OpenCores
URL https://opencores.org/ocsvn/or1k_soc_on_altera_embedded_dev_kit/or1k_soc_on_altera_embedded_dev_kit/trunk

Subversion Repositories or1k_soc_on_altera_embedded_dev_kit

[/] [or1k_soc_on_altera_embedded_dev_kit/] [trunk/] [linux-2.6/] [linux-2.6.24/] [mm/] [page_alloc.c] - Blame information for rev 9

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 3 xianfeng
/*
2
 *  linux/mm/page_alloc.c
3
 *
4
 *  Manages the free list, the system allocates free pages here.
5
 *  Note that kmalloc() lives in slab.c
6
 *
7
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8
 *  Swap reorganised 29.12.95, Stephen Tweedie
9
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15
 */
16
 
17
#include <linux/stddef.h>
18
#include <linux/mm.h>
19
#include <linux/swap.h>
20
#include <linux/interrupt.h>
21
#include <linux/pagemap.h>
22
#include <linux/bootmem.h>
23
#include <linux/compiler.h>
24
#include <linux/kernel.h>
25
#include <linux/module.h>
26
#include <linux/suspend.h>
27
#include <linux/pagevec.h>
28
#include <linux/blkdev.h>
29
#include <linux/slab.h>
30
#include <linux/oom.h>
31
#include <linux/notifier.h>
32
#include <linux/topology.h>
33
#include <linux/sysctl.h>
34
#include <linux/cpu.h>
35
#include <linux/cpuset.h>
36
#include <linux/memory_hotplug.h>
37
#include <linux/nodemask.h>
38
#include <linux/vmalloc.h>
39
#include <linux/mempolicy.h>
40
#include <linux/stop_machine.h>
41
#include <linux/sort.h>
42
#include <linux/pfn.h>
43
#include <linux/backing-dev.h>
44
#include <linux/fault-inject.h>
45
#include <linux/page-isolation.h>
46
 
47
#include <asm/tlbflush.h>
48
#include <asm/div64.h>
49
#include "internal.h"
50
 
51
/*
52
 * Array of node states.
53
 */
54
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
55
        [N_POSSIBLE] = NODE_MASK_ALL,
56
        [N_ONLINE] = { { [0] = 1UL } },
57
#ifndef CONFIG_NUMA
58
        [N_NORMAL_MEMORY] = { { [0] = 1UL } },
59
#ifdef CONFIG_HIGHMEM
60
        [N_HIGH_MEMORY] = { { [0] = 1UL } },
61
#endif
62
        [N_CPU] = { { [0] = 1UL } },
63
#endif  /* NUMA */
64
};
65
EXPORT_SYMBOL(node_states);
66
 
67
unsigned long totalram_pages __read_mostly;
68
unsigned long totalreserve_pages __read_mostly;
69
long nr_swap_pages;
70
int percpu_pagelist_fraction;
71
 
72
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
73
int pageblock_order __read_mostly;
74
#endif
75
 
76
static void __free_pages_ok(struct page *page, unsigned int order);
77
 
78
/*
79
 * results with 256, 32 in the lowmem_reserve sysctl:
80
 *      1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
81
 *      1G machine -> (16M dma, 784M normal, 224M high)
82
 *      NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
83
 *      HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84
 *      HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
85
 *
86
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
87
 * don't need any ZONE_NORMAL reservation
88
 */
89
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
90
#ifdef CONFIG_ZONE_DMA
91
         256,
92
#endif
93
#ifdef CONFIG_ZONE_DMA32
94
         256,
95
#endif
96
#ifdef CONFIG_HIGHMEM
97
         32,
98
#endif
99
         32,
100
};
101
 
102
EXPORT_SYMBOL(totalram_pages);
103
 
104
static char * const zone_names[MAX_NR_ZONES] = {
105
#ifdef CONFIG_ZONE_DMA
106
         "DMA",
107
#endif
108
#ifdef CONFIG_ZONE_DMA32
109
         "DMA32",
110
#endif
111
         "Normal",
112
#ifdef CONFIG_HIGHMEM
113
         "HighMem",
114
#endif
115
         "Movable",
116
};
117
 
118
int min_free_kbytes = 1024;
119
 
120
unsigned long __meminitdata nr_kernel_pages;
121
unsigned long __meminitdata nr_all_pages;
122
static unsigned long __meminitdata dma_reserve;
123
 
124
#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
125
  /*
126
   * MAX_ACTIVE_REGIONS determines the maximum number of distinct
127
   * ranges of memory (RAM) that may be registered with add_active_range().
128
   * Ranges passed to add_active_range() will be merged if possible
129
   * so the number of times add_active_range() can be called is
130
   * related to the number of nodes and the number of holes
131
   */
132
  #ifdef CONFIG_MAX_ACTIVE_REGIONS
133
    /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
134
    #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
135
  #else
136
    #if MAX_NUMNODES >= 32
137
      /* If there can be many nodes, allow up to 50 holes per node */
138
      #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
139
    #else
140
      /* By default, allow up to 256 distinct regions */
141
      #define MAX_ACTIVE_REGIONS 256
142
    #endif
143
  #endif
144
 
145
  static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
146
  static int __meminitdata nr_nodemap_entries;
147
  static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
148
  static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
149
#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
150
  static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
151
  static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
152
#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
153
  unsigned long __initdata required_kernelcore;
154
  static unsigned long __initdata required_movablecore;
155
  unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
156
 
157
  /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
158
  int movable_zone;
159
  EXPORT_SYMBOL(movable_zone);
160
#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
161
 
162
#if MAX_NUMNODES > 1
163
int nr_node_ids __read_mostly = MAX_NUMNODES;
164
EXPORT_SYMBOL(nr_node_ids);
165
#endif
166
 
167
int page_group_by_mobility_disabled __read_mostly;
168
 
169
static void set_pageblock_migratetype(struct page *page, int migratetype)
170
{
171
        set_pageblock_flags_group(page, (unsigned long)migratetype,
172
                                        PB_migrate, PB_migrate_end);
173
}
174
 
175
#ifdef CONFIG_DEBUG_VM
176
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
177
{
178
        int ret = 0;
179
        unsigned seq;
180
        unsigned long pfn = page_to_pfn(page);
181
 
182
        do {
183
                seq = zone_span_seqbegin(zone);
184
                if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
185
                        ret = 1;
186
                else if (pfn < zone->zone_start_pfn)
187
                        ret = 1;
188
        } while (zone_span_seqretry(zone, seq));
189
 
190
        return ret;
191
}
192
 
193
static int page_is_consistent(struct zone *zone, struct page *page)
194
{
195
        if (!pfn_valid_within(page_to_pfn(page)))
196
                return 0;
197
        if (zone != page_zone(page))
198
                return 0;
199
 
200
        return 1;
201
}
202
/*
203
 * Temporary debugging check for pages not lying within a given zone.
204
 */
205
static int bad_range(struct zone *zone, struct page *page)
206
{
207
        if (page_outside_zone_boundaries(zone, page))
208
                return 1;
209
        if (!page_is_consistent(zone, page))
210
                return 1;
211
 
212
        return 0;
213
}
214
#else
215
static inline int bad_range(struct zone *zone, struct page *page)
216
{
217
        return 0;
218
}
219
#endif
220
 
221
static void bad_page(struct page *page)
222
{
223
        printk(KERN_EMERG "Bad page state in process '%s'\n"
224
                KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
225
                KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
226
                KERN_EMERG "Backtrace:\n",
227
                current->comm, page, (int)(2*sizeof(unsigned long)),
228
                (unsigned long)page->flags, page->mapping,
229
                page_mapcount(page), page_count(page));
230
        dump_stack();
231
        page->flags &= ~(1 << PG_lru    |
232
                        1 << PG_private |
233
                        1 << PG_locked  |
234
                        1 << PG_active  |
235
                        1 << PG_dirty   |
236
                        1 << PG_reclaim |
237
                        1 << PG_slab    |
238
                        1 << PG_swapcache |
239
                        1 << PG_writeback |
240
                        1 << PG_buddy );
241
        set_page_count(page, 0);
242
        reset_page_mapcount(page);
243
        page->mapping = NULL;
244
        add_taint(TAINT_BAD_PAGE);
245
}
246
 
247
/*
248
 * Higher-order pages are called "compound pages".  They are structured thusly:
249
 *
250
 * The first PAGE_SIZE page is called the "head page".
251
 *
252
 * The remaining PAGE_SIZE pages are called "tail pages".
253
 *
254
 * All pages have PG_compound set.  All pages have their ->private pointing at
255
 * the head page (even the head page has this).
256
 *
257
 * The first tail page's ->lru.next holds the address of the compound page's
258
 * put_page() function.  Its ->lru.prev holds the order of allocation.
259
 * This usage means that zero-order pages may not be compound.
260
 */
261
 
262
static void free_compound_page(struct page *page)
263
{
264
        __free_pages_ok(page, compound_order(page));
265
}
266
 
267
static void prep_compound_page(struct page *page, unsigned long order)
268
{
269
        int i;
270
        int nr_pages = 1 << order;
271
 
272
        set_compound_page_dtor(page, free_compound_page);
273
        set_compound_order(page, order);
274
        __SetPageHead(page);
275
        for (i = 1; i < nr_pages; i++) {
276
                struct page *p = page + i;
277
 
278
                __SetPageTail(p);
279
                p->first_page = page;
280
        }
281
}
282
 
283
static void destroy_compound_page(struct page *page, unsigned long order)
284
{
285
        int i;
286
        int nr_pages = 1 << order;
287
 
288
        if (unlikely(compound_order(page) != order))
289
                bad_page(page);
290
 
291
        if (unlikely(!PageHead(page)))
292
                        bad_page(page);
293
        __ClearPageHead(page);
294
        for (i = 1; i < nr_pages; i++) {
295
                struct page *p = page + i;
296
 
297
                if (unlikely(!PageTail(p) |
298
                                (p->first_page != page)))
299
                        bad_page(page);
300
                __ClearPageTail(p);
301
        }
302
}
303
 
304
static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
305
{
306
        int i;
307
 
308
        /*
309
         * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
310
         * and __GFP_HIGHMEM from hard or soft interrupt context.
311
         */
312
        VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
313
        for (i = 0; i < (1 << order); i++)
314
                clear_highpage(page + i);
315
}
316
 
317
static inline void set_page_order(struct page *page, int order)
318
{
319
        set_page_private(page, order);
320
        __SetPageBuddy(page);
321
}
322
 
323
static inline void rmv_page_order(struct page *page)
324
{
325
        __ClearPageBuddy(page);
326
        set_page_private(page, 0);
327
}
328
 
329
/*
330
 * Locate the struct page for both the matching buddy in our
331
 * pair (buddy1) and the combined O(n+1) page they form (page).
332
 *
333
 * 1) Any buddy B1 will have an order O twin B2 which satisfies
334
 * the following equation:
335
 *     B2 = B1 ^ (1 << O)
336
 * For example, if the starting buddy (buddy2) is #8 its order
337
 * 1 buddy is #10:
338
 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
339
 *
340
 * 2) Any buddy B will have an order O+1 parent P which
341
 * satisfies the following equation:
342
 *     P = B & ~(1 << O)
343
 *
344
 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
345
 */
346
static inline struct page *
347
__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
348
{
349
        unsigned long buddy_idx = page_idx ^ (1 << order);
350
 
