OpenCores
URL https://opencores.org/ocsvn/or1k_soc_on_altera_embedded_dev_kit/or1k_soc_on_altera_embedded_dev_kit/trunk

Subversion Repositories or1k_soc_on_altera_embedded_dev_kit

[/] [or1k_soc_on_altera_embedded_dev_kit/] [trunk/] [linux-2.6/] [linux-2.6.24/] [mm/] [hugetlb.c] - Blame information for rev 11

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 3 xianfeng
/*
2
 * Generic hugetlb support.
3
 * (C) William Irwin, April 2004
4
 */
5
#include <linux/gfp.h>
6
#include <linux/list.h>
7
#include <linux/init.h>
8
#include <linux/module.h>
9
#include <linux/mm.h>
10
#include <linux/sysctl.h>
11
#include <linux/highmem.h>
12
#include <linux/nodemask.h>
13
#include <linux/pagemap.h>
14
#include <linux/mempolicy.h>
15
#include <linux/cpuset.h>
16
#include <linux/mutex.h>
17
 
18
#include <asm/page.h>
19
#include <asm/pgtable.h>
20
 
21
#include <linux/hugetlb.h>
22
#include "internal.h"
23
 
24
const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25
static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26
static unsigned long surplus_huge_pages;
27
unsigned long max_huge_pages;
28
static struct list_head hugepage_freelists[MAX_NUMNODES];
29
static unsigned int nr_huge_pages_node[MAX_NUMNODES];
30
static unsigned int free_huge_pages_node[MAX_NUMNODES];
31
static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
32
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
33
unsigned long hugepages_treat_as_movable;
34
unsigned long nr_overcommit_huge_pages;
35
static int hugetlb_next_nid;
36
 
37
/*
38
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
39
 */
40
static DEFINE_SPINLOCK(hugetlb_lock);
41
 
42
static void clear_huge_page(struct page *page, unsigned long addr)
43
{
44
        int i;
45
 
46
        might_sleep();
47
        for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
48
                cond_resched();
49
                clear_user_highpage(page + i, addr + i * PAGE_SIZE);
50
        }
51
}
52
 
53
static void copy_huge_page(struct page *dst, struct page *src,
54
                           unsigned long addr, struct vm_area_struct *vma)
55
{
56
        int i;
57
 
58
        might_sleep();
59
        for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
60
                cond_resched();
61
                copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
62
        }
63
}
64
 
65
static void enqueue_huge_page(struct page *page)
66
{
67
        int nid = page_to_nid(page);
68
        list_add(&page->lru, &hugepage_freelists[nid]);
69
        free_huge_pages++;
70
        free_huge_pages_node[nid]++;
71
}
72
 
73
static struct page *dequeue_huge_page(struct vm_area_struct *vma,
74
                                unsigned long address)
75
{
76
        int nid;
77
        struct page *page = NULL;
78
        struct mempolicy *mpol;
79
        struct zonelist *zonelist = huge_zonelist(vma, address,
80
                                        htlb_alloc_mask, &mpol);
81
        struct zone **z;
82
 
83
        for (z = zonelist->zones; *z; z++) {
84
                nid = zone_to_nid(*z);
85
                if (cpuset_zone_allowed_softwall(*z, htlb_alloc_mask) &&
86
                    !list_empty(&hugepage_freelists[nid])) {
87
                        page = list_entry(hugepage_freelists[nid].next,
88
                                          struct page, lru);
89
                        list_del(&page->lru);
90
                        free_huge_pages--;
91
                        free_huge_pages_node[nid]--;
92
                        if (vma && vma->vm_flags & VM_MAYSHARE)
93
                                resv_huge_pages--;
94
                        break;
95
                }
96
        }
97
        mpol_free(mpol);        /* unref if mpol !NULL */
98
        return page;
99
}
100
 
101
static void update_and_free_page(struct page *page)
102
{
103
        int i;
104
        nr_huge_pages--;
105
        nr_huge_pages_node[page_to_nid(page)]--;
106
        for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
107
                page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
108
                                1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
109
                                1 << PG_private | 1<< PG_writeback);
110
        }
111
        set_compound_page_dtor(page, NULL);
112
        set_page_refcounted(page);
113
        __free_pages(page, HUGETLB_PAGE_ORDER);
114
}
115
 
116
static void free_huge_page(struct page *page)
117
{
118
        int nid = page_to_nid(page);
119
        struct address_space *mapping;
120
 
121
        mapping = (struct address_space *) page_private(page);
122
        BUG_ON(page_count(page));
123
        INIT_LIST_HEAD(&page->lru);
124
 
125
        spin_lock(&hugetlb_lock);
126
        if (surplus_huge_pages_node[nid]) {
127
                update_and_free_page(page);
128
                surplus_huge_pages--;
129
                surplus_huge_pages_node[nid]--;
130
        } else {
131
                enqueue_huge_page(page);
132
        }
133
        spin_unlock(&hugetlb_lock);
134
        if (mapping)
135
                hugetlb_put_quota(mapping, 1);
136
        set_page_private(page, 0);
137
}
138
 
139
/*
140
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
141
 * balanced by operating on them in a round-robin fashion.
142
 * Returns 1 if an adjustment was made.
143
 */
144
static int adjust_pool_surplus(int delta)
145
{
146
        static int prev_nid;
147
        int nid = prev_nid;
148
        int ret = 0;
149
 
