                timr->it_process = leader;
323
        }
324
 
325
        return send_group_sigqueue(timr->it_sigev_signo, timr->sigq,
326
                                   timr->it_process);
327
}
328
EXPORT_SYMBOL_GPL(posix_timer_event);
329
 
330
/*
331
 * This function gets called when a POSIX.1b interval timer expires.  It
332
 * is used as a callback from the kernel internal timer.  The
333
 * run_timer_list code ALWAYS calls with interrupts on.
334
 
335
 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
336
 */
337
static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
338
{
339
        struct k_itimer *timr;
340
        unsigned long flags;
341
        int si_private = 0;
342
        enum hrtimer_restart ret = HRTIMER_NORESTART;
343
 
344
        timr = container_of(timer, struct k_itimer, it.real.timer);
345
        spin_lock_irqsave(&timr->it_lock, flags);
346
 
347
        if (timr->it.real.interval.tv64 != 0)
348
                si_private = ++timr->it_requeue_pending;
349
 
350
        if (posix_timer_event(timr, si_private)) {
351
                /*
352
                 * signal was not sent because of sig_ignor
353
                 * we will not get a call back to restart it AND
354
                 * it should be restarted.
355
                 */
356
                if (timr->it.real.interval.tv64 != 0) {
357
                        ktime_t now = hrtimer_cb_get_time(timer);
358
 
359
                        /*
360
                         * FIXME: What we really want, is to stop this
361
                         * timer completely and restart it in case the
362
                         * SIG_IGN is removed. This is a non trivial
363
                         * change which involves sighand locking
364
                         * (sigh !), which we don't want to do late in
365
                         * the release cycle.
366
                         *
367
                         * For now we just let timers with an interval
368
                         * less than a jiffie expire every jiffie to
369
                         * avoid softirq starvation in case of SIG_IGN
370
                         * and a very small interval, which would put
371
                         * the timer right back on the softirq pending
372
                         * list. By moving now ahead of time we trick
373
                         * hrtimer_forward() to expire the timer
374
                         * later, while we still maintain the overrun
375
                         * accuracy, but have some inconsistency in
376
                         * the timer_gettime() case. This is at least
377
                         * better than a starved softirq. A more
378
                         * complex fix which solves also another related
379
                         * inconsistency is already in the pipeline.
380
                         */
381
#ifdef CONFIG_HIGH_RES_TIMERS
382
                        {
383
                                ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
384
 
385
                                if (timr->it.real.interval.tv64 < kj.tv64)
386
                                        now = ktime_add(now, kj);
387
                        }
388
#endif
389
                        timr->it_overrun +=
390
                                hrtimer_forward(timer, now,
391
                                                timr->it.real.interval);
392
                        ret = HRTIMER_RESTART;
393
                        ++timr->it_requeue_pending;
394
                }
395
        }
396
 
397
        unlock_timer(timr, flags);
398
        return ret;
399
}
400
 
401
static struct task_struct * good_sigevent(sigevent_t * event)
402
{
403
        struct task_struct *rtn = current->group_leader;
404
 
405
        if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
406
                (!(rtn = find_task_by_pid(event->sigev_notify_thread_id)) ||
407
                 !same_thread_group(rtn, current) ||
408
                 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
409
                return NULL;
410
 
411
        if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
412
            ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
413
                return NULL;
414
 
415
        return rtn;
416
}
417
 
418
void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
419
{
420
        if ((unsigned) clock_id >= MAX_CLOCKS) {
421
                printk("POSIX clock register failed for clock_id %d\n",
422
                       clock_id);
423
                return;
424
        }
425
 
426
        posix_clocks[clock_id] = *new_clock;
427
}
428
EXPORT_SYMBOL_GPL(register_posix_clock);
429
 
430
static struct k_itimer * alloc_posix_timer(void)
431
{
432
        struct k_itimer *tmr;
433
        tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
434
        if (!tmr)
435
                return tmr;
436
        if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
437
                kmem_cache_free(posix_timers_cache, tmr);
438
                tmr = NULL;
439
        }
440
        return tmr;
441
}
442
 