351
        return page + (buddy_idx - page_idx);
352
}
353
 
354
static inline unsigned long
355
__find_combined_index(unsigned long page_idx, unsigned int order)
356
{
357
        return (page_idx & ~(1 << order));
358
}
359
 
360
/*
361
 * This function checks whether a page is free && is the buddy
362
 * we can do coalesce a page and its buddy if
363
 * (a) the buddy is not in a hole &&
364
 * (b) the buddy is in the buddy system &&
365
 * (c) a page and its buddy have the same order &&
366
 * (d) a page and its buddy are in the same zone.
367
 *
368
 * For recording whether a page is in the buddy system, we use PG_buddy.
369
 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
370
 *
371
 * For recording page's order, we use page_private(page).
372
 */
373
static inline int page_is_buddy(struct page *page, struct page *buddy,
374
                                                                int order)
375
{
376
        if (!pfn_valid_within(page_to_pfn(buddy)))
377
                return 0;
378
 
379
        if (page_zone_id(page) != page_zone_id(buddy))
380
                return 0;
381
 
382
        if (PageBuddy(buddy) && page_order(buddy) == order) {
383
                BUG_ON(page_count(buddy) != 0);
384
                return 1;
385
        }
386
        return 0;
387
}
388
 
389
/*
390
 * Freeing function for a buddy system allocator.
391
 *
392
 * The concept of a buddy system is to maintain direct-mapped table
393
 * (containing bit values) for memory blocks of various "orders".
394
 * The bottom level table contains the map for the smallest allocatable
395
 * units of memory (here, pages), and each level above it describes
396
 * pairs of units from the levels below, hence, "buddies".
397
 * At a high level, all that happens here is marking the table entry
398
 * at the bottom level available, and propagating the changes upward
399
 * as necessary, plus some accounting needed to play nicely with other
400
 * parts of the VM system.
401
 * At each level, we keep a list of pages, which are heads of continuous
402
 * free pages of length of (1 << order) and marked with PG_buddy. Page's
403
 * order is recorded in page_private(page) field.
404
 * So when we are allocating or freeing one, we can derive the state of the
405
 * other.  That is, if we allocate a small block, and both were
406
 * free, the remainder of the region must be split into blocks.
407
 * If a block is freed, and its buddy is also free, then this
408
 * triggers coalescing into a block of larger size.
409
 *
410
 * -- wli
411
 */
412
 
413
static inline void __free_one_page(struct page *page,
414
                struct zone *zone, unsigned int order)
415
{
416
        unsigned long page_idx;
417
        int order_size = 1 << order;
418
        int migratetype = get_pageblock_migratetype(page);
419
 
420
        if (unlikely(PageCompound(page)))
421
                destroy_compound_page(page, order);
422
 
423
        page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
424
 
425
        VM_BUG_ON(page_idx & (order_size - 1));
426
        VM_BUG_ON(bad_range(zone, page));
427
 
428
        __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
429
        while (order < MAX_ORDER-1) {
430
                unsigned long combined_idx;
431
                struct page *buddy;
432
 
433
                buddy = __page_find_buddy(page, page_idx, order);
434
                if (!page_is_buddy(page, buddy, order))
435
                        break;          /* Move the buddy up one level. */
436
 
437
                list_del(&buddy->lru);
438
                zone->free_area[order].nr_free--;
439
                rmv_page_order(buddy);
440
                combined_idx = __find_combined_index(page_idx, order);
441
                page = page + (combined_idx - page_idx);
442
                page_idx = combined_idx;
443
                order++;
444
        }
445
        set_page_order(page, order);
446
        list_add(&page->lru,
447
                &zone->free_area[order].free_list[migratetype]);
448
        zone->free_area[order].nr_free++;
449
}
450
 
451
static inline int free_pages_check(struct page *page)
452
{
453
        if (unlikely(page_mapcount(page) |
454
                (page->mapping != NULL)  |
455
                (page_count(page) != 0)  |
456
                (page->flags & (
457
                        1 << PG_lru     |
458
                        1 << PG_private |
459
                        1 << PG_locked  |
460
                        1 << PG_active  |
461
                        1 << PG_slab    |
462
                        1 << PG_swapcache |
463
                        1 << PG_writeback |
464
                        1 << PG_reserved |
465
                        1 << PG_buddy ))))
466
                bad_page(page);
467
        if (PageDirty(page))
468
                __ClearPageDirty(page);
469
        /*
470
         * For now, we report if PG_reserved was found set, but do not
471
         * clear it, and do not free the page.  But we shall soon need
472
         * to do more, for when the ZERO_PAGE count wraps negative.
473
         */
474
        return PageReserved(page);
475
}
476
 
477
/*
478
 * Frees a list of pages.
479
 * Assumes all pages on list are in same zone, and of same order.
480
 * count is the number of pages to free.
481
 *
482
 * If the zone was previously in an "all pages pinned" state then look to
483
 * see if this freeing clears that state.
484
 *
485
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
486
 * pinned" detection logic.
487
 */
488
static void free_pages_bulk(struct zone *zone, int count,
489
                                        struct list_head *list, int order)
490
{
491
        spin_lock(&zone->lock);
492
        zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
493
        zone->pages_scanned = 0;
494
        while (count--) {
495
                struct page *page;
496
 
497
                VM_BUG_ON(list_empty(list));
498
                page = list_entry(list->prev, struct page, lru);
499
                /* have to delete it as __free_one_page list manipulates */
500
                list_del(&page->lru);
501
                __free_one_page(page, zone, order);
502
        }
503
        spin_unlock(&zone->lock);
504
}
505
 
506
static void free_one_page(struct zone *zone, struct page *page, int order)
507
{
508
        spin_lock(&zone->lock);
509
        zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
510
        zone->pages_scanned = 0;
511
        __free_one_page(page, zone, order);
512
        spin_unlock(&zone->lock);
513
}
514
 
515
static void __free_pages_ok(struct page *page, unsigned int order)
516
{
517
        unsigned long flags;
518
        int i;
519
        int reserved = 0;
520
 
521
        for (i = 0 ; i < (1 << order) ; ++i)
522
                reserved += free_pages_check(page + i);
523
        if (reserved)
524
                return;
525
 
526
        if (!PageHighMem(page))
527
                debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
528
        arch_free_page(page, order);
529
        kernel_map_pages(page, 1 << order, 0);
530
 
531
        local_irq_save(flags);
532
        __count_vm_events(PGFREE, 1 << order);
533
        free_one_page(page_zone(page), page, order);
534
        local_irq_restore(flags);
535
}
536
 
537
/*
538
 * permit the bootmem allocator to evade page validation on high-order frees
539
 */
540
void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
541
{
542
        if (order == 0) {
543
                __ClearPageReserved(page);
544
                set_page_count(page, 0);
545
                set_page_refcounted(page);
546
                __free_page(page);
547
        } else {
548
                int loop;
549
 
550
                prefetchw(page);
551
                for (loop = 0; loop < BITS_PER_LONG; loop++) {
552
                        struct page *p = &page[loop];
553
 
554
                        if (loop + 1 < BITS_PER_LONG)
555
                                prefetchw(p + 1);
556
                        __ClearPageReserved(p);
557
                        set_page_count(p, 0);
558
                }
559
 
560
                set_page_refcounted(page);
561
                __free_pages(page, order);
562
        }
563
}
564
 
565
 
566
/*
567
 * The order of subdivision here is critical for the IO subsystem.
568
 * Please do not alter this order without good reasons and regression
569
 * testing. Specifically, as large blocks of memory are subdivided,
570
 * the order in which smaller blocks are delivered depends on the order
571
 * they're subdivided in this function. This is the primary factor
572
 * influencing the order in which pages are delivered to the IO
573
 * subsystem according to empirical testing, and this is also justified
574
 * by considering the behavior of a buddy system containing a single
575
 * large block of memory acted on by a series of small allocations.
576
 * This behavior is a critical factor in sglist merging's success.
577
 *
578
 * -- wli
579
 */
580
static inline void expand(struct zone *zone, struct page *page,
581
        int low, int high, struct free_area *area,
582
        int migratetype)
583
{
584
        unsigned long size = 1 << high;
585
 
586
        while (high > low) {
587
                area--;
588
                high--;
589
                size >>= 1;
590
                VM_BUG_ON(bad_range(zone, &page[size]));
591
                list_add(&page[size].lru, &area->free_list[migratetype]);
592
                area->nr_free++;
593
                set_page_order(&page[size], high);
594
        }
595
}
596
 
597
/*
598
 * This page is about to be returned from the page allocator
599
 */
600
static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
601
{
602
        if (unlikely(page_mapcount(page) |
603
                (page->mapping != NULL)  |
604
                (page_count(page) != 0)  |
605
                (page->flags & (
606
                        1 << PG_lru     |
607
                        1 << PG_private |
608
                        1 << PG_locked  |
609
                        1 << PG_active  |
610
                        1 << PG_dirty   |
611
                        1 << PG_slab    |
612
                        1 << PG_swapcache |
613
                        1 << PG_writeback |
614
                        1 << PG_reserved |
615
                        1 << PG_buddy ))))
616
                bad_page(page);
617
 
618
        /*
619
         * For now, we report if PG_reserved was found set, but do not
620
         * clear it, and do not allocate the page: as a safety net.
621
         */
622
        if (PageReserved(page))
623
                return 1;
624
 
625
        page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
626
                        1 << PG_referenced | 1 << PG_arch_1 |
627
                        1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
628
        set_page_private(page, 0);
629
        set_page_refcounted(page);
630
 
631
        arch_alloc_page(page, order);
632
        kernel_map_pages(page, 1 << order, 1);
633
 
634
        if (gfp_flags & __GFP_ZERO)
635
                prep_zero_page(page, order, gfp_flags);
636
 
637
        if (order && (gfp_flags & __GFP_COMP))
638
                prep_compound_page(page, order);
639
 
640
        return 0;
641
}
642
 
643
/*
644
 * Go through the free lists for the given migratetype and remove
645
 * the smallest available page from the freelists
646
 */
647
static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
648
                                                int migratetype)
649
{
650
        unsigned int current_order;
651
        struct free_area * area;
652
        struct page *page;
653 9 xianfeng
        void *p;
654 3 xianfeng
 
655
        /* Find a page of the appropriate size in the preferred list */
656
        for (current_order = order; current_order < MAX_ORDER; ++current_order) {
657
                area = &(zone->free_area[current_order]);
658
                if (list_empty(&area->free_list[migratetype]))
659
                        continue;
660
                page = list_entry(area->free_list[migratetype].next,
661
                                                        struct page, lru);
662
                list_del(&page->lru);
663
                rmv_page_order(page);
664
                area->nr_free--;
665
                __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
666
                expand(zone, page, order, current_order, area, migratetype);
667
                return page;
668
        }
669
 
670
        return NULL;
671
}
672
 
673
 
674
/*
675
 * This array describes the order lists are fallen back to when
676
 * the free lists for the desirable migrate type are depleted
677
 */
678
static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
679
        [MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
680
        [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
681
        [MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
682
        [MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
683
};
684
 
685
/*
686
 * Move the free pages in a range to the free lists of the requested type.
687
 * Note that start_page and end_pages are not aligned on a pageblock
688
 * boundary. If alignment is required, use move_freepages_block()
689
 */
690
int move_freepages(struct zone *zone,
691
                        struct page *start_page, struct page *end_page,
692
                        int migratetype)
693
{
694
        struct page *page;
695
        unsigned long order;
696
        int pages_moved = 0;
697
 