150
        VM_BUG_ON(delta != -1 && delta != 1);
151
        do {
152
                nid = next_node(nid, node_online_map);
153
                if (nid == MAX_NUMNODES)
154
                        nid = first_node(node_online_map);
155
 
156
                /* To shrink on this node, there must be a surplus page */
157
                if (delta < 0 && !surplus_huge_pages_node[nid])
158
                        continue;
159
                /* Surplus cannot exceed the total number of pages */
160
                if (delta > 0 && surplus_huge_pages_node[nid] >=
161
                                                nr_huge_pages_node[nid])
162
                        continue;
163
 
164
                surplus_huge_pages += delta;
165
                surplus_huge_pages_node[nid] += delta;
166
                ret = 1;
167
                break;
168
        } while (nid != prev_nid);
169
 
170
        prev_nid = nid;
171
        return ret;
172
}
173
 
174
static struct page *alloc_fresh_huge_page_node(int nid)
175
{
176
        struct page *page;
177
 
178
        page = alloc_pages_node(nid,
179
                htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|__GFP_NOWARN,
180
                HUGETLB_PAGE_ORDER);
181
        if (page) {
182
                set_compound_page_dtor(page, free_huge_page);
183
                spin_lock(&hugetlb_lock);
184
                nr_huge_pages++;
185
                nr_huge_pages_node[nid]++;
186
                spin_unlock(&hugetlb_lock);
187
                put_page(page); /* free it into the hugepage allocator */
188
        }
189
 
190
        return page;
191
}
192
 
193
static int alloc_fresh_huge_page(void)
194
{
195
        struct page *page;
196
        int start_nid;
197
        int next_nid;
198
        int ret = 0;
199
 
200
        start_nid = hugetlb_next_nid;
201
 
202
        do {
203
                page = alloc_fresh_huge_page_node(hugetlb_next_nid);
204
                if (page)
205
                        ret = 1;
206
                /*
207
                 * Use a helper variable to find the next node and then
208
                 * copy it back to hugetlb_next_nid afterwards:
209
                 * otherwise there's a window in which a racer might
210
                 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
211
                 * But we don't need to use a spin_lock here: it really
212
                 * doesn't matter if occasionally a racer chooses the
213
                 * same nid as we do.  Move nid forward in the mask even
214
                 * if we just successfully allocated a hugepage so that
215
                 * the next caller gets hugepages on the next node.
216
                 */
217
                next_nid = next_node(hugetlb_next_nid, node_online_map);
218
                if (next_nid == MAX_NUMNODES)
219
                        next_nid = first_node(node_online_map);
220
                hugetlb_next_nid = next_nid;
221
        } while (!page && hugetlb_next_nid != start_nid);
222
 
223
        return ret;
224
}
225
 
226
static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
227
                                                unsigned long address)
228
{
229
        struct page *page;
230
        unsigned int nid;
231
 
232
        /*
233
         * Assume we will successfully allocate the surplus page to
234
         * prevent racing processes from causing the surplus to exceed
235
         * overcommit
236
         *
237
         * This however introduces a different race, where a process B
238
         * tries to grow the static hugepage pool while alloc_pages() is
239
         * called by process A. B will only examine the per-node
240
         * counters in determining if surplus huge pages can be
241
         * converted to normal huge pages in adjust_pool_surplus(). A
242
         * won't be able to increment the per-node counter, until the
243
         * lock is dropped by B, but B doesn't drop hugetlb_lock until
244
         * no more huge pages can be converted from surplus to normal
245
         * state (and doesn't try to convert again). Thus, we have a
246
         * case where a surplus huge page exists, the pool is grown, and
247
         * the surplus huge page still exists after, even though it
248
         * should just have been converted to a normal huge page. This
249
         * does not leak memory, though, as the hugepage will be freed
250
         * once it is out of use. It also does not allow the counters to
251
         * go out of whack in adjust_pool_surplus() as we don't modify
252
         * the node values until we've gotten the hugepage and only the
253
         * per-node value is checked there.
254
         */
255
        spin_lock(&hugetlb_lock);
256
        if (surplus_huge_pages >= nr_overcommit_huge_pages) {
257
                spin_unlock(&hugetlb_lock);
258
                return NULL;
259
        } else {
260
                nr_huge_pages++;
261
                surplus_huge_pages++;
262
        }
263
        spin_unlock(&hugetlb_lock);
264
 
265
        page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
266
                                        HUGETLB_PAGE_ORDER);
267
 
268
        spin_lock(&hugetlb_lock);
269
        if (page) {
270
                nid = page_to_nid(page);
271
                set_compound_page_dtor(page, free_huge_page);
272
                /*
273
                 * We incremented the global counters already
274
                 */
275
                nr_huge_pages_node[nid]++;
276
                surplus_huge_pages_node[nid]++;
277
        } else {
278
                nr_huge_pages--;
279
                surplus_huge_pages--;
280
        }
281
        spin_unlock(&hugetlb_lock);
282
 
283
        return page;
284
}
285
 
286
/*
287
 * Increase the hugetlb pool such that it can accomodate a reservation
288
 * of size 'delta'.
289
 */
290
static int gather_surplus_pages(int delta)
291
{
292
        struct list_head surplus_list;
293
        struct page *page, *tmp;
294
        int ret, i;
295
        int needed, allocated;
296
 
