OpenCores
URL https://opencores.org/ocsvn/or1k_soc_on_altera_embedded_dev_kit/or1k_soc_on_altera_embedded_dev_kit/trunk

Subversion Repositories or1k_soc_on_altera_embedded_dev_kit

[/] [or1k_soc_on_altera_embedded_dev_kit/] [trunk/] [linux-2.6/] [linux-2.6.24/] [lib/] [prio_tree.c] - Blame information for rev 24

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 3 xianfeng
/*
2
 * lib/prio_tree.c - priority search tree
3
 *
4
 * Copyright (C) 2004, Rajesh Venkatasubramanian <vrajesh@umich.edu>
5
 *
6
 * This file is released under the GPL v2.
7
 *
8
 * Based on the radix priority search tree proposed by Edward M. McCreight
9
 * SIAM Journal of Computing, vol. 14, no.2, pages 257-276, May 1985
10
 *
11
 * 02Feb2004    Initial version
12
 */
13
 
14
#include <linux/init.h>
15
#include <linux/mm.h>
16
#include <linux/prio_tree.h>
17
 
18
/*
19
 * A clever mix of heap and radix trees forms a radix priority search tree (PST)
20
 * which is useful for storing intervals, e.g, we can consider a vma as a closed
21
 * interval of file pages [offset_begin, offset_end], and store all vmas that
22
 * map a file in a PST. Then, using the PST, we can answer a stabbing query,
23
 * i.e., selecting a set of stored intervals (vmas) that overlap with (map) a
24
 * given input interval X (a set of consecutive file pages), in "O(log n + m)"
25
 * time where 'log n' is the height of the PST, and 'm' is the number of stored
26
 * intervals (vmas) that overlap (map) with the input interval X (the set of
27
 * consecutive file pages).
28
 *
29
 * In our implementation, we store closed intervals of the form [radix_index,
30
 * heap_index]. We assume that always radix_index <= heap_index. McCreight's PST
31
 * is designed for storing intervals with unique radix indices, i.e., each
32
 * interval have different radix_index. However, this limitation can be easily
33
 * overcome by using the size, i.e., heap_index - radix_index, as part of the
34
 * index, so we index the tree using [(radix_index,size), heap_index].
35
 *
36
 * When the above-mentioned indexing scheme is used, theoretically, in a 32 bit
37
 * machine, the maximum height of a PST can be 64. We can use a balanced version
38
 * of the priority search tree to optimize the tree height, but the balanced
39
 * tree proposed by McCreight is too complex and memory-hungry for our purpose.
40
 */
41
 
42
/*
43
 * The following macros are used for implementing prio_tree for i_mmap
44
 */
45
 
46
#define RADIX_INDEX(vma)  ((vma)->vm_pgoff)
47
#define VMA_SIZE(vma)     (((vma)->vm_end - (vma)->vm_start) >> PAGE_SHIFT)
48
/* avoid overflow */
49
#define HEAP_INDEX(vma)   ((vma)->vm_pgoff + (VMA_SIZE(vma) - 1))
50
 
51
 
52
static void get_index(const struct prio_tree_root *root,
53
    const struct prio_tree_node *node,
54
    unsigned long *radix, unsigned long *heap)
55
{
56
        if (root->raw) {
57
                struct vm_area_struct *vma = prio_tree_entry(
58
                    node, struct vm_area_struct, shared.prio_tree_node);
59
 
60
                *radix = RADIX_INDEX(vma);
61
                *heap = HEAP_INDEX(vma);
62
        }
63
        else {
64
                *radix = node->start;
65
                *heap = node->last;
66
        }
67
}
68
 
69
static unsigned long index_bits_to_maxindex[BITS_PER_LONG];
70
 
71
void __init prio_tree_init(void)
72
{
73
        unsigned int i;
74
 
75
        for (i = 0; i < ARRAY_SIZE(index_bits_to_maxindex) - 1; i++)
76
                index_bits_to_maxindex[i] = (1UL << (i + 1)) - 1;
77
        index_bits_to_maxindex[ARRAY_SIZE(index_bits_to_maxindex) - 1] = ~0UL;
78
}
79
 
80
/*
81
 * Maximum heap_index that can be stored in a PST with index_bits bits
82
 */
83
static inline unsigned long prio_tree_maxindex(unsigned int bits)
84
{
85
        return index_bits_to_maxindex[bits - 1];
86
}
87
 