698
#ifndef CONFIG_HOLES_IN_ZONE
699
        /*
700
         * page_zone is not safe to call in this context when
701
         * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
702
         * anyway as we check zone boundaries in move_freepages_block().
703
         * Remove at a later date when no bug reports exist related to
704
         * grouping pages by mobility
705
         */
706
        BUG_ON(page_zone(start_page) != page_zone(end_page));
707
#endif
708
 
709
        for (page = start_page; page <= end_page;) {
710
                if (!pfn_valid_within(page_to_pfn(page))) {
711
                        page++;
712
                        continue;
713
                }
714
 
715
                if (!PageBuddy(page)) {
716
                        page++;
717
                        continue;
718
                }
719
 
720
                order = page_order(page);
721
                list_del(&page->lru);
722
                list_add(&page->lru,
723
                        &zone->free_area[order].free_list[migratetype]);
724
                page += 1 << order;
725
                pages_moved += 1 << order;
726
        }
727
 
728
        return pages_moved;
729
}
730
 
731
int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
732
{
733
        unsigned long start_pfn, end_pfn;
734
        struct page *start_page, *end_page;
735
 
736
        start_pfn = page_to_pfn(page);
737
        start_pfn = start_pfn & ~(pageblock_nr_pages-1);
738
        start_page = pfn_to_page(start_pfn);
739
        end_page = start_page + pageblock_nr_pages - 1;
740
        end_pfn = start_pfn + pageblock_nr_pages - 1;
741
 
742
        /* Do not cross zone boundaries */
743
        if (start_pfn < zone->zone_start_pfn)
744
                start_page = page;
745
        if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
746
                return 0;
747
 
748
        return move_freepages(zone, start_page, end_page, migratetype);
749
}
750
 
751
/* Remove an element from the buddy allocator from the fallback list */
752
static struct page *__rmqueue_fallback(struct zone *zone, int order,
753
                                                int start_migratetype)
754
{
755
        struct free_area * area;
756
        int current_order;
757
        struct page *page;
758
        int migratetype, i;
759
 
760
        /* Find the largest possible block of pages in the other list */
761
        for (current_order = MAX_ORDER-1; current_order >= order;
762
                                                --current_order) {
763
                for (i = 0; i < MIGRATE_TYPES - 1; i++) {
764
                        migratetype = fallbacks[start_migratetype][i];
765
 
766
                        /* MIGRATE_RESERVE handled later if necessary */
767
                        if (migratetype == MIGRATE_RESERVE)
768
                                continue;
769
 
770
                        area = &(zone->free_area[current_order]);
771
                        if (list_empty(&area->free_list[migratetype]))
772
                                continue;
773
 
774
                        page = list_entry(area->free_list[migratetype].next,
775
                                        struct page, lru);
776
                        area->nr_free--;
777
 
778
                        /*
779
                         * If breaking a large block of pages, move all free
780
                         * pages to the preferred allocation list. If falling
781
                         * back for a reclaimable kernel allocation, be more
782
                         * agressive about taking ownership of free pages
783
                         */
784
                        if (unlikely(current_order >= (pageblock_order >> 1)) ||
785
                                        start_migratetype == MIGRATE_RECLAIMABLE) {
786
                                unsigned long pages;
787
                                pages = move_freepages_block(zone, page,
788
                                                                start_migratetype);
789
 
790
                                /* Claim the whole block if over half of it is free */
791
                                if (pages >= (1 << (pageblock_order-1)))
792
                                        set_pageblock_migratetype(page,
793
                                                                start_migratetype);
794
 
795
                                migratetype = start_migratetype;
796
                        }
797
 
798
                        /* Remove the page from the freelists */
799
                        list_del(&page->lru);
800
                        rmv_page_order(page);
801
                        __mod_zone_page_state(zone, NR_FREE_PAGES,
802
                                                        -(1UL << order));
803
 
804
                        if (current_order == pageblock_order)
805
                                set_pageblock_migratetype(page,
806
                                                        start_migratetype);
807
 
808
                        expand(zone, page, order, current_order, area, migratetype);
809
                        return page;
810
                }
811
        }
812
 
813
        /* Use MIGRATE_RESERVE rather than fail an allocation */
814
        return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
815
}
816
 
817
/*
818
 * Do the hard work of removing an element from the buddy allocator.
819
 * Call me with the zone->lock already held.
820
 */
821
static struct page *__rmqueue(struct zone *zone, unsigned int order,
822
                                                int migratetype)
823
{
824
        struct page *page;
825
 
826
        page = __rmqueue_smallest(zone, order, migratetype);
827
 
828
        if (unlikely(!page))
829
                page = __rmqueue_fallback(zone, order, migratetype);
830
 
831
        return page;
832
}
833
 
834
/*
835
 * Obtain a specified number of elements from the buddy allocator, all under
836
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
837
 * Returns the number of new pages which were placed at *list.
838
 */
839
static int rmqueue_bulk(struct zone *zone, unsigned int order,
840
                        unsigned long count, struct list_head *list,
841
                        int migratetype)
842
{
843
        int i;
844
 
845
        spin_lock(&zone->lock);
846
        for (i = 0; i < count; ++i) {
847
                struct page *page = __rmqueue(zone, order, migratetype);
848
                if (unlikely(page == NULL))
849
                        break;
850
 
851
                /*
852
                 * Split buddy pages returned by expand() are received here
853
                 * in physical page order. The page is added to the callers and
854
                 * list and the list head then moves forward. From the callers
855
                 * perspective, the linked list is ordered by page number in
856
                 * some conditions. This is useful for IO devices that can
857
                 * merge IO requests if the physical pages are ordered
858
                 * properly.
859
                 */
860
                list_add(&page->lru, list);
861
                set_page_private(page, migratetype);
862
                list = &page->lru;
863
        }
864
        spin_unlock(&zone->lock);
865
        return i;
866
}
867
 
868
#ifdef CONFIG_NUMA
869
/*
870
 * Called from the vmstat counter updater to drain pagesets of this
871
 * currently executing processor on remote nodes after they have
872
 * expired.
873
 *
874
 * Note that this function must be called with the thread pinned to
875
 * a single processor.
876
 */
877
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
878
{
879
        unsigned long flags;
880
        int to_drain;
881
 
882
        local_irq_save(flags);
883
        if (pcp->count >= pcp->batch)
884
                to_drain = pcp->batch;
885
        else
886
                to_drain = pcp->count;
887
        free_pages_bulk(zone, to_drain, &pcp->list, 0);
888
        pcp->count -= to_drain;
889
        local_irq_restore(flags);
890
}
891
#endif
892
 
893
static void __drain_pages(unsigned int cpu)
894
{
895
        unsigned long flags;
896
        struct zone *zone;
897
        int i;
898
 
899
        for_each_zone(zone) {
900
                struct per_cpu_pageset *pset;
901
 
902
                if (!populated_zone(zone))
903
                        continue;
904
 
905
                pset = zone_pcp(zone, cpu);
906
                for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
907
                        struct per_cpu_pages *pcp;
908
 
909
                        pcp = &pset->pcp[i];
910
                        local_irq_save(flags);
911
                        free_pages_bulk(zone, pcp->count, &pcp->list, 0);
912
                        pcp->count = 0;
913
                        local_irq_restore(flags);
914
                }
915
        }
916
}
917
 
918
#ifdef CONFIG_HIBERNATION
919
 
920
void mark_free_pages(struct zone *zone)
921
{
922
        unsigned long pfn, max_zone_pfn;
923
        unsigned long flags;
924
        int order, t;
925
        struct list_head *curr;
926
 
927
        if (!zone->spanned_pages)
928
                return;
929
 
930
        spin_lock_irqsave(&zone->lock, flags);
931
 
932
        max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
933
        for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
934
                if (pfn_valid(pfn)) {
935
                        struct page *page = pfn_to_page(pfn);
936
 
937
                        if (!swsusp_page_is_forbidden(page))
938
                                swsusp_unset_page_free(page);
939
                }
940
 
941
        for_each_migratetype_order(order, t) {
942
                list_for_each(curr, &zone->free_area[order].free_list[t]) {
943
                        unsigned long i;
944
 
945
                        pfn = page_to_pfn(list_entry(curr, struct page, lru));
946
                        for (i = 0; i < (1UL << order); i++)
947
                                swsusp_set_page_free(pfn_to_page(pfn + i));
948
                }
949
        }
950
        spin_unlock_irqrestore(&zone->lock, flags);
951
}
952
#endif /* CONFIG_PM */
953
 
954
/*
955
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
956
 */
957
void drain_local_pages(void)
958
{
959
        unsigned long flags;
960
 
961
        local_irq_save(flags);
962
        __drain_pages(smp_processor_id());
963
        local_irq_restore(flags);
964
}
965
 
966
void smp_drain_local_pages(void *arg)
967
{
968
        drain_local_pages();
969
}
970
 
971
/*
972
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
973
 */
974
void drain_all_local_pages(void)
975
{
976
        unsigned long flags;
977
 
978
        local_irq_save(flags);
979
        __drain_pages(smp_processor_id());
980
        local_irq_restore(flags);
981
 
982
        smp_call_function(smp_drain_local_pages, NULL, 0, 1);
983
}
984
 
985
/*
986
 * Free a 0-order page
987
 */
988
static void fastcall free_hot_cold_page(struct page *page, int cold)
989
{
990
        struct zone *zone = page_zone(page);
991
        struct per_cpu_pages *pcp;
992
        unsigned long flags;
993
 
994
        if (PageAnon(page))
995
                page->mapping = NULL;
996
        if (free_pages_check(page))
997
                return;
998
 
999
        if (!PageHighMem(page))
1000
                debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1001
        arch_free_page(page, 0);
1002
        kernel_map_pages(page, 1, 0);
1003
 
1004
        pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1005
        local_irq_save(flags);
1006
        __count_vm_event(PGFREE);
1007
        list_add(&page->lru, &pcp->list);
1008
        set_page_private(page, get_pageblock_migratetype(page));
1009
        pcp->count++;
1010
        if (pcp->count >= pcp->high) {
1011
                free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1012
                pcp->count -= pcp->batch;
1013
        }
1014
        local_irq_restore(flags);
1015
        put_cpu();
1016
}
1017
 
1018
void fastcall free_hot_page(struct page *page)
1019
{
1020
        free_hot_cold_page(page, 0);
1021
}
1022
 
1023
void fastcall free_cold_page(struct page *page)
1024
{
1025
        free_hot_cold_page(page, 1);
1026
}
1027
 
1028
/*
1029
 * split_page takes a non-compound higher-order page, and splits it into
1030
 * n (1<<order) sub-pages: page[0..n]
1031
 * Each sub-page must be freed individually.
1032
 *
1033
 * Note: this is probably too low level an operation for use in drivers.
1034
 * Please consult with lkml before using this in your driver.
1035
 */
1036
void split_page(struct page *page, unsigned int order)
1037
{
1038
        int i;
1039
 
1040
        VM_BUG_ON(PageCompound(page));
1041
        VM_BUG_ON(!page_count(page));
1042
        for (i = 1; i < (1 << order); i++)
1043
                set_page_refcounted(page + i);
1044
}
1045
 