297
        needed = (resv_huge_pages + delta) - free_huge_pages;
298
        if (needed <= 0)
299
                return 0;
300
 
301
        allocated = 0;
302
        INIT_LIST_HEAD(&surplus_list);
303
 
304
        ret = -ENOMEM;
305
retry:
306
        spin_unlock(&hugetlb_lock);
307
        for (i = 0; i < needed; i++) {
308
                page = alloc_buddy_huge_page(NULL, 0);
309
                if (!page) {
310
                        /*
311
                         * We were not able to allocate enough pages to
312
                         * satisfy the entire reservation so we free what
313
                         * we've allocated so far.
314
                         */
315
                        spin_lock(&hugetlb_lock);
316
                        needed = 0;
317
                        goto free;
318
                }
319
 
320
                list_add(&page->lru, &surplus_list);
321
        }
322
        allocated += needed;
323
 
324
        /*
325
         * After retaking hugetlb_lock, we need to recalculate 'needed'
326
         * because either resv_huge_pages or free_huge_pages may have changed.
327
         */
328
        spin_lock(&hugetlb_lock);
329
        needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
330
        if (needed > 0)
331
                goto retry;
332
 
333
        /*
334
         * The surplus_list now contains _at_least_ the number of extra pages
335
         * needed to accomodate the reservation.  Add the appropriate number
336
         * of pages to the hugetlb pool and free the extras back to the buddy
337
         * allocator.
338
         */
339
        needed += allocated;
340
        ret = 0;
341
free:
342
        list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
343
                list_del(&page->lru);
344
                if ((--needed) >= 0)
345
                        enqueue_huge_page(page);
346
                else {
347
                        /*
348
                         * Decrement the refcount and free the page using its
349
                         * destructor.  This must be done with hugetlb_lock
350
                         * unlocked which is safe because free_huge_page takes
351
                         * hugetlb_lock before deciding how to free the page.
352
                         */
353
                        spin_unlock(&hugetlb_lock);
354
                        put_page(page);
355
                        spin_lock(&hugetlb_lock);
356
                }
357
        }
358
 
359
        return ret;
360
}
361
 
362
/*
363
 * When releasing a hugetlb pool reservation, any surplus pages that were
364
 * allocated to satisfy the reservation must be explicitly freed if they were
365
 * never used.
366
 */
367
static void return_unused_surplus_pages(unsigned long unused_resv_pages)
368
{
369
        static int nid = -1;
370
        struct page *page;
371
        unsigned long nr_pages;
372
 
373
        nr_pages = min(unused_resv_pages, surplus_huge_pages);
374
 
375
        while (nr_pages) {
376
                nid = next_node(nid, node_online_map);
377
                if (nid == MAX_NUMNODES)
378
                        nid = first_node(node_online_map);
379
 
380
                if (!surplus_huge_pages_node[nid])
381
                        continue;
382
 
383
                if (!list_empty(&hugepage_freelists[nid])) {
384
                        page = list_entry(hugepage_freelists[nid].next,
385
                                          struct page, lru);
386
                        list_del(&page->lru);
387
                        update_and_free_page(page);
388
                        free_huge_pages--;
389
                        free_huge_pages_node[nid]--;
390
                        surplus_huge_pages--;
391
                        surplus_huge_pages_node[nid]--;
392
                        nr_pages--;
393
                }
394
        }
395
}
396
 
397
 
398
static struct page *alloc_huge_page_shared(struct vm_area_struct *vma,
399
                                                unsigned long addr)
400
{
401
        struct page *page;
402
 
403
        spin_lock(&hugetlb_lock);
404
        page = dequeue_huge_page(vma, addr);
405
        spin_unlock(&hugetlb_lock);
406
        return page ? page : ERR_PTR(-VM_FAULT_OOM);
407
}
408
 
409
static struct page *alloc_huge_page_private(struct vm_area_struct *vma,
410
                                                unsigned long addr)
411
{
412
        struct page *page = NULL;
413
 
414
        if (hugetlb_get_quota(vma->vm_file->f_mapping, 1))
415
                return ERR_PTR(-VM_FAULT_SIGBUS);
416
 
417
        spin_lock(&hugetlb_lock);
418
        if (free_huge_pages > resv_huge_pages)
419
                page = dequeue_huge_page(vma, addr);
420
        spin_unlock(&hugetlb_lock);
421
        if (!page) {
422
                page = alloc_buddy_huge_page(vma, addr);
423
                if (!page) {
424
                        hugetlb_put_quota(vma->vm_file->f_mapping, 1);
425
                        return ERR_PTR(-VM_FAULT_OOM);
426
                }
427
        }
428
        return page;
429
}
430
 
431
static struct page *alloc_huge_page(struct vm_area_struct *vma,
432
                                    unsigned long addr)
433
{
434
        struct page *page;
435
        struct address_space *mapping = vma->vm_file->f_mapping;
436
 
437
        if (vma->vm_flags & VM_MAYSHARE)
438
                page = alloc_huge_page_shared(vma, addr);
439
        else
440
                page = alloc_huge_page_private(vma, addr);
441
 