88
/*
89
 * Extend a priority search tree so that it can store a node with heap_index
90
 * max_heap_index. In the worst case, this algorithm takes O((log n)^2).
91
 * However, this function is used rarely and the common case performance is
92
 * not bad.
93
 */
94
static struct prio_tree_node *prio_tree_expand(struct prio_tree_root *root,
95
                struct prio_tree_node *node, unsigned long max_heap_index)
96
{
97
        struct prio_tree_node *first = NULL, *prev, *last = NULL;
98
 
99
        if (max_heap_index > prio_tree_maxindex(root->index_bits))
100
                root->index_bits++;
101
 
102
        while (max_heap_index > prio_tree_maxindex(root->index_bits)) {
103
                root->index_bits++;
104
 
105
                if (prio_tree_empty(root))
106
                        continue;
107
 
108
                if (first == NULL) {
109
                        first = root->prio_tree_node;
110
                        prio_tree_remove(root, root->prio_tree_node);
111
                        INIT_PRIO_TREE_NODE(first);
112
                        last = first;
113
                } else {
114
                        prev = last;
115
                        last = root->prio_tree_node;
116
                        prio_tree_remove(root, root->prio_tree_node);
117
                        INIT_PRIO_TREE_NODE(last);
118
                        prev->left = last;
119
                        last->parent = prev;
120
                }
121
        }
122
 
123
        INIT_PRIO_TREE_NODE(node);
124
 
125
        if (first) {
126
                node->left = first;
127
                first->parent = node;
128
        } else
129
                last = node;
130
 
131
        if (!prio_tree_empty(root)) {
132
                last->left = root->prio_tree_node;
133
                last->left->parent = last;
134
        }
135
 
136
        root->prio_tree_node = node;
137
        return node;
138
}
139
 
140
/*
141
 * Replace a prio_tree_node with a new node and return the old node
142
 */
143
struct prio_tree_node *prio_tree_replace(struct prio_tree_root *root,
144
                struct prio_tree_node *old, struct prio_tree_node *node)
145
{
146
        INIT_PRIO_TREE_NODE(node);
147
 
148
        if (prio_tree_root(old)) {
149
                BUG_ON(root->prio_tree_node != old);
150
                /*
151
                 * We can reduce root->index_bits here. However, it is complex
152
                 * and does not help much to improve performance (IMO).
153
                 */
154
                node->parent = node;
155
                root->prio_tree_node = node;
156
        } else {
157
                node->parent = old->parent;
158
                if (old->parent->left == old)
159
                        old->parent->left = node;
160
                else
161
                        old->parent->right = node;
162
        }
163
 
164
        if (!prio_tree_left_empty(old)) {
165
                node->left = old->left;
166
                old->left->parent = node;
167
        }
168
 
169
        if (!prio_tree_right_empty(old)) {
170
                node->right = old->right;
171
                old->right->parent = node;
172
        }
173
 
174
        return old;
175
}
176
 
177
/*
178
 * Insert a prio_tree_node @node into a radix priority search tree @root. The
179
 * algorithm typically takes O(log n) time where 'log n' is the number of bits
180
 * required to represent the maximum heap_index. In the worst case, the algo
181
 * can take O((log n)^2) - check prio_tree_expand.
182
 *
183
 * If a prior node with same radix_index and heap_index is already found in
184
 * the tree, then returns the address of the prior node. Otherwise, inserts
185
 * @node into the tree and returns @node.
186
 */
187
struct prio_tree_node *prio_tree_insert(struct prio_tree_root *root,
188
                struct prio_tree_node *node)
189
{
190
        struct prio_tree_node *cur, *res = node;
191
        unsigned long radix_index, heap_index;
192
        unsigned long r_index, h_index, index, mask;
193
        int size_flag = 0;
194
 
195
        get_index(root, node, &radix_index, &heap_index);
196
 
197
        if (prio_tree_empty(root) ||
198
                        heap_index > prio_tree_maxindex(root->index_bits))
199
                return prio_tree_expand(root, node, heap_index);
200
 
201
        cur = root->prio_tree_node;
202
        mask = 1UL << (root->index_bits - 1);
203
 
204
        while (mask) {
205
                get_index(root, cur, &r_index, &h_index);
206
 
207
                if (r_index == radix_index && h_index == heap_index)
208
                        return cur;
209
 
210
                if (h_index < heap_index ||
211
                    (h_index == heap_index && r_index > radix_index)) {
212
                        struct prio_tree_node *tmp = node;
213
                        node = prio_tree_replace(root, cur, node);
214
                        cur = tmp;
215
                        /* swap indices */
216
                        index = r_index;
217
                        r_index = radix_index;
218
                        radix_index = index;
219
                        index = h_index;
220
                        h_index = heap_index;
221
                        heap_index = index;
222
                }
223
 