1046
/*
1047
 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1048
 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1049
 * or two.
1050
 */
1051
static struct page *buffered_rmqueue(struct zonelist *zonelist,
1052
                        struct zone *zone, int order, gfp_t gfp_flags)
1053
{
1054
        unsigned long flags;
1055
        struct page *page;
1056
        int cold = !!(gfp_flags & __GFP_COLD);
1057
        int cpu;
1058
        int migratetype = allocflags_to_migratetype(gfp_flags);
1059
 
1060
again:
1061
        cpu  = get_cpu();
1062
        if (likely(order == 0)) {
1063
                struct per_cpu_pages *pcp;
1064
 
1065
                pcp = &zone_pcp(zone, cpu)->pcp[cold];
1066
                local_irq_save(flags);
1067
                if (!pcp->count) {
1068
                        pcp->count = rmqueue_bulk(zone, 0,
1069
                                        pcp->batch, &pcp->list, migratetype);
1070
                        if (unlikely(!pcp->count))
1071
                                goto failed;
1072
                }
1073
 
1074
                /* Find a page of the appropriate migrate type */
1075
                list_for_each_entry(page, &pcp->list, lru)
1076
                        if (page_private(page) == migratetype)
1077
                                break;
1078
 
1079
                /* Allocate more to the pcp list if necessary */
1080
                if (unlikely(&page->lru == &pcp->list)) {
1081
                        pcp->count += rmqueue_bulk(zone, 0,
1082
                                        pcp->batch, &pcp->list, migratetype);
1083
                        page = list_entry(pcp->list.next, struct page, lru);
1084
                }
1085
 
1086
                list_del(&page->lru);
1087
                pcp->count--;
1088
        } else {
1089
                spin_lock_irqsave(&zone->lock, flags);
1090
                page = __rmqueue(zone, order, migratetype);
1091
                spin_unlock(&zone->lock);
1092
                if (!page)
1093
                        goto failed;
1094
        }
1095
 
1096
        __count_zone_vm_events(PGALLOC, zone, 1 << order);
1097
        zone_statistics(zonelist, zone);
1098
        local_irq_restore(flags);
1099
        put_cpu();
1100
 
1101
        VM_BUG_ON(bad_range(zone, page));
1102
        if (prep_new_page(page, order, gfp_flags))
1103
                goto again;
1104
        return page;
1105
 
1106
failed:
1107
        local_irq_restore(flags);
1108
        put_cpu();
1109
        return NULL;
1110
}
1111
 
1112
#define ALLOC_NO_WATERMARKS     0x01 /* don't check watermarks at all */
1113
#define ALLOC_WMARK_MIN         0x02 /* use pages_min watermark */
1114
#define ALLOC_WMARK_LOW         0x04 /* use pages_low watermark */
1115
#define ALLOC_WMARK_HIGH        0x08 /* use pages_high watermark */
1116
#define ALLOC_HARDER            0x10 /* try to alloc harder */
1117
#define ALLOC_HIGH              0x20 /* __GFP_HIGH set */
1118
#define ALLOC_CPUSET            0x40 /* check for correct cpuset */
1119
 
1120
#ifdef CONFIG_FAIL_PAGE_ALLOC
1121
 
1122
static struct fail_page_alloc_attr {
1123
        struct fault_attr attr;
1124
 
1125
        u32 ignore_gfp_highmem;
1126
        u32 ignore_gfp_wait;
1127
        u32 min_order;
1128
 
1129
#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1130
 
1131
        struct dentry *ignore_gfp_highmem_file;
1132
        struct dentry *ignore_gfp_wait_file;
1133
        struct dentry *min_order_file;
1134
 
1135
#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1136
 
1137
} fail_page_alloc = {
1138
        .attr = FAULT_ATTR_INITIALIZER,
1139
        .ignore_gfp_wait = 1,
1140
        .ignore_gfp_highmem = 1,
1141
        .min_order = 1,
1142
};
1143
 
1144
static int __init setup_fail_page_alloc(char *str)
1145
{
1146
        return setup_fault_attr(&fail_page_alloc.attr, str);
1147
}
1148
__setup("fail_page_alloc=", setup_fail_page_alloc);
1149
 
1150
static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1151
{
1152
        if (order < fail_page_alloc.min_order)
1153
                return 0;
1154
        if (gfp_mask & __GFP_NOFAIL)
1155
                return 0;
1156
        if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1157
                return 0;
1158
        if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1159
                return 0;
1160
 
1161
        return should_fail(&fail_page_alloc.attr, 1 << order);
1162
}
1163
 
1164
#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1165
 
1166
static int __init fail_page_alloc_debugfs(void)
1167
{
1168
        mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1169
        struct dentry *dir;
1170
        int err;
1171
 
1172
        err = init_fault_attr_dentries(&fail_page_alloc.attr,
1173
                                       "fail_page_alloc");
1174
        if (err)
1175
                return err;
1176
        dir = fail_page_alloc.attr.dentries.dir;
1177
 
1178
        fail_page_alloc.ignore_gfp_wait_file =
1179
                debugfs_create_bool("ignore-gfp-wait", mode, dir,
1180
                                      &fail_page_alloc.ignore_gfp_wait);
1181
 
1182
        fail_page_alloc.ignore_gfp_highmem_file =
1183
                debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1184
                                      &fail_page_alloc.ignore_gfp_highmem);
1185
        fail_page_alloc.min_order_file =
1186
                debugfs_create_u32("min-order", mode, dir,
1187
                                   &fail_page_alloc.min_order);
1188
 
1189
        if (!fail_page_alloc.ignore_gfp_wait_file ||
1190
            !fail_page_alloc.ignore_gfp_highmem_file ||
1191
            !fail_page_alloc.min_order_file) {
1192
                err = -ENOMEM;
1193
                debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1194
                debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1195
                debugfs_remove(fail_page_alloc.min_order_file);
1196
                cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1197
        }
1198
 
1199
        return err;
1200
}
1201
 
1202
late_initcall(fail_page_alloc_debugfs);
1203
 
1204
#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1205
 
1206
#else /* CONFIG_FAIL_PAGE_ALLOC */
1207
 
1208
static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1209
{
1210
        return 0;
1211
}
1212
 
1213
#endif /* CONFIG_FAIL_PAGE_ALLOC */
1214
 
1215
/*
1216
 * Return 1 if free pages are above 'mark'. This takes into account the order
1217
 * of the allocation.
1218
 */
1219
int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1220
                      int classzone_idx, int alloc_flags)
1221
{
1222
        /* free_pages my go negative - that's OK */
1223
        long min = mark;
1224
        long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1225
        int o;
1226
 
1227
        if (alloc_flags & ALLOC_HIGH)
1228
                min -= min / 2;
1229
        if (alloc_flags & ALLOC_HARDER)
1230
                min -= min / 4;
1231
 
1232
        if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1233
                return 0;
1234
        for (o = 0; o < order; o++) {
1235
                /* At the next order, this order's pages become unavailable */
1236
                free_pages -= z->free_area[o].nr_free << o;
1237
 
1238
                /* Require fewer higher order pages to be free */
1239
                min >>= 1;
1240
 
1241
                if (free_pages <= min)
1242
                        return 0;
1243
        }
1244
        return 1;
1245
}
1246
 
1247
#ifdef CONFIG_NUMA
1248
/*
1249
 * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1250
 * skip over zones that are not allowed by the cpuset, or that have
1251
 * been recently (in last second) found to be nearly full.  See further
1252
 * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1253
 * that have to skip over a lot of full or unallowed zones.
1254
 *
1255
 * If the zonelist cache is present in the passed in zonelist, then
1256
 * returns a pointer to the allowed node mask (either the current
1257
 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1258
 *
1259
 * If the zonelist cache is not available for this zonelist, does
1260
 * nothing and returns NULL.
1261
 *
1262
 * If the fullzones BITMAP in the zonelist cache is stale (more than
1263
 * a second since last zap'd) then we zap it out (clear its bits.)
1264
 *
1265
 * We hold off even calling zlc_setup, until after we've checked the
1266
 * first zone in the zonelist, on the theory that most allocations will
1267
 * be satisfied from that first zone, so best to examine that zone as
1268
 * quickly as we can.
1269
 */
1270
static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1271
{
1272
        struct zonelist_cache *zlc;     /* cached zonelist speedup info */
1273
        nodemask_t *allowednodes;       /* zonelist_cache approximation */
1274
 
1275
        zlc = zonelist->zlcache_ptr;
1276
        if (!zlc)
1277
                return NULL;
1278
 
1279
        if (jiffies - zlc->last_full_zap > 1 * HZ) {
1280
                bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1281
                zlc->last_full_zap = jiffies;
1282
        }
1283
 
1284
        allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1285
                                        &cpuset_current_mems_allowed :
1286
                                        &node_states[N_HIGH_MEMORY];
1287
        return allowednodes;
1288
}
1289
 
1290
/*
1291
 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1292
 * if it is worth looking at further for free memory:
1293
 *  1) Check that the zone isn't thought to be full (doesn't have its
1294
 *     bit set in the zonelist_cache fullzones BITMAP).
1295
 *  2) Check that the zones node (obtained from the zonelist_cache
1296
 *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1297
 * Return true (non-zero) if zone is worth looking at further, or
1298
 * else return false (zero) if it is not.
1299
 *
1300
 * This check -ignores- the distinction between various watermarks,
1301
 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1302
 * found to be full for any variation of these watermarks, it will
1303
 * be considered full for up to one second by all requests, unless
1304
 * we are so low on memory on all allowed nodes that we are forced
1305
 * into the second scan of the zonelist.
1306
 *
1307
 * In the second scan we ignore this zonelist cache and exactly
1308
 * apply the watermarks to all zones, even it is slower to do so.
1309
 * We are low on memory in the second scan, and should leave no stone
1310
 * unturned looking for a free page.
1311
 */
1312
static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1313
                                                nodemask_t *allowednodes)
1314
{
1315
        struct zonelist_cache *zlc;     /* cached zonelist speedup info */
1316
        int i;                          /* index of *z in zonelist zones */
1317
        int n;                          /* node that zone *z is on */
1318
 
1319
        zlc = zonelist->zlcache_ptr;
1320
        if (!zlc)
1321
                return 1;
1322
 
1323
        i = z - zonelist->zones;
1324
        n = zlc->z_to_n[i];
1325
 
1326
        /* This zone is worth trying if it is allowed but not full */
1327
        return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1328
}
1329
 
1330
/*
1331
 * Given 'z' scanning a zonelist, set the corresponding bit in
1332
 * zlc->fullzones, so that subsequent attempts to allocate a page
1333
 * from that zone don't waste time re-examining it.
1334
 */
1335
static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1336
{
1337
        struct zonelist_cache *zlc;     /* cached zonelist speedup info */
1338
        int i;                          /* index of *z in zonelist zones */
1339
 
1340
        zlc = zonelist->zlcache_ptr;
1341
        if (!zlc)
1342
                return;
1343
 
1344
        i = z - zonelist->zones;
1345
 
1346
        set_bit(i, zlc->fullzones);
1347
}
1348
 
1349
#else   /* CONFIG_NUMA */
1350
 
1351
static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1352
{
1353
        return NULL;
1354
}
1355
 
1356
static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1357
                                nodemask_t *allowednodes)
1358
{
1359
        return 1;
1360
}
1361
 
1362
static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1363
{
1364
}
1365
#endif  /* CONFIG_NUMA */
1366
 