442
        if (!IS_ERR(page)) {
443
                set_page_refcounted(page);
444
                set_page_private(page, (unsigned long) mapping);
445
        }
446
        return page;
447
}
448
 
449
static int __init hugetlb_init(void)
450
{
451
        unsigned long i;
452
 
453
        if (HPAGE_SHIFT == 0)
454
                return 0;
455
 
456
        for (i = 0; i < MAX_NUMNODES; ++i)
457
                INIT_LIST_HEAD(&hugepage_freelists[i]);
458
 
459
        hugetlb_next_nid = first_node(node_online_map);
460
 
461
        for (i = 0; i < max_huge_pages; ++i) {
462
                if (!alloc_fresh_huge_page())
463
                        break;
464
        }
465
        max_huge_pages = free_huge_pages = nr_huge_pages = i;
466
        printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
467
        return 0;
468
}
469
module_init(hugetlb_init);
470
 
471
static int __init hugetlb_setup(char *s)
472
{
473
        if (sscanf(s, "%lu", &max_huge_pages) <= 0)
474
                max_huge_pages = 0;
475
        return 1;
476
}
477
__setup("hugepages=", hugetlb_setup);
478
 
479
static unsigned int cpuset_mems_nr(unsigned int *array)
480
{
481
        int node;
482
        unsigned int nr = 0;
483
 
484
        for_each_node_mask(node, cpuset_current_mems_allowed)
485
                nr += array[node];
486
 
487
        return nr;
488
}
489
 
490
#ifdef CONFIG_SYSCTL
491
#ifdef CONFIG_HIGHMEM
492
static void try_to_free_low(unsigned long count)
493
{
494
        int i;
495
 
496
        for (i = 0; i < MAX_NUMNODES; ++i) {
497
                struct page *page, *next;
498
                list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
499
                        if (count >= nr_huge_pages)
500
                                return;
501
                        if (PageHighMem(page))
502
                                continue;
503
                        list_del(&page->lru);
504
                        update_and_free_page(page);
505
                        free_huge_pages--;
506
                        free_huge_pages_node[page_to_nid(page)]--;
507
                }
508
        }
509
}
510
#else
511
static inline void try_to_free_low(unsigned long count)
512
{
513
}
514
#endif
515
 
516
#define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
517
static unsigned long set_max_huge_pages(unsigned long count)
518
{
519
        unsigned long min_count, ret;
520
 
521
        /*
522
         * Increase the pool size
523
         * First take pages out of surplus state.  Then make up the
524
         * remaining difference by allocating fresh huge pages.
525
         *
526
         * We might race with alloc_buddy_huge_page() here and be unable
527
         * to convert a surplus huge page to a normal huge page. That is
528
         * not critical, though, it just means the overall size of the
529
         * pool might be one hugepage larger than it needs to be, but
530
         * within all the constraints specified by the sysctls.
531
         */
532
        spin_lock(&hugetlb_lock);
533
        while (surplus_huge_pages && count > persistent_huge_pages) {
534
                if (!adjust_pool_surplus(-1))
535
                        break;
536
        }
537
 
538
        while (count > persistent_huge_pages) {
539
                int ret;
540
                /*
541
                 * If this allocation races such that we no longer need the
542
                 * page, free_huge_page will handle it by freeing the page
543
                 * and reducing the surplus.
544
                 */
545
                spin_unlock(&hugetlb_lock);
546
                ret = alloc_fresh_huge_page();
547
                spin_lock(&hugetlb_lock);
548
                if (!ret)
549
                        goto out;
550
 
551
        }
552
 
553
        /*
554
         * Decrease the pool size
555
         * First return free pages to the buddy allocator (being careful
556
         * to keep enough around to satisfy reservations).  Then place
557
         * pages into surplus state as needed so the pool will shrink
558
         * to the desired size as pages become free.
559
         *
560
         * By placing pages into the surplus state independent of the
561
         * overcommit value, we are allowing the surplus pool size to
562
         * exceed overcommit. There are few sane options here. Since
563
         * alloc_buddy_huge_page() is checking the global counter,
564
         * though, we'll note that we're not allowed to exceed surplus
565
         * and won't grow the pool anywhere else. Not until one of the
566
         * sysctls are changed, or the surplus pages go out of use.
567
         */
568
        min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
569
        min_count = max(count, min_count);
570
        try_to_free_low(min_count);
571
        while (min_count < persistent_huge_pages) {
572
                struct page *page = dequeue_huge_page(NULL, 0);
573
                if (!page)
574
                        break;
575
                update_and_free_page(page);
576
        }
577
        while (count < persistent_huge_pages) {
578
                if (!adjust_pool_surplus(1))
579
                        break;
580
        }
581
out:
582
        ret = persistent_huge_pages;
583
        spin_unlock(&hugetlb_lock);
584
        return ret;
585
}
586
 
587
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
588
                           struct file *file, void __user *buffer,
589
                           size_t *length, loff_t *ppos)
590
{
591
        proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
592
        max_huge_pages = set_max_huge_pages(max_huge_pages);
593
        return 0;
594
}
595
 
596
int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
597
                        struct file *file, void __user *buffer,
598
                        size_t *length, loff_t *ppos)
599
{
600
        proc_dointvec(table, write, file, buffer, length, ppos);
601
        if (hugepages_treat_as_movable)
602
                htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
603
        else
604
                htlb_alloc_mask = GFP_HIGHUSER;
605
        return 0;
606
}
607
 