443
#define IT_ID_SET       1
444
#define IT_ID_NOT_SET   0
445
static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
446
{
447
        if (it_id_set) {
448
                unsigned long flags;
449
                spin_lock_irqsave(&idr_lock, flags);
450
                idr_remove(&posix_timers_id, tmr->it_id);
451
                spin_unlock_irqrestore(&idr_lock, flags);
452
        }
453
        sigqueue_free(tmr->sigq);
454
        if (unlikely(tmr->it_process) &&
455
            tmr->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
456
                put_task_struct(tmr->it_process);
457
        kmem_cache_free(posix_timers_cache, tmr);
458
}
459
 
460
/* Create a POSIX.1b interval timer. */
461
 
462
asmlinkage long
463
sys_timer_create(const clockid_t which_clock,
464
                 struct sigevent __user *timer_event_spec,
465
                 timer_t __user * created_timer_id)
466
{
467
        int error = 0;
468
        struct k_itimer *new_timer = NULL;
469
        int new_timer_id;
470
        struct task_struct *process = NULL;
471
        unsigned long flags;
472
        sigevent_t event;
473
        int it_id_set = IT_ID_NOT_SET;
474
 
475
        if (invalid_clockid(which_clock))
476
                return -EINVAL;
477
 
478
        new_timer = alloc_posix_timer();
479
        if (unlikely(!new_timer))
480
                return -EAGAIN;
481
 
482
        spin_lock_init(&new_timer->it_lock);
483
 retry:
484
        if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
485
                error = -EAGAIN;
486
                goto out;
487
        }
488
        spin_lock_irq(&idr_lock);
489
        error = idr_get_new(&posix_timers_id, (void *) new_timer,
490
                            &new_timer_id);
491
        spin_unlock_irq(&idr_lock);
492
        if (error == -EAGAIN)
493
                goto retry;
494
        else if (error) {
495
                /*
496
                 * Wierd looking, but we return EAGAIN if the IDR is
497
                 * full (proper POSIX return value for this)
498
                 */
499
                error = -EAGAIN;
500
                goto out;
501
        }
502
 
503
        it_id_set = IT_ID_SET;
504
        new_timer->it_id = (timer_t) new_timer_id;
505
        new_timer->it_clock = which_clock;
506
        new_timer->it_overrun = -1;
507
        error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
508
        if (error)
509
                goto out;
510
 
511
        /*
512
         * return the timer_id now.  The next step is hard to
513
         * back out if there is an error.
514
         */
515
        if (copy_to_user(created_timer_id,
516
                         &new_timer_id, sizeof (new_timer_id))) {
517
                error = -EFAULT;
518
                goto out;
519
        }
520
        if (timer_event_spec) {
521
                if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
522
                        error = -EFAULT;
523
                        goto out;
524
                }
525
                new_timer->it_sigev_notify = event.sigev_notify;
526
                new_timer->it_sigev_signo = event.sigev_signo;
527
                new_timer->it_sigev_value = event.sigev_value;
528
 