1367
/*
1368
 * get_page_from_freelist goes through the zonelist trying to allocate
1369
 * a page.
1370
 */
1371
static struct page *
1372
get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1373
                struct zonelist *zonelist, int alloc_flags)
1374
{
1375
        struct zone **z;
1376
        struct page *page = NULL;
1377
        int classzone_idx = zone_idx(zonelist->zones[0]);
1378
        struct zone *zone;
1379
        nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1380
        int zlc_active = 0;              /* set if using zonelist_cache */
1381
        int did_zlc_setup = 0;           /* just call zlc_setup() one time */
1382
        enum zone_type highest_zoneidx = -1; /* Gets set for policy zonelists */
1383
 
1384
zonelist_scan:
1385
        /*
1386
         * Scan zonelist, looking for a zone with enough free.
1387
         * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1388
         */
1389
        z = zonelist->zones;
1390
 
1391
        do {
1392
                /*
1393
                 * In NUMA, this could be a policy zonelist which contains
1394
                 * zones that may not be allowed by the current gfp_mask.
1395
                 * Check the zone is allowed by the current flags
1396
                 */
1397
                if (unlikely(alloc_should_filter_zonelist(zonelist))) {
1398
                        if (highest_zoneidx == -1)
1399
                                highest_zoneidx = gfp_zone(gfp_mask);
1400
                        if (zone_idx(*z) > highest_zoneidx)
1401
                                continue;
1402
                }
1403
 
1404
                if (NUMA_BUILD && zlc_active &&
1405
                        !zlc_zone_worth_trying(zonelist, z, allowednodes))
1406
                                continue;
1407
                zone = *z;
1408
                if ((alloc_flags & ALLOC_CPUSET) &&
1409
                        !cpuset_zone_allowed_softwall(zone, gfp_mask))
1410
                                goto try_next_zone;
1411
 
1412
                if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1413
                        unsigned long mark;
1414
                        if (alloc_flags & ALLOC_WMARK_MIN)
1415
                                mark = zone->pages_min;
1416
                        else if (alloc_flags & ALLOC_WMARK_LOW)
1417
                                mark = zone->pages_low;
1418
                        else
1419
                                mark = zone->pages_high;
1420
                        if (!zone_watermark_ok(zone, order, mark,
1421
                                    classzone_idx, alloc_flags)) {
1422
                                if (!zone_reclaim_mode ||
1423
                                    !zone_reclaim(zone, gfp_mask, order))
1424
                                        goto this_zone_full;
1425
                        }
1426
                }
1427
 
1428
                page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1429
                if (page)
1430
                        break;
1431
this_zone_full:
1432
                if (NUMA_BUILD)
1433
                        zlc_mark_zone_full(zonelist, z);
1434
try_next_zone:
1435
                if (NUMA_BUILD && !did_zlc_setup) {
1436
                        /* we do zlc_setup after the first zone is tried */
1437
                        allowednodes = zlc_setup(zonelist, alloc_flags);
1438
                        zlc_active = 1;
1439
                        did_zlc_setup = 1;
1440
                }
1441
        } while (*(++z) != NULL);
1442
 
1443
        if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1444
                /* Disable zlc cache for second zonelist scan */
1445
                zlc_active = 0;
1446
                goto zonelist_scan;
1447
        }
1448
        return page;
1449
}
1450
 
1451
/*
1452
 * This is the 'heart' of the zoned buddy allocator.
1453
 */
1454
struct page * fastcall
1455
__alloc_pages(gfp_t gfp_mask, unsigned int order,
1456
                struct zonelist *zonelist)
1457
{
1458
        const gfp_t wait = gfp_mask & __GFP_WAIT;
1459
        struct zone **z;
1460
        struct page *page;
1461
        struct reclaim_state reclaim_state;
1462
        struct task_struct *p = current;
1463
        int do_retry;
1464
        int alloc_flags;
1465
        int did_some_progress;
1466
 
1467
        might_sleep_if(wait);
1468
 
1469
        if (should_fail_alloc_page(gfp_mask, order))
1470
                return NULL;
1471
 
1472
restart:
1473
        z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
1474
 
1475
        if (unlikely(*z == NULL)) {
1476
                /*
1477
                 * Happens if we have an empty zonelist as a result of
1478
                 * GFP_THISNODE being used on a memoryless node
1479
                 */
1480
                return NULL;
1481
        }
1482
 
1483
        page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1484
                                zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1485
        if (page)
1486
                goto got_pg;
1487
 
1488
        /*
1489
         * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1490
         * __GFP_NOWARN set) should not cause reclaim since the subsystem
1491
         * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1492
         * using a larger set of nodes after it has established that the
1493
         * allowed per node queues are empty and that nodes are
1494
         * over allocated.
1495
         */
1496
        if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1497
                goto nopage;
1498
 
1499
        for (z = zonelist->zones; *z; z++)
1500
                wakeup_kswapd(*z, order);
1501
 
1502
        /*
1503
         * OK, we're below the kswapd watermark and have kicked background
1504
         * reclaim. Now things get more complex, so set up alloc_flags according
1505
         * to how we want to proceed.
1506
         *
1507
         * The caller may dip into page reserves a bit more if the caller
1508
         * cannot run direct reclaim, or if the caller has realtime scheduling
1509
         * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1510
         * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1511
         */
1512
        alloc_flags = ALLOC_WMARK_MIN;
1513
        if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1514
                alloc_flags |= ALLOC_HARDER;
1515
        if (gfp_mask & __GFP_HIGH)
1516
                alloc_flags |= ALLOC_HIGH;
1517
        if (wait)
1518
                alloc_flags |= ALLOC_CPUSET;
1519
 
1520
        /*
1521
         * Go through the zonelist again. Let __GFP_HIGH and allocations
1522
         * coming from realtime tasks go deeper into reserves.
1523
         *
1524
         * This is the last chance, in general, before the goto nopage.
1525
         * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1526
         * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1527
         */
1528
        page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1529
        if (page)
1530
                goto got_pg;
1531
 
1532
        /* This allocation should allow future memory freeing. */
1533
 
1534
rebalance:
1535
        if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1536
                        && !in_interrupt()) {
1537
                if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1538
nofail_alloc:
1539
                        /* go through the zonelist yet again, ignoring mins */
1540
                        page = get_page_from_freelist(gfp_mask, order,
1541
                                zonelist, ALLOC_NO_WATERMARKS);
1542
                        if (page)
1543
                                goto got_pg;
1544
                        if (gfp_mask & __GFP_NOFAIL) {
1545
                                congestion_wait(WRITE, HZ/50);
1546
                                goto nofail_alloc;
1547
                        }
1548
                }
1549
                goto nopage;
1550
        }
1551
 
1552
        /* Atomic allocations - we can't balance anything */
1553
        if (!wait)
1554
                goto nopage;
1555
 
1556
        cond_resched();
1557
 
1558
        /* We now go into synchronous reclaim */
1559
        cpuset_memory_pressure_bump();
1560
        p->flags |= PF_MEMALLOC;
1561
        reclaim_state.reclaimed_slab = 0;
1562
        p->reclaim_state = &reclaim_state;
1563
 
1564
        did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
1565
 
1566
        p->reclaim_state = NULL;
1567
        p->flags &= ~PF_MEMALLOC;
1568
 
1569
        cond_resched();
1570
 
1571
        if (order != 0)
1572
                drain_all_local_pages();
1573
 
1574
        if (likely(did_some_progress)) {
1575
                page = get_page_from_freelist(gfp_mask, order,
1576
                                                zonelist, alloc_flags);
1577
                if (page)
1578
                        goto got_pg;
1579
        } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1580
                if (!try_set_zone_oom(zonelist)) {
1581
                        schedule_timeout_uninterruptible(1);
1582
                        goto restart;
1583
                }
1584
 
1585
                /*
1586
                 * Go through the zonelist yet one more time, keep
1587
                 * very high watermark here, this is only to catch
1588
                 * a parallel oom killing, we must fail if we're still
1589
                 * under heavy pressure.
1590
                 */
1591
                page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1592
                                zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1593
                if (page) {
1594
                        clear_zonelist_oom(zonelist);
1595
                        goto got_pg;
1596
                }
1597
 
1598
                /* The OOM killer will not help higher order allocs so fail */
1599
                if (order > PAGE_ALLOC_COSTLY_ORDER) {
1600
                        clear_zonelist_oom(zonelist);
1601
                        goto nopage;
1602
                }
1603
 
1604
                out_of_memory(zonelist, gfp_mask, order);
1605
                clear_zonelist_oom(zonelist);
1606
                goto restart;
1607
        }
1608
 
1609
        /*
1610
         * Don't let big-order allocations loop unless the caller explicitly
1611
         * requests that.  Wait for some write requests to complete then retry.
1612
         *
1613
         * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1614
         * <= 3, but that may not be true in other implementations.
1615
         */
1616
        do_retry = 0;
1617
        if (!(gfp_mask & __GFP_NORETRY)) {
1618
                if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
1619
                                                (gfp_mask & __GFP_REPEAT))
1620
                        do_retry = 1;
1621
                if (gfp_mask & __GFP_NOFAIL)
1622
                        do_retry = 1;
1623
        }
1624
        if (do_retry) {
1625
                congestion_wait(WRITE, HZ/50);
1626
                goto rebalance;
1627
        }
1628
 
1629
nopage:
1630
        if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1631
                printk(KERN_WARNING "%s: page allocation failure."
1632
                        " order:%d, mode:0x%x\n",
1633
                        p->comm, order, gfp_mask);
1634
                dump_stack();
1635
                show_mem();
1636
        }
1637
got_pg:
1638
        return page;
1639
}
1640
 
1641
EXPORT_SYMBOL(__alloc_pages);
1642
 
1643
/*
1644
 * Common helper functions.
1645
 */
1646
fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1647
{
1648
        struct page * page;
1649
        page = alloc_pages(gfp_mask, order);
1650
        if (!page)
1651
                return 0;
1652
        return (unsigned long) page_address(page);
1653
}
1654
 
1655
EXPORT_SYMBOL(__get_free_pages);
1656
 
1657
fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1658
{
1659
        struct page * page;
1660
 
1661
        /*
1662
         * get_zeroed_page() returns a 32-bit address, which cannot represent
1663
         * a highmem page
1664
         */
1665
        VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1666
 
1667
        page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1668
        if (page)
1669
                return (unsigned long) page_address(page);
1670
        return 0;
1671
}
1672
 
1673
EXPORT_SYMBOL(get_zeroed_page);
1674
 
1675
void __pagevec_free(struct pagevec *pvec)
1676
{
1677
        int i = pagevec_count(pvec);
1678
 
1679
        while (--i >= 0)
1680
                free_hot_cold_page(pvec->pages[i], pvec->cold);
1681
}
1682
 
1683
fastcall void __free_pages(struct page *page, unsigned int order)
1684
{
1685
        if (put_page_testzero(page)) {
1686
                if (order == 0)
1687
                        free_hot_page(page);
1688
                else
1689
                        __free_pages_ok(page, order);
1690
        }
1691
}
1692
 
1693
EXPORT_SYMBOL(__free_pages);
1694
 
1695
fastcall void free_pages(unsigned long addr, unsigned int order)
1696
{
1697
        if (addr != 0) {
1698
                VM_BUG_ON(!virt_addr_valid((void *)addr));
1699
                __free_pages(virt_to_page((void *)addr), order);
1700
        }
1701
}
1702
 