608
#endif /* CONFIG_SYSCTL */
609
 
610
int hugetlb_report_meminfo(char *buf)
611
{
612
        return sprintf(buf,
613
                        "HugePages_Total: %5lu\n"
614
                        "HugePages_Free:  %5lu\n"
615
                        "HugePages_Rsvd:  %5lu\n"
616
                        "HugePages_Surp:  %5lu\n"
617
                        "Hugepagesize:    %5lu kB\n",
618
                        nr_huge_pages,
619
                        free_huge_pages,
620
                        resv_huge_pages,
621
                        surplus_huge_pages,
622
                        HPAGE_SIZE/1024);
623
}
624
 
625
int hugetlb_report_node_meminfo(int nid, char *buf)
626
{
627
        return sprintf(buf,
628
                "Node %d HugePages_Total: %5u\n"
629
                "Node %d HugePages_Free:  %5u\n",
630
                nid, nr_huge_pages_node[nid],
631
                nid, free_huge_pages_node[nid]);
632
}
633
 
634
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
635
unsigned long hugetlb_total_pages(void)
636
{
637
        return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
638
}
639
 
640
/*
641
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
642
 * handle_mm_fault() to try to instantiate regular-sized pages in the
643
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
644
 * this far.
645
 */
646
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
647
{
648
        BUG();
649
        return 0;
650
}
651
 
652
struct vm_operations_struct hugetlb_vm_ops = {
653
        .fault = hugetlb_vm_op_fault,
654
};
655
 
656
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
657
                                int writable)
658
{
659
        pte_t entry;
660
 
661
        if (writable) {
662
                entry =
663
                    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
664
        } else {
665
                entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
666
        }
667
        entry = pte_mkyoung(entry);
668
        entry = pte_mkhuge(entry);
669
 
670
        return entry;
671
}
672
 
673
static void set_huge_ptep_writable(struct vm_area_struct *vma,
674
                                   unsigned long address, pte_t *ptep)
675
{
676
        pte_t entry;
677
 
678
        entry = pte_mkwrite(pte_mkdirty(*ptep));
679
        if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
680
                update_mmu_cache(vma, address, entry);
681
        }
682
}
683
 
684
 
685
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
686
                            struct vm_area_struct *vma)
687
{
688
        pte_t *src_pte, *dst_pte, entry;
689
        struct page *ptepage;
690
        unsigned long addr;
691
        int cow;
692
 
693
        cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
694
 
695
        for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
696
                src_pte = huge_pte_offset(src, addr);
697
                if (!src_pte)
698
                        continue;
699
                dst_pte = huge_pte_alloc(dst, addr);
700
                if (!dst_pte)
701
                        goto nomem;
702
 
703
                /* If the pagetables are shared don't copy or take references */
704
                if (dst_pte == src_pte)
705
                        continue;
706
 
707
                spin_lock(&dst->page_table_lock);
708
                spin_lock(&src->page_table_lock);
709
                if (!pte_none(*src_pte)) {
710
                        if (cow)
711
                                ptep_set_wrprotect(src, addr, src_pte);
712
                        entry = *src_pte;
713
                        ptepage = pte_page(entry);
714
                        get_page(ptepage);
715
                        set_huge_pte_at(dst, addr, dst_pte, entry);
716
                }
717
                spin_unlock(&src->page_table_lock);
718
                spin_unlock(&dst->page_table_lock);
719
        }
720
        return 0;
721
 
722
nomem:
723
        return -ENOMEM;
724
}
725
 
726
void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
727
                            unsigned long end)
728
{
729
        struct mm_struct *mm = vma->vm_mm;
730
        unsigned long address;
731
        pte_t *ptep;
732
        pte_t pte;
733
        struct page *page;
734
        struct page *tmp;
735
        /*
736
         * A page gathering list, protected by per file i_mmap_lock. The
737
         * lock is used to avoid list corruption from multiple unmapping
738
         * of the same page since we are using page->lru.
739
         */
740
        LIST_HEAD(page_list);
741
 
742
        WARN_ON(!is_vm_hugetlb_page(vma));
743
        BUG_ON(start & ~HPAGE_MASK);
744
        BUG_ON(end & ~HPAGE_MASK);
745
 
746
        spin_lock(&mm->page_table_lock);
747
        for (address = start; address < end; address += HPAGE_SIZE) {
748
                ptep = huge_pte_offset(mm, address);
749
                if (!ptep)
750
                        continue;
751
 
752
                if (huge_pmd_unshare(mm, &address, ptep))
753
                        continue;
754
 
755
                pte = huge_ptep_get_and_clear(mm, address, ptep);
756
                if (pte_none(pte))
757
                        continue;
758
 
759
                page = pte_page(pte);
760
                if (pte_dirty(pte))
761
                        set_page_dirty(page);
762
                list_add(&page->lru, &page_list);
763
        }
764
        spin_unlock(&mm->page_table_lock);
765
        flush_tlb_range(vma, start, end);
766
        list_for_each_entry_safe(page, tmp, &page_list, lru) {
767
                list_del(&page->lru);
768
                put_page(page);
769
        }
770
}
771
 