529
                read_lock(&tasklist_lock);
530
                if ((process = good_sigevent(&event))) {
531
                        /*
532
                         * We may be setting up this process for another
533
                         * thread.  It may be exiting.  To catch this
534
                         * case the we check the PF_EXITING flag.  If
535
                         * the flag is not set, the siglock will catch
536
                         * him before it is too late (in exit_itimers).
537
                         *
538
                         * The exec case is a bit more invloved but easy
539
                         * to code.  If the process is in our thread
540
                         * group (and it must be or we would not allow
541
                         * it here) and is doing an exec, it will cause
542
                         * us to be killed.  In this case it will wait
543
                         * for us to die which means we can finish this
544
                         * linkage with our last gasp. I.e. no code :)
545
                         */
546
                        spin_lock_irqsave(&process->sighand->siglock, flags);
547
                        if (!(process->flags & PF_EXITING)) {
548
                                new_timer->it_process = process;
549
                                list_add(&new_timer->list,
550
                                         &process->signal->posix_timers);
551
                                if (new_timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
552
                                        get_task_struct(process);
553
                                spin_unlock_irqrestore(&process->sighand->siglock, flags);
554
                        } else {
555
                                spin_unlock_irqrestore(&process->sighand->siglock, flags);
556
                                process = NULL;
557
                        }
558
                }
559
                read_unlock(&tasklist_lock);
560
                if (!process) {
561
                        error = -EINVAL;
562
                        goto out;
563
                }
564
        } else {
565
                new_timer->it_sigev_notify = SIGEV_SIGNAL;
566
                new_timer->it_sigev_signo = SIGALRM;
567
                new_timer->it_sigev_value.sival_int = new_timer->it_id;
568
                process = current->group_leader;
569
                spin_lock_irqsave(&process->sighand->siglock, flags);
570
                new_timer->it_process = process;
571
                list_add(&new_timer->list, &process->signal->posix_timers);
572
                spin_unlock_irqrestore(&process->sighand->siglock, flags);
573
        }
574
 
575
        /*
576
         * In the case of the timer belonging to another task, after
577
         * the task is unlocked, the timer is owned by the other task
578
         * and may cease to exist at any time.  Don't use or modify
579
         * new_timer after the unlock call.
580
         */
581
 
582
out:
583
        if (error)
584
                release_posix_timer(new_timer, it_id_set);
585
 
586
        return error;
587
}
588
 
589
/*
590
 * Locking issues: We need to protect the result of the id look up until
591
 * we get the timer locked down so it is not deleted under us.  The
592
 * removal is done under the idr spinlock so we use that here to bridge
593
 * the find to the timer lock.  To avoid a dead lock, the timer id MUST
594
 * be release with out holding the timer lock.
595
 */
596
static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags)
597
{
598
        struct k_itimer *timr;
599
        /*
600
         * Watch out here.  We do a irqsave on the idr_lock and pass the
601
         * flags part over to the timer lock.  Must not let interrupts in
602
         * while we are moving the lock.
603
         */
604
 
605
        spin_lock_irqsave(&idr_lock, *flags);
606
        timr = (struct k_itimer *) idr_find(&posix_timers_id, (int) timer_id);
607
        if (timr) {
608
                spin_lock(&timr->it_lock);
609
 
610
                if ((timr->it_id != timer_id) || !(timr->it_process) ||
611
                                !same_thread_group(timr->it_process, current)) {
612
                        spin_unlock(&timr->it_lock);
613
                        spin_unlock_irqrestore(&idr_lock, *flags);
614
                        timr = NULL;
615
                } else
616
                        spin_unlock(&idr_lock);
617
        } else
618
                spin_unlock_irqrestore(&idr_lock, *flags);
619
 
620
        return timr;
621
}
622
 
623
/*
624
 * Get the time remaining on a POSIX.1b interval timer.  This function
625
 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
626
 * mess with irq.
627
 *
628
 * We have a couple of messes to clean up here.  First there is the case
629
 * of a timer that has a requeue pending.  These timers should appear to
630
 * be in the timer list with an expiry as if we were to requeue them
631
 * now.
632
 *
633
 * The second issue is the SIGEV_NONE timer which may be active but is
634
 * not really ever put in the timer list (to save system resources).
635
 * This timer may be expired, and if so, we will do it here.  Otherwise
636
 * it is the same as a requeue pending timer WRT to what we should
637
 * report.
638
 */
639
static void
640
common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
641
{
642
        ktime_t now, remaining, iv;
643
        struct hrtimer *timer = &timr->it.real.timer;
644
 
645
        memset(cur_setting, 0, sizeof(struct itimerspec));
646
 
647
        iv = timr->it.real.interval;
648
 
649
        /* interval timer ? */
650
        if (iv.tv64)
651
                cur_setting->it_interval = ktime_to_timespec(iv);
652
        else if (!hrtimer_active(timer) &&
653
                 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
654
                return;
655
 