1703
EXPORT_SYMBOL(free_pages);
1704
 
1705
static unsigned int nr_free_zone_pages(int offset)
1706
{
1707
        /* Just pick one node, since fallback list is circular */
1708
        pg_data_t *pgdat = NODE_DATA(numa_node_id());
1709
        unsigned int sum = 0;
1710
 
1711
        struct zonelist *zonelist = pgdat->node_zonelists + offset;
1712
        struct zone **zonep = zonelist->zones;
1713
        struct zone *zone;
1714
 
1715
        for (zone = *zonep++; zone; zone = *zonep++) {
1716
                unsigned long size = zone->present_pages;
1717
                unsigned long high = zone->pages_high;
1718
                if (size > high)
1719
                        sum += size - high;
1720
        }
1721
 
1722
        return sum;
1723
}
1724
 
1725
/*
1726
 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1727
 */
1728
unsigned int nr_free_buffer_pages(void)
1729
{
1730
        return nr_free_zone_pages(gfp_zone(GFP_USER));
1731
}
1732
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1733
 
1734
/*
1735
 * Amount of free RAM allocatable within all zones
1736
 */
1737
unsigned int nr_free_pagecache_pages(void)
1738
{
1739
        return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1740
}
1741
 
1742
static inline void show_node(struct zone *zone)
1743
{
1744
        if (NUMA_BUILD)
1745
                printk("Node %d ", zone_to_nid(zone));
1746
}
1747
 
1748
void si_meminfo(struct sysinfo *val)
1749
{
1750
        val->totalram = totalram_pages;
1751
        val->sharedram = 0;
1752
        val->freeram = global_page_state(NR_FREE_PAGES);
1753
        val->bufferram = nr_blockdev_pages();
1754
        val->totalhigh = totalhigh_pages;
1755
        val->freehigh = nr_free_highpages();
1756
        val->mem_unit = PAGE_SIZE;
1757
}
1758
 
1759
EXPORT_SYMBOL(si_meminfo);
1760
 
1761
#ifdef CONFIG_NUMA
1762
void si_meminfo_node(struct sysinfo *val, int nid)
1763
{
1764
        pg_data_t *pgdat = NODE_DATA(nid);
1765
 
1766
        val->totalram = pgdat->node_present_pages;
1767
        val->freeram = node_page_state(nid, NR_FREE_PAGES);
1768
#ifdef CONFIG_HIGHMEM
1769
        val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1770
        val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1771
                        NR_FREE_PAGES);
1772
#else
1773
        val->totalhigh = 0;
1774
        val->freehigh = 0;
1775
#endif
1776
        val->mem_unit = PAGE_SIZE;
1777
}
1778
#endif
1779
 
1780
#define K(x) ((x) << (PAGE_SHIFT-10))
1781
 
1782
/*
1783
 * Show free area list (used inside shift_scroll-lock stuff)
1784
 * We also calculate the percentage fragmentation. We do this by counting the
1785
 * memory on each free list with the exception of the first item on the list.
1786
 */
1787
void show_free_areas(void)
1788
{
1789
        int cpu;
1790
        struct zone *zone;
1791
 
1792
        for_each_zone(zone) {
1793
                if (!populated_zone(zone))
1794
                        continue;
1795
 
1796
                show_node(zone);
1797
                printk("%s per-cpu:\n", zone->name);
1798
 
1799
                for_each_online_cpu(cpu) {
1800
                        struct per_cpu_pageset *pageset;
1801
 
1802
                        pageset = zone_pcp(zone, cpu);
1803
 
1804
                        printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d   "
1805
                               "Cold: hi:%5d, btch:%4d usd:%4d\n",
1806
                               cpu, pageset->pcp[0].high,
1807
                               pageset->pcp[0].batch, pageset->pcp[0].count,
1808
                               pageset->pcp[1].high, pageset->pcp[1].batch,
1809
                               pageset->pcp[1].count);
1810
                }
1811
        }
1812
 
1813
        printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1814
                " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1815
                global_page_state(NR_ACTIVE),
1816
                global_page_state(NR_INACTIVE),
1817
                global_page_state(NR_FILE_DIRTY),
1818
                global_page_state(NR_WRITEBACK),
1819
                global_page_state(NR_UNSTABLE_NFS),
1820
                global_page_state(NR_FREE_PAGES),
1821
                global_page_state(NR_SLAB_RECLAIMABLE) +
1822
                        global_page_state(NR_SLAB_UNRECLAIMABLE),
1823
                global_page_state(NR_FILE_MAPPED),
1824
                global_page_state(NR_PAGETABLE),
1825
                global_page_state(NR_BOUNCE));
1826
 
1827
        for_each_zone(zone) {
1828
                int i;
1829
 
1830
                if (!populated_zone(zone))
1831
                        continue;
1832
 
1833
                show_node(zone);
1834
                printk("%s"
1835
                        " free:%lukB"
1836
                        " min:%lukB"
1837
                        " low:%lukB"
1838
                        " high:%lukB"
1839
                        " active:%lukB"
1840
                        " inactive:%lukB"
1841
                        " present:%lukB"
1842
                        " pages_scanned:%lu"
1843
                        " all_unreclaimable? %s"
1844
                        "\n",
1845
                        zone->name,
1846
                        K(zone_page_state(zone, NR_FREE_PAGES)),
1847
                        K(zone->pages_min),
1848
                        K(zone->pages_low),
1849
                        K(zone->pages_high),
1850
                        K(zone_page_state(zone, NR_ACTIVE)),
1851
                        K(zone_page_state(zone, NR_INACTIVE)),
1852
                        K(zone->present_pages),
1853
                        zone->pages_scanned,
1854
                        (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1855
                        );
1856
                printk("lowmem_reserve[]:");
1857
                for (i = 0; i < MAX_NR_ZONES; i++)
1858
                        printk(" %lu", zone->lowmem_reserve[i]);
1859
                printk("\n");
1860
        }
1861
 
1862
        for_each_zone(zone) {
1863
                unsigned long nr[MAX_ORDER], flags, order, total = 0;
1864
 
1865
                if (!populated_zone(zone))
1866
                        continue;
1867
 
1868
                show_node(zone);
1869
                printk("%s: ", zone->name);
1870
 
1871
                spin_lock_irqsave(&zone->lock, flags);
1872
                for (order = 0; order < MAX_ORDER; order++) {
1873
                        nr[order] = zone->free_area[order].nr_free;
1874
                        total += nr[order] << order;
1875
                }
1876
                spin_unlock_irqrestore(&zone->lock, flags);
1877
                for (order = 0; order < MAX_ORDER; order++)
1878
                        printk("%lu*%lukB ", nr[order], K(1UL) << order);
1879
                printk("= %lukB\n", K(total));
1880
        }
1881
 
1882
        show_swap_cache_info();
1883
}
1884
 
1885
/*
1886
 * Builds allocation fallback zone lists.
1887
 *
1888
 * Add all populated zones of a node to the zonelist.
1889
 */
1890
static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1891
                                int nr_zones, enum zone_type zone_type)
1892
{
1893
        struct zone *zone;
1894
 
1895
        BUG_ON(zone_type >= MAX_NR_ZONES);
1896
        zone_type++;
1897
 
1898
        do {
1899
                zone_type--;
1900
                zone = pgdat->node_zones + zone_type;
1901
                if (populated_zone(zone)) {
1902
                        zonelist->zones[nr_zones++] = zone;
1903
                        check_highest_zone(zone_type);
1904
                }
1905
 
1906
        } while (zone_type);
1907
        return nr_zones;
1908
}
1909
 
1910
 
1911
/*
1912
 *  zonelist_order:
1913
 *  0 = automatic detection of better ordering.
1914
 *  1 = order by ([node] distance, -zonetype)
1915
 *  2 = order by (-zonetype, [node] distance)
1916
 *
1917
 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1918
 *  the same zonelist. So only NUMA can configure this param.
1919
 */
1920
#define ZONELIST_ORDER_DEFAULT  0
1921
#define ZONELIST_ORDER_NODE     1
1922
#define ZONELIST_ORDER_ZONE     2
1923
 
1924
/* zonelist order in the kernel.
1925
 * set_zonelist_order() will set this to NODE or ZONE.
1926
 */
1927
static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1928
static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1929
 
1930
 
1931
#ifdef CONFIG_NUMA
1932
/* The value user specified ....changed by config */
1933
static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1934
/* string for sysctl */
1935
#define NUMA_ZONELIST_ORDER_LEN 16
1936
char numa_zonelist_order[16] = "default";
1937
 
1938
/*
1939
 * interface for configure zonelist ordering.
1940
 * command line option "numa_zonelist_order"
1941
 *      = "[dD]efault   - default, automatic configuration.
1942
 *      = "[nN]ode      - order by node locality, then by zone within node
1943
 *      = "[zZ]one      - order by zone, then by locality within zone
1944
 */
1945
 
1946
static int __parse_numa_zonelist_order(char *s)
1947
{
1948
        if (*s == 'd' || *s == 'D') {
1949
                user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1950
        } else if (*s == 'n' || *s == 'N') {
1951
                user_zonelist_order = ZONELIST_ORDER_NODE;
1952
        } else if (*s == 'z' || *s == 'Z') {
1953
                user_zonelist_order = ZONELIST_ORDER_ZONE;
1954
        } else {
1955
                printk(KERN_WARNING
1956
                        "Ignoring invalid numa_zonelist_order value:  "
1957
                        "%s\n", s);
1958
                return -EINVAL;
1959
        }
1960
        return 0;
1961
}
1962
 
1963
static __init int setup_numa_zonelist_order(char *s)
1964
{
1965
        if (s)
1966
                return __parse_numa_zonelist_order(s);
1967
        return 0;
1968
}
1969
early_param("numa_zonelist_order", setup_numa_zonelist_order);
1970
 
1971
/*
1972
 * sysctl handler for numa_zonelist_order
1973
 */
1974
int numa_zonelist_order_handler(ctl_table *table, int write,
1975
                struct file *file, void __user *buffer, size_t *length,
1976
                loff_t *ppos)
1977
{
1978
        char saved_string[NUMA_ZONELIST_ORDER_LEN];
1979
        int ret;
1980
 
1981
        if (write)
1982
                strncpy(saved_string, (char*)table->data,
1983
                        NUMA_ZONELIST_ORDER_LEN);
1984
        ret = proc_dostring(table, write, file, buffer, length, ppos);
1985
        if (ret)
1986
                return ret;
1987
        if (write) {
1988
                int oldval = user_zonelist_order;
1989
                if (__parse_numa_zonelist_order((char*)table->data)) {
1990
                        /*
1991
                         * bogus value.  restore saved string
1992
                         */
1993
                        strncpy((char*)table->data, saved_string,
1994
                                NUMA_ZONELIST_ORDER_LEN);
1995
                        user_zonelist_order = oldval;
1996
                } else if (oldval != user_zonelist_order)
1997
                        build_all_zonelists();
1998
        }
1999
        return 0;
2000
}
2001
 
2002
 
2003
#define MAX_NODE_LOAD (num_online_nodes())
2004
static int node_load[MAX_NUMNODES];
2005
 