772
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
773
                          unsigned long end)
774
{
775
        /*
776
         * It is undesirable to test vma->vm_file as it should be non-null
777
         * for valid hugetlb area. However, vm_file will be NULL in the error
778
         * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
779
         * do_mmap_pgoff() nullifies vma->vm_file before calling this function
780
         * to clean up. Since no pte has actually been setup, it is safe to
781
         * do nothing in this case.
782
         */
783
        if (vma->vm_file) {
784
                spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
785
                __unmap_hugepage_range(vma, start, end);
786
                spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
787
        }
788
}
789
 
790
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
791
                        unsigned long address, pte_t *ptep, pte_t pte)
792
{
793
        struct page *old_page, *new_page;
794
        int avoidcopy;
795
 
796
        old_page = pte_page(pte);
797
 
798
        /* If no-one else is actually using this page, avoid the copy
799
         * and just make the page writable */
800
        avoidcopy = (page_count(old_page) == 1);
801
        if (avoidcopy) {
802
                set_huge_ptep_writable(vma, address, ptep);
803
                return 0;
804
        }
805
 
806
        page_cache_get(old_page);
807
        new_page = alloc_huge_page(vma, address);
808
 
809
        if (IS_ERR(new_page)) {
810
                page_cache_release(old_page);
811
                return -PTR_ERR(new_page);
812
        }
813
 
814
        spin_unlock(&mm->page_table_lock);
815
        copy_huge_page(new_page, old_page, address, vma);
816
        spin_lock(&mm->page_table_lock);
817
 
818
        ptep = huge_pte_offset(mm, address & HPAGE_MASK);
819
        if (likely(pte_same(*ptep, pte))) {
820
                /* Break COW */
821
                set_huge_pte_at(mm, address, ptep,
822
                                make_huge_pte(vma, new_page, 1));
823
                /* Make the old page be freed below */
824
                new_page = old_page;
825
        }
826
        page_cache_release(new_page);
827
        page_cache_release(old_page);
828
        return 0;
829
}
830
 
831
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
832
                        unsigned long address, pte_t *ptep, int write_access)
833
{
834
        int ret = VM_FAULT_SIGBUS;
835
        unsigned long idx;
836
        unsigned long size;
837
        struct page *page;
838
        struct address_space *mapping;
839
        pte_t new_pte;
840
 
841
        mapping = vma->vm_file->f_mapping;
842
        idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
843
                + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
844
 
845
        /*
846
         * Use page lock to guard against racing truncation
847
         * before we get page_table_lock.
848
         */
849
retry:
850
        page = find_lock_page(mapping, idx);
851
        if (!page) {
852
                size = i_size_read(mapping->host) >> HPAGE_SHIFT;
853
                if (idx >= size)
854
                        goto out;
855
                page = alloc_huge_page(vma, address);
856
                if (IS_ERR(page)) {
857
                        ret = -PTR_ERR(page);
858
                        goto out;
859
                }
860
                clear_huge_page(page, address);
861
 
862
                if (vma->vm_flags & VM_SHARED) {
863
                        int err;
864
                        struct inode *inode = mapping->host;
865
 
866
                        err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
867
                        if (err) {
868
                                put_page(page);
869
                                if (err == -EEXIST)
870
                                        goto retry;
871
                                goto out;
872
                        }
873
 
874
                        spin_lock(&inode->i_lock);
875
                        inode->i_blocks += BLOCKS_PER_HUGEPAGE;
876
                        spin_unlock(&inode->i_lock);
877
                } else
878
                        lock_page(page);
879
        }
880
 
881
        spin_lock(&mm->page_table_lock);
882
        size = i_size_read(mapping->host) >> HPAGE_SHIFT;
883
        if (idx >= size)
884
                goto backout;
885
 
886
        ret = 0;
887
        if (!pte_none(*ptep))
888
                goto backout;
889
 
890
        new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
891
                                && (vma->vm_flags & VM_SHARED)));
892
        set_huge_pte_at(mm, address, ptep, new_pte);
893
 
894
        if (write_access && !(vma->vm_flags & VM_SHARED)) {
895
                /* Optimization, do the COW without a second fault */
896
                ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
897
        }
898
 
899
        spin_unlock(&mm->page_table_lock);
900
        unlock_page(page);
901
out:
902
        return ret;
903
 
904
backout:
905
        spin_unlock(&mm->page_table_lock);
906
        unlock_page(page);
907
        put_page(page);
908
        goto out;
909
}
910
 
911
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
912
                        unsigned long address, int write_access)
913
{
914
        pte_t *ptep;
915
        pte_t entry;
916
        int ret;
917
        static DEFINE_MUTEX(hugetlb_instantiation_mutex);
918
 
919
        ptep = huge_pte_alloc(mm, address);
920
        if (!ptep)
921
                return VM_FAULT_OOM;
922
 
923
        /*
924
         * Serialize hugepage allocation and instantiation, so that we don't
925
         * get spurious allocation failures if two CPUs race to instantiate
926
         * the same page in the page cache.
927
         */
928
        mutex_lock(&hugetlb_instantiation_mutex);
929
        entry = *ptep;
930
        if (pte_none(entry)) {
931
                ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
932
                mutex_unlock(&hugetlb_instantiation_mutex);
933
                return ret;
934
        }
935
 