224
                if (size_flag)
225
                        index = heap_index - radix_index;
226
                else
227
                        index = radix_index;
228
 
229
                if (index & mask) {
230
                        if (prio_tree_right_empty(cur)) {
231
                                INIT_PRIO_TREE_NODE(node);
232
                                cur->right = node;
233
                                node->parent = cur;
234
                                return res;
235
                        } else
236
                                cur = cur->right;
237
                } else {
238
                        if (prio_tree_left_empty(cur)) {
239
                                INIT_PRIO_TREE_NODE(node);
240
                                cur->left = node;
241
                                node->parent = cur;
242
                                return res;
243
                        } else
244
                                cur = cur->left;
245
                }
246
 
247
                mask >>= 1;
248
 
249
                if (!mask) {
250
                        mask = 1UL << (BITS_PER_LONG - 1);
251
                        size_flag = 1;
252
                }
253
        }
254
        /* Should not reach here */
255
        BUG();
256
        return NULL;
257
}
258
 
259
/*
260
 * Remove a prio_tree_node @node from a radix priority search tree @root. The
261
 * algorithm takes O(log n) time where 'log n' is the number of bits required
262
 * to represent the maximum heap_index.
263
 */
264
void prio_tree_remove(struct prio_tree_root *root, struct prio_tree_node *node)
265
{
266
        struct prio_tree_node *cur;
267
        unsigned long r_index, h_index_right, h_index_left;
268
 
269
        cur = node;
270
 
271
        while (!prio_tree_left_empty(cur) || !prio_tree_right_empty(cur)) {
272
                if (!prio_tree_left_empty(cur))
273
                        get_index(root, cur->left, &r_index, &h_index_left);
274
                else {
275
                        cur = cur->right;
276
                        continue;
277
                }
278
 
279
                if (!prio_tree_right_empty(cur))
280
                        get_index(root, cur->right, &r_index, &h_index_right);
281
                else {
282
                        cur = cur->left;
283
                        continue;
284
                }
285
 
286
                /* both h_index_left and h_index_right cannot be 0 */
287
                if (h_index_left >= h_index_right)
288
                        cur = cur->left;
289
                else
290
                        cur = cur->right;
291
        }
292
 
293
        if (prio_tree_root(cur)) {
294
                BUG_ON(root->prio_tree_node != cur);
295
                __INIT_PRIO_TREE_ROOT(root, root->raw);
296
                return;
297
        }
298
 
299
        if (cur->parent->right == cur)
300
                cur->parent->right = cur->parent;
301
        else
302
                cur->parent->left = cur->parent;
303
 
304
        while (cur != node)
305
                cur = prio_tree_replace(root, cur->parent, cur);
306
}
307
 
308
/*
309
 * Following functions help to enumerate all prio_tree_nodes in the tree that
310
 * overlap with the input interval X [radix_index, heap_index]. The enumeration
311
 * takes O(log n + m) time where 'log n' is the height of the tree (which is
312
 * proportional to # of bits required to represent the maximum heap_index) and
313
 * 'm' is the number of prio_tree_nodes that overlap the interval X.
314
 */
315
 
316
static struct prio_tree_node *prio_tree_left(struct prio_tree_iter *iter,
317
                unsigned long *r_index, unsigned long *h_index)
318
{
319
        if (prio_tree_left_empty(iter->cur))
320
                return NULL;
321
 
322
        get_index(iter->root, iter->cur->left, r_index, h_index);
323
 
324
        if (iter->r_index <= *h_index) {
325
                iter->cur = iter->cur->left;
326
                iter->mask >>= 1;
327
                if (iter->mask) {
328
                        if (iter->size_level)
329
                                iter->size_level++;
330
                } else {
331
                        if (iter->size_level) {
332
                                BUG_ON(!prio_tree_left_empty(iter->cur));
333
                                BUG_ON(!prio_tree_right_empty(iter->cur));
334
                                iter->size_level++;
335
                                iter->mask = ULONG_MAX;
336
                        } else {
337
                                iter->size_level = 1;
338
                                iter->mask = 1UL << (BITS_PER_LONG - 1);
339
                        }
340
                }
341
                return iter->cur;
342
        }
343
 