2006
/**
2007
 * find_next_best_node - find the next node that should appear in a given node's fallback list
2008
 * @node: node whose fallback list we're appending
2009
 * @used_node_mask: nodemask_t of already used nodes
2010
 *
2011
 * We use a number of factors to determine which is the next node that should
2012
 * appear on a given node's fallback list.  The node should not have appeared
2013
 * already in @node's fallback list, and it should be the next closest node
2014
 * according to the distance array (which contains arbitrary distance values
2015
 * from each node to each node in the system), and should also prefer nodes
2016
 * with no CPUs, since presumably they'll have very little allocation pressure
2017
 * on them otherwise.
2018
 * It returns -1 if no node is found.
2019
 */
2020
static int find_next_best_node(int node, nodemask_t *used_node_mask)
2021
{
2022
        int n, val;
2023
        int min_val = INT_MAX;
2024
        int best_node = -1;
2025
 
2026
        /* Use the local node if we haven't already */
2027
        if (!node_isset(node, *used_node_mask)) {
2028
                node_set(node, *used_node_mask);
2029
                return node;
2030
        }
2031
 
2032
        for_each_node_state(n, N_HIGH_MEMORY) {
2033
                cpumask_t tmp;
2034
 
2035
                /* Don't want a node to appear more than once */
2036
                if (node_isset(n, *used_node_mask))
2037
                        continue;
2038
 
2039
                /* Use the distance array to find the distance */
2040
                val = node_distance(node, n);
2041
 
2042
                /* Penalize nodes under us ("prefer the next node") */
2043
                val += (n < node);
2044
 
2045
                /* Give preference to headless and unused nodes */
2046
                tmp = node_to_cpumask(n);
2047
                if (!cpus_empty(tmp))
2048
                        val += PENALTY_FOR_NODE_WITH_CPUS;
2049
 
2050
                /* Slight preference for less loaded node */
2051
                val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2052
                val += node_load[n];
2053
 
2054
                if (val < min_val) {
2055
                        min_val = val;
2056
                        best_node = n;
2057
                }
2058
        }
2059
 
2060
        if (best_node >= 0)
2061
                node_set(best_node, *used_node_mask);
2062
 
2063
        return best_node;
2064
}
2065
 
2066
 
2067
/*
2068
 * Build zonelists ordered by node and zones within node.
2069
 * This results in maximum locality--normal zone overflows into local
2070
 * DMA zone, if any--but risks exhausting DMA zone.
2071
 */
2072
static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2073
{
2074
        enum zone_type i;
2075
        int j;
2076
        struct zonelist *zonelist;
2077
 
2078
        for (i = 0; i < MAX_NR_ZONES; i++) {
2079
                zonelist = pgdat->node_zonelists + i;
2080
                for (j = 0; zonelist->zones[j] != NULL; j++)
2081
                        ;
2082
                j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2083
                zonelist->zones[j] = NULL;
2084
        }
2085
}
2086
 
2087
/*
2088
 * Build gfp_thisnode zonelists
2089
 */
2090
static void build_thisnode_zonelists(pg_data_t *pgdat)
2091
{
2092
        enum zone_type i;
2093
        int j;
2094
        struct zonelist *zonelist;
2095
 
2096
        for (i = 0; i < MAX_NR_ZONES; i++) {
2097
                zonelist = pgdat->node_zonelists + MAX_NR_ZONES + i;
2098
                j = build_zonelists_node(pgdat, zonelist, 0, i);
2099
                zonelist->zones[j] = NULL;
2100
        }
2101
}
2102
 
2103
/*
2104
 * Build zonelists ordered by zone and nodes within zones.
2105
 * This results in conserving DMA zone[s] until all Normal memory is
2106
 * exhausted, but results in overflowing to remote node while memory
2107
 * may still exist in local DMA zone.
2108
 */
2109
static int node_order[MAX_NUMNODES];
2110
 
2111
static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2112
{
2113
        enum zone_type i;
2114
        int pos, j, node;
2115
        int zone_type;          /* needs to be signed */
2116
        struct zone *z;
2117
        struct zonelist *zonelist;
2118
 
2119
        for (i = 0; i < MAX_NR_ZONES; i++) {
2120
                zonelist = pgdat->node_zonelists + i;
2121
                pos = 0;
2122
                for (zone_type = i; zone_type >= 0; zone_type--) {
2123
                        for (j = 0; j < nr_nodes; j++) {
2124
                                node = node_order[j];
2125
                                z = &NODE_DATA(node)->node_zones[zone_type];
2126
                                if (populated_zone(z)) {
2127
                                        zonelist->zones[pos++] = z;
2128
                                        check_highest_zone(zone_type);
2129
                                }
2130
                        }
2131
                }
2132
                zonelist->zones[pos] = NULL;
2133
        }
2134
}
2135
 
2136
static int default_zonelist_order(void)
2137
{
2138
        int nid, zone_type;
2139
        unsigned long low_kmem_size,total_size;
2140
        struct zone *z;
2141
        int average_size;
2142
        /*
2143
         * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2144
         * If they are really small and used heavily, the system can fall
2145
         * into OOM very easily.
2146
         * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2147
         */
2148
        /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2149
        low_kmem_size = 0;
2150
        total_size = 0;
2151
        for_each_online_node(nid) {
2152
                for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2153
                        z = &NODE_DATA(nid)->node_zones[zone_type];
2154
                        if (populated_zone(z)) {
2155
                                if (zone_type < ZONE_NORMAL)
2156
                                        low_kmem_size += z->present_pages;
2157
                                total_size += z->present_pages;
2158
                        }
2159
                }
2160
        }
2161
        if (!low_kmem_size ||  /* there are no DMA area. */
2162
            low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2163
                return ZONELIST_ORDER_NODE;
2164
        /*
2165
         * look into each node's config.
2166
         * If there is a node whose DMA/DMA32 memory is very big area on
2167
         * local memory, NODE_ORDER may be suitable.
2168
         */
2169
        average_size = total_size /
2170
                                (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2171
        for_each_online_node(nid) {
2172
                low_kmem_size = 0;
2173
                total_size = 0;
2174
                for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2175
                        z = &NODE_DATA(nid)->node_zones[zone_type];
2176
                        if (populated_zone(z)) {
2177
                                if (zone_type < ZONE_NORMAL)
2178
                                        low_kmem_size += z->present_pages;
2179
                                total_size += z->present_pages;
2180
                        }
2181
                }
2182
                if (low_kmem_size &&
2183
                    total_size > average_size && /* ignore small node */
2184
                    low_kmem_size > total_size * 70/100)
2185
                        return ZONELIST_ORDER_NODE;
2186
        }
2187
        return ZONELIST_ORDER_ZONE;
2188
}
2189
 
2190
static void set_zonelist_order(void)
2191
{
2192
        if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2193
                current_zonelist_order = default_zonelist_order();
2194
        else
2195
                current_zonelist_order = user_zonelist_order;
2196
}
2197
 
2198
static void build_zonelists(pg_data_t *pgdat)
2199
{
2200
        int j, node, load;
2201
        enum zone_type i;
2202
        nodemask_t used_mask;
2203
        int local_node, prev_node;
2204
        struct zonelist *zonelist;
2205
        int order = current_zonelist_order;
2206
 
2207
        /* initialize zonelists */
2208
        for (i = 0; i < MAX_ZONELISTS; i++) {
2209
                zonelist = pgdat->node_zonelists + i;
2210
                zonelist->zones[0] = NULL;
2211
        }
2212
 
2213
        /* NUMA-aware ordering of nodes */
2214
        local_node = pgdat->node_id;
2215
        load = num_online_nodes();
2216
        prev_node = local_node;
2217
        nodes_clear(used_mask);
2218
 
2219
        memset(node_load, 0, sizeof(node_load));
2220
        memset(node_order, 0, sizeof(node_order));
2221
        j = 0;
2222
 
2223
        while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2224
                int distance = node_distance(local_node, node);
2225
 
2226
                /*
2227
                 * If another node is sufficiently far away then it is better
2228
                 * to reclaim pages in a zone before going off node.
2229
                 */
2230
                if (distance > RECLAIM_DISTANCE)
2231
                        zone_reclaim_mode = 1;
2232
 
2233
                /*
2234
                 * We don't want to pressure a particular node.
2235
                 * So adding penalty to the first node in same
2236
                 * distance group to make it round-robin.
2237
                 */
2238
                if (distance != node_distance(local_node, prev_node))
2239
                        node_load[node] = load;
2240
 
2241
                prev_node = node;
2242
                load--;
2243
                if (order == ZONELIST_ORDER_NODE)
2244
                        build_zonelists_in_node_order(pgdat, node);
2245
                else
2246
                        node_order[j++] = node; /* remember order */
2247
        }
2248
 
2249
        if (order == ZONELIST_ORDER_ZONE) {
2250
                /* calculate node order -- i.e., DMA last! */
2251
                build_zonelists_in_zone_order(pgdat, j);
2252
        }
2253
 
2254
        build_thisnode_zonelists(pgdat);
2255
}
2256
 
2257
/* Construct the zonelist performance cache - see further mmzone.h */
2258
static void build_zonelist_cache(pg_data_t *pgdat)
2259
{
2260
        int i;
2261
 
2262
        for (i = 0; i < MAX_NR_ZONES; i++) {
2263
                struct zonelist *zonelist;
2264
                struct zonelist_cache *zlc;
2265
                struct zone **z;
2266
 
2267
                zonelist = pgdat->node_zonelists + i;
2268
                zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2269
                bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2270
                for (z = zonelist->zones; *z; z++)
2271
                        zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
2272
        }
2273
}
2274
 
2275
 
2276
#else   /* CONFIG_NUMA */
2277
 
2278
static void set_zonelist_order(void)
2279
{
2280
        current_zonelist_order = ZONELIST_ORDER_ZONE;
2281
}
2282
 
2283
static void build_zonelists(pg_data_t *pgdat)
2284
{
2285
        int node, local_node;
2286
        enum zone_type i,j;
2287
 
2288
        local_node = pgdat->node_id;
2289
        for (i = 0; i < MAX_NR_ZONES; i++) {
2290
                struct zonelist *zonelist;
2291
 
2292
                zonelist = pgdat->node_zonelists + i;
2293
 
2294
                j = build_zonelists_node(pgdat, zonelist, 0, i);
2295
                /*
2296
                 * Now we build the zonelist so that it contains the zones
2297
                 * of all the other nodes.
2298
                 * We don't want to pressure a particular node, so when
2299
                 * building the zones for node N, we make sure that the
2300
                 * zones coming right after the local ones are those from
2301
                 * node N+1 (modulo N)
2302
                 */
2303
                for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2304
                        if (!node_online(node))
2305
                                continue;
2306
                        j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2307
                }
2308
                for (node = 0; node < local_node; node++) {
2309
                        if (!node_online(node))
2310
                                continue;
2311
                        j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2312
                }
2313
 
2314
                zonelist->zones[j] = NULL;
2315
        }
2316
}
2317
 
2318
/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2319
static void build_zonelist_cache(pg_data_t *pgdat)
2320
{
2321
        int i;
2322
 
2323
        for (i = 0; i < MAX_NR_ZONES; i++)
2324
                pgdat->node_zonelists[i].zlcache_ptr = NULL;
2325
}
2326
 
2327
#endif  /* CONFIG_NUMA */
2328
 
2329
/* return values int ....just for stop_machine_run() */
2330
static int __build_all_zonelists(void *dummy)
2331
{
2332
        int nid;
2333
 