936
        ret = 0;
937
 
938
        spin_lock(&mm->page_table_lock);
939
        /* Check for a racing update before calling hugetlb_cow */
940
        if (likely(pte_same(entry, *ptep)))
941
                if (write_access && !pte_write(entry))
942
                        ret = hugetlb_cow(mm, vma, address, ptep, entry);
943
        spin_unlock(&mm->page_table_lock);
944
        mutex_unlock(&hugetlb_instantiation_mutex);
945
 
946
        return ret;
947
}
948
 
949
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
950
                        struct page **pages, struct vm_area_struct **vmas,
951
                        unsigned long *position, int *length, int i,
952
                        int write)
953
{
954
        unsigned long pfn_offset;
955
        unsigned long vaddr = *position;
956
        int remainder = *length;
957
 
958
        spin_lock(&mm->page_table_lock);
959
        while (vaddr < vma->vm_end && remainder) {
960
                pte_t *pte;
961
                struct page *page;
962
 
963
                /*
964
                 * Some archs (sparc64, sh*) have multiple pte_ts to
965
                 * each hugepage.  We have to make * sure we get the
966
                 * first, for the page indexing below to work.
967
                 */
968
                pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
969
 
970
                if (!pte || pte_none(*pte) || (write && !pte_write(*pte))) {
971
                        int ret;
972
 
973
                        spin_unlock(&mm->page_table_lock);
974
                        ret = hugetlb_fault(mm, vma, vaddr, write);
975
                        spin_lock(&mm->page_table_lock);
976
                        if (!(ret & VM_FAULT_ERROR))
977
                                continue;
978
 
979
                        remainder = 0;
980
                        if (!i)
981
                                i = -EFAULT;
982
                        break;
983
                }
984
 
985
                pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
986
                page = pte_page(*pte);
987
same_page:
988
                if (pages) {
989
                        get_page(page);
990
                        pages[i] = page + pfn_offset;
991
                }
992
 
993
                if (vmas)
994
                        vmas[i] = vma;
995
 
996
                vaddr += PAGE_SIZE;
997
                ++pfn_offset;
998
                --remainder;
999
                ++i;
1000
                if (vaddr < vma->vm_end && remainder &&
1001
                                pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
1002
                        /*
1003
                         * We use pfn_offset to avoid touching the pageframes
1004
                         * of this compound page.
1005
                         */
1006
                        goto same_page;
1007
                }
1008
        }
1009
        spin_unlock(&mm->page_table_lock);
1010
        *length = remainder;
1011
        *position = vaddr;
1012
 
1013
        return i;
1014
}
1015
 
1016
void hugetlb_change_protection(struct vm_area_struct *vma,
1017
                unsigned long address, unsigned long end, pgprot_t newprot)
1018
{
1019
        struct mm_struct *mm = vma->vm_mm;
1020
        unsigned long start = address;
1021
        pte_t *ptep;
1022
        pte_t pte;
1023
 
1024
        BUG_ON(address >= end);
1025
        flush_cache_range(vma, address, end);
1026
 
1027
        spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1028
        spin_lock(&mm->page_table_lock);
1029
        for (; address < end; address += HPAGE_SIZE) {
1030
                ptep = huge_pte_offset(mm, address);
1031
                if (!ptep)
1032
                        continue;
1033
                if (huge_pmd_unshare(mm, &address, ptep))
1034
                        continue;
1035
                if (!pte_none(*ptep)) {
1036
                        pte = huge_ptep_get_and_clear(mm, address, ptep);
1037
                        pte = pte_mkhuge(pte_modify(pte, newprot));
1038
                        set_huge_pte_at(mm, address, ptep, pte);
1039
                }
1040
        }
1041
        spin_unlock(&mm->page_table_lock);
1042
        spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1043
 
1044
        flush_tlb_range(vma, start, end);
1045
}
1046
 
1047
struct file_region {
1048
        struct list_head link;
1049
        long from;
1050
        long to;
1051
};
1052
 
1053
static long region_add(struct list_head *head, long f, long t)
1054
{
1055
        struct file_region *rg, *nrg, *trg;
1056
 
1057
        /* Locate the region we are either in or before. */
1058
        list_for_each_entry(rg, head, link)
1059
                if (f <= rg->to)
1060
                        break;
1061
 
1062
        /* Round our left edge to the current segment if it encloses us. */
1063
        if (f > rg->from)
1064
                f = rg->from;
1065
 
1066
        /* Check for and consume any regions we now overlap with. */
1067
        nrg = rg;
1068
        list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1069
                if (&rg->link == head)
1070
                        break;
1071
                if (rg->from > t)
1072
                        break;
1073
 
1074
                /* If this area reaches higher then extend our area to
1075
                 * include it completely.  If this is not the first area
1076
                 * which we intend to reuse, free it. */
1077
                if (rg->to > t)
1078
                        t = rg->to;
1079
                if (rg != nrg) {
1080
                        list_del(&rg->link);
1081
                        kfree(rg);
1082
                }
1083
        }
1084
        nrg->from = f;
1085
        nrg->to = t;
1086
        return 0;
1087
}
1088
 
1089
static long region_chg(struct list_head *head, long f, long t)
1090
{
1091
        struct file_region *rg, *nrg;
1092
        long chg = 0;
1093
 