344
        return NULL;
345
}
346
 
347
static struct prio_tree_node *prio_tree_right(struct prio_tree_iter *iter,
348
                unsigned long *r_index, unsigned long *h_index)
349
{
350
        unsigned long value;
351
 
352
        if (prio_tree_right_empty(iter->cur))
353
                return NULL;
354
 
355
        if (iter->size_level)
356
                value = iter->value;
357
        else
358
                value = iter->value | iter->mask;
359
 
360
        if (iter->h_index < value)
361
                return NULL;
362
 
363
        get_index(iter->root, iter->cur->right, r_index, h_index);
364
 
365
        if (iter->r_index <= *h_index) {
366
                iter->cur = iter->cur->right;
367
                iter->mask >>= 1;
368
                iter->value = value;
369
                if (iter->mask) {
370
                        if (iter->size_level)
371
                                iter->size_level++;
372
                } else {
373
                        if (iter->size_level) {
374
                                BUG_ON(!prio_tree_left_empty(iter->cur));
375
                                BUG_ON(!prio_tree_right_empty(iter->cur));
376
                                iter->size_level++;
377
                                iter->mask = ULONG_MAX;
378
                        } else {
379
                                iter->size_level = 1;
380
                                iter->mask = 1UL << (BITS_PER_LONG - 1);
381
                        }
382
                }
383
                return iter->cur;
384
        }
385
 
386
        return NULL;
387
}
388
 
389
static struct prio_tree_node *prio_tree_parent(struct prio_tree_iter *iter)
390
{
391
        iter->cur = iter->cur->parent;
392
        if (iter->mask == ULONG_MAX)
393
                iter->mask = 1UL;
394
        else if (iter->size_level == 1)
395
                iter->mask = 1UL;
396
        else
397
                iter->mask <<= 1;
398
        if (iter->size_level)
399
                iter->size_level--;
400
        if (!iter->size_level && (iter->value & iter->mask))
401
                iter->value ^= iter->mask;
402
        return iter->cur;
403
}
404
 
405
static inline int overlap(struct prio_tree_iter *iter,
406
                unsigned long r_index, unsigned long h_index)
407
{
408
        return iter->h_index >= r_index && iter->r_index <= h_index;
409
}
410
 
411
/*
412
 * prio_tree_first:
413
 *
414
 * Get the first prio_tree_node that overlaps with the interval [radix_index,
415
 * heap_index]. Note that always radix_index <= heap_index. We do a pre-order
416
 * traversal of the tree.
417
 */
418
static struct prio_tree_node *prio_tree_first(struct prio_tree_iter *iter)
419
{
420
        struct prio_tree_root *root;
421
        unsigned long r_index, h_index;
422
 
423
        INIT_PRIO_TREE_ITER(iter);
424
 
425
        root = iter->root;
426
        if (prio_tree_empty(root))
427
                return NULL;
428
 
429
        get_index(root, root->prio_tree_node, &r_index, &h_index);
430
 
431
        if (iter->r_index > h_index)
432
                return NULL;
433
 
434
        iter->mask = 1UL << (root->index_bits - 1);
435
        iter->cur = root->prio_tree_node;
436
 
437
        while (1) {
438
                if (overlap(iter, r_index, h_index))
439
                        return iter->cur;
440
 
441
                if (prio_tree_left(iter, &r_index, &h_index))
442
                        continue;
443
 
444
                if (prio_tree_right(iter, &r_index, &h_index))
445
                        continue;
446
 
447
                break;
448
        }
449
        return NULL;
450
}
451
 
452
/*
453
 * prio_tree_next:
454
 *
455
 * Get the next prio_tree_node that overlaps with the input interval in iter
456
 */
457
struct prio_tree_node *prio_tree_next(struct prio_tree_iter *iter)
458
{
459
        unsigned long r_index, h_index;
460
 
461
        if (iter->cur == NULL)
462
                return prio_tree_first(iter);
463
 
464
repeat:
465
        while (prio_tree_left(iter, &r_index, &h_index))
466
                if (overlap(iter, r_index, h_index))
467
                        return iter->cur;
468
 
469
        while (!prio_tree_right(iter, &r_index, &h_index)) {
470
                while (!prio_tree_root(iter->cur) &&
471
                                iter->cur->parent->right == iter->cur)
472
                        prio_tree_parent(iter);
473
 
474
                if (prio_tree_root(iter->cur))
475
                        return NULL;
476
 
477
                prio_tree_parent(iter);
478
        }
479
 
480
        if (overlap(iter, r_index, h_index))
481
                return iter->cur;
482
 
483
        goto repeat;
484
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.