656
        now = timer->base->get_time();
657
 
658
        /*
659
         * When a requeue is pending or this is a SIGEV_NONE
660
         * timer move the expiry time forward by intervals, so
661
         * expiry is > now.
662
         */
663
        if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
664
            (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
665
                timr->it_overrun += hrtimer_forward(timer, now, iv);
666
 
667
        remaining = ktime_sub(timer->expires, now);
668
        /* Return 0 only, when the timer is expired and not pending */
669
        if (remaining.tv64 <= 0) {
670
                /*
671
                 * A single shot SIGEV_NONE timer must return 0, when
672
                 * it is expired !
673
                 */
674
                if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
675
                        cur_setting->it_value.tv_nsec = 1;
676
        } else
677
                cur_setting->it_value = ktime_to_timespec(remaining);
678
}
679
 
680
/* Get the time remaining on a POSIX.1b interval timer. */
681
asmlinkage long
682
sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting)
683
{
684
        struct k_itimer *timr;
685
        struct itimerspec cur_setting;
686
        unsigned long flags;
687
 
688
        timr = lock_timer(timer_id, &flags);
689
        if (!timr)
690
                return -EINVAL;
691
 
692
        CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
693
 
694
        unlock_timer(timr, flags);
695
 
696
        if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
697
                return -EFAULT;
698
 
699
        return 0;
700
}
701
 
702
/*
703
 * Get the number of overruns of a POSIX.1b interval timer.  This is to
704
 * be the overrun of the timer last delivered.  At the same time we are
705
 * accumulating overruns on the next timer.  The overrun is frozen when
706
 * the signal is delivered, either at the notify time (if the info block
707
 * is not queued) or at the actual delivery time (as we are informed by
708
 * the call back to do_schedule_next_timer().  So all we need to do is
709
 * to pick up the frozen overrun.
710
 */
711
asmlinkage long
712
sys_timer_getoverrun(timer_t timer_id)
713
{
714
        struct k_itimer *timr;
715
        int overrun;
716
        unsigned long flags;
717
 
718
        timr = lock_timer(timer_id, &flags);
719
        if (!timr)
720
                return -EINVAL;
721
 
722
        overrun = timr->it_overrun_last;
723
        unlock_timer(timr, flags);
724
 
725
        return overrun;
726
}
727
 
728
/* Set a POSIX.1b interval timer. */
729
/* timr->it_lock is taken. */
730
static int
731
common_timer_set(struct k_itimer *timr, int flags,
732
                 struct itimerspec *new_setting, struct itimerspec *old_setting)
733
{
734
        struct hrtimer *timer = &timr->it.real.timer;
735
        enum hrtimer_mode mode;
736
 
737
        if (old_setting)
738
                common_timer_get(timr, old_setting);
739
 
740
        /* disable the timer */
741
        timr->it.real.interval.tv64 = 0;
742
        /*
743
         * careful here.  If smp we could be in the "fire" routine which will
744
         * be spinning as we hold the lock.  But this is ONLY an SMP issue.
745
         */
746
        if (hrtimer_try_to_cancel(timer) < 0)
747
                return TIMER_RETRY;
748
 
749
        timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
750
                ~REQUEUE_PENDING;
751
        timr->it_overrun_last = 0;
752
 
753
        /* switch off the timer when it_value is zero */
754
        if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
755
                return 0;
756
 
757
        mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
758
        hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
759
        timr->it.real.timer.function = posix_timer_fn;
760
 
761
        timer->expires = timespec_to_ktime(new_setting->it_value);
762
 
763
        /* Convert interval */
764
        timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
765
 
766
        /* SIGEV_NONE timers are not queued ! See common_timer_get */
767
        if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
768
                /* Setup correct expiry time for relative timers */
769
                if (mode == HRTIMER_MODE_REL)
770
                        timer->expires = ktime_add(timer->expires,
771
                                                   timer->base->get_time());
772
                return 0;
773
        }
774
 
775
        hrtimer_start(timer, timer->expires, mode);
776
        return 0;
777
}
778
 