1094
        /* Locate the region we are before or in. */
1095
        list_for_each_entry(rg, head, link)
1096
                if (f <= rg->to)
1097
                        break;
1098
 
1099
        /* If we are below the current region then a new region is required.
1100
         * Subtle, allocate a new region at the position but make it zero
1101
         * size such that we can guarantee to record the reservation. */
1102
        if (&rg->link == head || t < rg->from) {
1103
                nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
1104
                if (!nrg)
1105
                        return -ENOMEM;
1106
                nrg->from = f;
1107
                nrg->to   = f;
1108
                INIT_LIST_HEAD(&nrg->link);
1109
                list_add(&nrg->link, rg->link.prev);
1110
 
1111
                return t - f;
1112
        }
1113
 
1114
        /* Round our left edge to the current segment if it encloses us. */
1115
        if (f > rg->from)
1116
                f = rg->from;
1117
        chg = t - f;
1118
 
1119
        /* Check for and consume any regions we now overlap with. */
1120
        list_for_each_entry(rg, rg->link.prev, link) {
1121
                if (&rg->link == head)
1122
                        break;
1123
                if (rg->from > t)
1124
                        return chg;
1125
 
1126
                /* We overlap with this area, if it extends futher than
1127
                 * us then we must extend ourselves.  Account for its
1128
                 * existing reservation. */
1129
                if (rg->to > t) {
1130
                        chg += rg->to - t;
1131
                        t = rg->to;
1132
                }
1133
                chg -= rg->to - rg->from;
1134
        }
1135
        return chg;
1136
}
1137
 
1138
static long region_truncate(struct list_head *head, long end)
1139
{
1140
        struct file_region *rg, *trg;
1141
        long chg = 0;
1142
 
1143
        /* Locate the region we are either in or before. */
1144
        list_for_each_entry(rg, head, link)
1145
                if (end <= rg->to)
1146
                        break;
1147
        if (&rg->link == head)
1148
                return 0;
1149
 
1150
        /* If we are in the middle of a region then adjust it. */
1151
        if (end > rg->from) {
1152
                chg = rg->to - end;
1153
                rg->to = end;
1154
                rg = list_entry(rg->link.next, typeof(*rg), link);
1155
        }
1156
 
1157
        /* Drop any remaining regions. */
1158
        list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1159
                if (&rg->link == head)
1160
                        break;
1161
                chg += rg->to - rg->from;
1162
                list_del(&rg->link);
1163
                kfree(rg);
1164
        }
1165
        return chg;
1166
}
1167
 
1168
static int hugetlb_acct_memory(long delta)
1169
{
1170
        int ret = -ENOMEM;
1171
 
1172
        spin_lock(&hugetlb_lock);
1173
        /*
1174
         * When cpuset is configured, it breaks the strict hugetlb page
1175
         * reservation as the accounting is done on a global variable. Such
1176
         * reservation is completely rubbish in the presence of cpuset because
1177
         * the reservation is not checked against page availability for the
1178
         * current cpuset. Application can still potentially OOM'ed by kernel
1179
         * with lack of free htlb page in cpuset that the task is in.
1180
         * Attempt to enforce strict accounting with cpuset is almost
1181
         * impossible (or too ugly) because cpuset is too fluid that
1182
         * task or memory node can be dynamically moved between cpusets.
1183
         *
1184
         * The change of semantics for shared hugetlb mapping with cpuset is
1185
         * undesirable. However, in order to preserve some of the semantics,
1186
         * we fall back to check against current free page availability as
1187
         * a best attempt and hopefully to minimize the impact of changing
1188
         * semantics that cpuset has.
1189
         */
1190
        if (delta > 0) {
1191
                if (gather_surplus_pages(delta) < 0)
1192
                        goto out;
1193
 
1194
                if (delta > cpuset_mems_nr(free_huge_pages_node))
1195
                        goto out;
1196
        }
1197
 
1198
        ret = 0;
1199
        resv_huge_pages += delta;
1200
        if (delta < 0)
1201
                return_unused_surplus_pages((unsigned long) -delta);
1202
 
1203
out:
1204
        spin_unlock(&hugetlb_lock);
1205
        return ret;
1206
}
1207
 
1208
int hugetlb_reserve_pages(struct inode *inode, long from, long to)
1209
{
1210
        long ret, chg;
1211
 
1212
        chg = region_chg(&inode->i_mapping->private_list, from, to);
1213
        if (chg < 0)
1214
                return chg;
1215
 
1216
        if (hugetlb_get_quota(inode->i_mapping, chg))
1217
                return -ENOSPC;
1218
        ret = hugetlb_acct_memory(chg);
1219
        if (ret < 0) {
1220
                hugetlb_put_quota(inode->i_mapping, chg);
1221
                return ret;
1222
        }
1223
        region_add(&inode->i_mapping->private_list, from, to);
1224
        return 0;
1225
}
1226
 
1227
void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
1228
{
1229
        long chg = region_truncate(&inode->i_mapping->private_list, offset);
1230
 
1231
        spin_lock(&inode->i_lock);
1232
        inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
1233
        spin_unlock(&inode->i_lock);
1234
 
1235
        hugetlb_put_quota(inode->i_mapping, (chg - freed));
1236
        hugetlb_acct_memory(-(chg - freed));
1237
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.