779
/* Set a POSIX.1b interval timer */
780
asmlinkage long
781
sys_timer_settime(timer_t timer_id, int flags,
782
                  const struct itimerspec __user *new_setting,
783
                  struct itimerspec __user *old_setting)
784
{
785
        struct k_itimer *timr;
786
        struct itimerspec new_spec, old_spec;
787
        int error = 0;
788
        unsigned long flag;
789
        struct itimerspec *rtn = old_setting ? &old_spec : NULL;
790
 
791
        if (!new_setting)
792
                return -EINVAL;
793
 
794
        if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
795
                return -EFAULT;
796
 
797
        if (!timespec_valid(&new_spec.it_interval) ||
798
            !timespec_valid(&new_spec.it_value))
799
                return -EINVAL;
800
retry:
801
        timr = lock_timer(timer_id, &flag);
802
        if (!timr)
803
                return -EINVAL;
804
 
805
        error = CLOCK_DISPATCH(timr->it_clock, timer_set,
806
                               (timr, flags, &new_spec, rtn));
807
 
808
        unlock_timer(timr, flag);
809
        if (error == TIMER_RETRY) {
810
                rtn = NULL;     // We already got the old time...
811
                goto retry;
812
        }
813
 
814
        if (old_setting && !error &&
815
            copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
816
                error = -EFAULT;
817
 
818
        return error;
819
}
820
 
821
static inline int common_timer_del(struct k_itimer *timer)
822
{
823
        timer->it.real.interval.tv64 = 0;
824
 
825
        if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
826
                return TIMER_RETRY;
827
        return 0;
828
}
829
 
830
static inline int timer_delete_hook(struct k_itimer *timer)
831
{
832
        return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
833
}
834
 
835
/* Delete a POSIX.1b interval timer. */
836
asmlinkage long
837
sys_timer_delete(timer_t timer_id)
838
{
839
        struct k_itimer *timer;
840
        unsigned long flags;
841
 
842
retry_delete:
843
        timer = lock_timer(timer_id, &flags);
844
        if (!timer)
845
                return -EINVAL;
846
 
847
        if (timer_delete_hook(timer) == TIMER_RETRY) {
848
                unlock_timer(timer, flags);
849
                goto retry_delete;
850
        }
851
 
852
        spin_lock(&current->sighand->siglock);
853
        list_del(&timer->list);
854
        spin_unlock(&current->sighand->siglock);
855
        /*
856
         * This keeps any tasks waiting on the spin lock from thinking
857
         * they got something (see the lock code above).
858
         */
859
        if (timer->it_process) {
860
                if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
861
                        put_task_struct(timer->it_process);
862
                timer->it_process = NULL;
863
        }
864
        unlock_timer(timer, flags);
865
        release_posix_timer(timer, IT_ID_SET);
866
        return 0;
867
}
868
 
869
/*
870
 * return timer owned by the process, used by exit_itimers
871
 */
872
static void itimer_delete(struct k_itimer *timer)
873
{
874
        unsigned long flags;
875
 
876
retry_delete:
877
        spin_lock_irqsave(&timer->it_lock, flags);
878
 
879
        if (timer_delete_hook(timer) == TIMER_RETRY) {
880
                unlock_timer(timer, flags);
881
                goto retry_delete;
882
        }
883
        list_del(&timer->list);
884
        /*
885
         * This keeps any tasks waiting on the spin lock from thinking
886
         * they got something (see the lock code above).
887
         */
888
        if (timer->it_process) {
889
                if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
890
                        put_task_struct(timer->it_process);
891
                timer->it_process = NULL;
892
        }
893
        unlock_timer(timer, flags);
894
        release_posix_timer(timer, IT_ID_SET);
895
}
896
 
897
/*
898
 * This is called by do_exit or de_thread, only when there are no more
899
 * references to the shared signal_struct.
900
 */
901
void exit_itimers(struct signal_struct *sig)
902
{
903
        struct k_itimer *tmr;
904
 
905
        while (!list_empty(&sig->posix_timers)) {
906
                tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
907
                itimer_delete(tmr);
908
        }
909
}
910
 
911
/* Not available / possible... functions */
912
int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
913
{
914
        return -EINVAL;
915
}
916
EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
917
 
918
int do_posix_clock_nonanosleep(const clockid_t clock, int flags,
919
                               struct timespec *t, struct timespec __user *r)
920
{
921
#ifndef ENOTSUP
922
        return -EOPNOTSUPP;     /* aka ENOTSUP in userland for POSIX */
923
#else  /*  parisc does define it separately.  */
924
        return -ENOTSUP;
925
#endif
926
}
927
EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
928
 
929
asmlinkage long sys_clock_settime(const clockid_t which_clock,
930
                                  const struct timespec __user *tp)
931
{
932
        struct timespec new_tp;
933
 
934
        if (invalid_clockid(which_clock))
935
                return -EINVAL;
936
        if (copy_from_user(&new_tp, tp, sizeof (*tp)))
937
                return -EFAULT;
938
 
939
        return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
940
}
941
 
942
asmlinkage long
943
sys_clock_gettime(const clockid_t which_clock, struct timespec __user *tp)
944
{
945
        struct timespec kernel_tp;
946
        int error;
947
 
948
        if (invalid_clockid(which_clock))
949
                return -EINVAL;
950
        error = CLOCK_DISPATCH(which_clock, clock_get,
951
                               (which_clock, &kernel_tp));
952
        if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
953
                error = -EFAULT;
954
 
955
        return error;
956
 
957
}
958
 
959
asmlinkage long
960
sys_clock_getres(const clockid_t which_clock, struct timespec __user *tp)
961
{
962
        struct timespec rtn_tp;
963
        int error;
964
 
965
        if (invalid_clockid(which_clock))
966
                return -EINVAL;
967
 
968
        error = CLOCK_DISPATCH(which_clock, clock_getres,
969
                               (which_clock, &rtn_tp));
970
 
971
        if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
972
                error = -EFAULT;
973
        }
974
 
975
        return error;
976
}
977
 
978
/*
979
 * nanosleep for monotonic and realtime clocks
980
 */
981
static int common_nsleep(const clockid_t which_clock, int flags,
982
                         struct timespec *tsave, struct timespec __user *rmtp)
983
{
984
        struct timespec rmt;
985
        int ret;
986
 
987
        ret = hrtimer_nanosleep(tsave, rmtp ? &rmt : NULL,
988
                                flags & TIMER_ABSTIME ?
989
                                HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
990
                                which_clock);
991
 
992
        if (ret && rmtp) {
993
                if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
994
                        return -EFAULT;
995
        }
996
 
997
        return ret;
998
}
999
 
1000
asmlinkage long
1001
sys_clock_nanosleep(const clockid_t which_clock, int flags,
1002
                    const struct timespec __user *rqtp,
1003
                    struct timespec __user *rmtp)
1004
{
1005
        struct timespec t;
1006
 
1007
        if (invalid_clockid(which_clock))
1008
                return -EINVAL;
1009
 
1010
        if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1011
                return -EFAULT;
1012
 
1013
        if (!timespec_valid(&t))
1014
                return -EINVAL;
1015
 
1016
        return CLOCK_DISPATCH(which_clock, nsleep,
1017
                              (which_clock, flags, &t, rmtp));
1018
}
1019
 
1020
/*
1021
 * nanosleep_restart for monotonic and realtime clocks
1022
 */
1023
static int common_nsleep_restart(struct restart_block *restart_block)
1024
{
1025
        return hrtimer_nanosleep_restart(restart_block);
1026
}
1027
 
1028
/*
1029
 * This will restart clock_nanosleep. This is required only by
1030
 * compat_clock_nanosleep_restart for now.
1031
 */
1032
long
1033
clock_nanosleep_restart(struct restart_block *restart_block)
1034
{
1035
        clockid_t which_clock = restart_block->arg0;
1036
 
1037
        return CLOCK_DISPATCH(which_clock, nsleep_restart,
1038
                              (restart_block));
1039
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.