2334
        for_each_online_node(nid) {
2335
                pg_data_t *pgdat = NODE_DATA(nid);
2336
 
2337
                build_zonelists(pgdat);
2338
                build_zonelist_cache(pgdat);
2339
        }
2340
        return 0;
2341
}
2342
 
2343
void build_all_zonelists(void)
2344
{
2345
        set_zonelist_order();
2346
 
2347
        if (system_state == SYSTEM_BOOTING) {
2348
                __build_all_zonelists(NULL);
2349
                cpuset_init_current_mems_allowed();
2350
        } else {
2351
                /* we have to stop all cpus to guarantee there is no user
2352
                   of zonelist */
2353
                stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2354
                /* cpuset refresh routine should be here */
2355
        }
2356
        vm_total_pages = nr_free_pagecache_pages();
2357
        /*
2358
         * Disable grouping by mobility if the number of pages in the
2359
         * system is too low to allow the mechanism to work. It would be
2360
         * more accurate, but expensive to check per-zone. This check is
2361
         * made on memory-hotadd so a system can start with mobility
2362
         * disabled and enable it later
2363
         */
2364
        if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2365
                page_group_by_mobility_disabled = 1;
2366
        else
2367
                page_group_by_mobility_disabled = 0;
2368
 
2369
        printk("Built %i zonelists in %s order, mobility grouping %s.  "
2370
                "Total pages: %ld\n",
2371
                        num_online_nodes(),
2372
                        zonelist_order_name[current_zonelist_order],
2373
                        page_group_by_mobility_disabled ? "off" : "on",
2374
                        vm_total_pages);
2375
#ifdef CONFIG_NUMA
2376
        printk("Policy zone: %s\n", zone_names[policy_zone]);
2377
#endif
2378
}
2379
 
2380
/*
2381
 * Helper functions to size the waitqueue hash table.
2382
 * Essentially these want to choose hash table sizes sufficiently
2383
 * large so that collisions trying to wait on pages are rare.
2384
 * But in fact, the number of active page waitqueues on typical
2385
 * systems is ridiculously low, less than 200. So this is even
2386
 * conservative, even though it seems large.
2387
 *
2388
 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2389
 * waitqueues, i.e. the size of the waitq table given the number of pages.
2390
 */
2391
#define PAGES_PER_WAITQUEUE     256
2392
 
2393
#ifndef CONFIG_MEMORY_HOTPLUG
2394
static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2395
{
2396
        unsigned long size = 1;
2397
 
2398
        pages /= PAGES_PER_WAITQUEUE;
2399
 
2400
        while (size < pages)
2401
                size <<= 1;
2402
 
2403
        /*
2404
         * Once we have dozens or even hundreds of threads sleeping
2405
         * on IO we've got bigger problems than wait queue collision.
2406
         * Limit the size of the wait table to a reasonable size.
2407
         */
2408
        size = min(size, 4096UL);
2409
 
2410
        return max(size, 4UL);
2411
}
2412
#else
2413
/*
2414
 * A zone's size might be changed by hot-add, so it is not possible to determine
2415
 * a suitable size for its wait_table.  So we use the maximum size now.
2416
 *
2417
 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2418
 *
2419
 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2420
 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2421
 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2422
 *
2423
 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2424
 * or more by the traditional way. (See above).  It equals:
2425
 *
2426
 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2427
 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2428
 *    powerpc (64K page size)             : =  (32G +16M)byte.
2429
 */
2430
static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2431
{
2432
        return 4096UL;
2433
}
2434
#endif
2435
 
2436
/*
2437
 * This is an integer logarithm so that shifts can be used later
2438
 * to extract the more random high bits from the multiplicative
2439
 * hash function before the remainder is taken.
2440
 */
2441
static inline unsigned long wait_table_bits(unsigned long size)
2442
{
2443
        return ffz(~size);
2444
}
2445
 
2446
#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2447
 
2448
/*
2449
 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2450
 * of blocks reserved is based on zone->pages_min. The memory within the
2451
 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2452
 * higher will lead to a bigger reserve which will get freed as contiguous
2453
 * blocks as reclaim kicks in
2454
 */
2455
static void setup_zone_migrate_reserve(struct zone *zone)
2456
{
2457
        unsigned long start_pfn, pfn, end_pfn;
2458
        struct page *page;
2459
        unsigned long reserve, block_migratetype;
2460
 
2461
        /* Get the start pfn, end pfn and the number of blocks to reserve */
2462
        start_pfn = zone->zone_start_pfn;
2463
        end_pfn = start_pfn + zone->spanned_pages;
2464
        reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2465
                                                        pageblock_order;
2466
 
2467
        for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2468
                if (!pfn_valid(pfn))
2469
                        continue;
2470
                page = pfn_to_page(pfn);
2471
 
2472
                /* Blocks with reserved pages will never free, skip them. */
2473
                if (PageReserved(page))
2474
                        continue;
2475
 
2476
                block_migratetype = get_pageblock_migratetype(page);
2477
 
2478
                /* If this block is reserved, account for it */
2479
                if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2480
                        reserve--;
2481
                        continue;
2482
                }
2483
 
2484
                /* Suitable for reserving if this block is movable */
2485
                if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2486
                        set_pageblock_migratetype(page, MIGRATE_RESERVE);
2487
                        move_freepages_block(zone, page, MIGRATE_RESERVE);
2488
                        reserve--;
2489
                        continue;
2490
                }
2491
 
2492
                /*
2493
                 * If the reserve is met and this is a previous reserved block,
2494
                 * take it back
2495
                 */
2496
                if (block_migratetype == MIGRATE_RESERVE) {
2497
                        set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2498
                        move_freepages_block(zone, page, MIGRATE_MOVABLE);
2499
                }
2500
        }
2501
}
2502
 
2503
/*
2504
 * Initially all pages are reserved - free ones are freed
2505
 * up by free_all_bootmem() once the early boot process is
2506
 * done. Non-atomic initialization, single-pass.
2507
 */
2508
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2509
                unsigned long start_pfn, enum memmap_context context)
2510
{
2511
        struct page *page;
2512
        unsigned long end_pfn = start_pfn + size;
2513
        unsigned long pfn;
2514
 
2515
        for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2516
                /*
2517
                 * There can be holes in boot-time mem_map[]s
2518
                 * handed to this function.  They do not
2519
                 * exist on hotplugged memory.
2520
                 */
2521
                if (context == MEMMAP_EARLY) {
2522
                        if (!early_pfn_valid(pfn))
2523
                                continue;
2524
                        if (!early_pfn_in_nid(pfn, nid))
2525
                                continue;
2526
                }
2527
                page = pfn_to_page(pfn);
2528
                set_page_links(page, zone, nid, pfn);
2529
                init_page_count(page);
2530
                reset_page_mapcount(page);
2531
                SetPageReserved(page);
2532
 
2533
                /*
2534
                 * Mark the block movable so that blocks are reserved for
2535
                 * movable at startup. This will force kernel allocations
2536
                 * to reserve their blocks rather than leaking throughout
2537
                 * the address space during boot when many long-lived
2538
                 * kernel allocations are made. Later some blocks near
2539
                 * the start are marked MIGRATE_RESERVE by
2540
                 * setup_zone_migrate_reserve()
2541
                 */
2542
                if ((pfn & (pageblock_nr_pages-1)))
2543
                        set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2544
 
2545
                INIT_LIST_HEAD(&page->lru);
2546
#ifdef WANT_PAGE_VIRTUAL
2547
                /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2548
                if (!is_highmem_idx(zone))
2549
                        set_page_address(page, __va(pfn << PAGE_SHIFT));
2550
#endif
2551
        }
2552
}
2553
 
2554
static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
2555
                                struct zone *zone, unsigned long size)
2556
{
2557
        int order, t;
2558
        for_each_migratetype_order(order, t) {
2559
                INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2560
                zone->free_area[order].nr_free = 0;
2561
        }
2562
}
2563
 
2564
#ifndef __HAVE_ARCH_MEMMAP_INIT
2565
#define memmap_init(size, nid, zone, start_pfn) \
2566
        memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2567
#endif
2568
 
2569
static int zone_batchsize(struct zone *zone)
2570
{
2571
        int batch;
2572
 
2573
        /*
2574
         * The per-cpu-pages pools are set to around 1000th of the
2575
         * size of the zone.  But no more than 1/2 of a meg.
2576
         *
2577
         * OK, so we don't know how big the cache is.  So guess.
2578
         */
2579
        batch = zone->present_pages / 1024;
2580
        if (batch * PAGE_SIZE > 512 * 1024)
2581
                batch = (512 * 1024) / PAGE_SIZE;
2582
        batch /= 4;             /* We effectively *= 4 below */
2583
        if (batch < 1)
2584
                batch = 1;
2585
 
2586
        /*
2587
         * Clamp the batch to a 2^n - 1 value. Having a power
2588
         * of 2 value was found to be more likely to have
2589
         * suboptimal cache aliasing properties in some cases.
2590
         *
2591
         * For example if 2 tasks are alternately allocating
2592
         * batches of pages, one task can end up with a lot
2593
         * of pages of one half of the possible page colors
2594
         * and the other with pages of the other colors.
2595
         */
2596
        batch = (1 << (fls(batch + batch/2)-1)) - 1;
2597
 
2598
        return batch;
2599
}
2600
 
2601
inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2602
{
2603
        struct per_cpu_pages *pcp;
2604
 
2605
        memset(p, 0, sizeof(*p));
2606
 
2607
        pcp = &p->pcp[0];                /* hot */
2608
        pcp->count = 0;
2609
        pcp->high = 6 * batch;
2610
        pcp->batch = max(1UL, 1 * batch);
2611
        INIT_LIST_HEAD(&pcp->list);
2612
 
2613
        pcp = &p->pcp[1];               /* cold*/
2614
        pcp->count = 0;
2615
        pcp->high = 2 * batch;
2616
        pcp->batch = max(1UL, batch/2);
2617
        INIT_LIST_HEAD(&pcp->list);
2618
}
2619
 
2620
/*
2621
 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2622
 * to the value high for the pageset p.
2623
 */
2624
 
2625
static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2626
                                unsigned long high)
2627
{
2628
        struct per_cpu_pages *pcp;
2629
 
2630
        pcp = &p->pcp[0]; /* hot list */
2631
        pcp->high = high;
2632
        pcp->batch = max(1UL, high/4);
2633
        if ((high/4) > (PAGE_SHIFT * 8))
2634
                pcp->batch = PAGE_SHIFT * 8;
2635
}
2636
 
2637
 
2638
#ifdef CONFIG_NUMA
2639
/*
2640
 * Boot pageset table. One per cpu which is going to be used for all
2641
 * zones and all nodes. The parameters will be set in such a way
2642
 * that an item put on a list will immediately be handed over to
2643
 * the buddy list. This is safe since pageset manipulation is done
2644
 * with interrupts disabled.
2645
 *
2646
 * Some NUMA counter updates may also be caught by the boot pagesets.
2647
 *
2648
 * The boot_pagesets must be kept even after bootup is complete for
2649
 * unused processors and/or zones. They do play a role for bootstrapping
2650
 * hotplugged processors.
2651
 *
2652
 * zoneinfo_show() and maybe other functions do
2653
 * not check if the processor is online before following the pageset pointer.
2654
 * Other parts of the kernel may not check if the zone is available.
2655
 */
2656
static struct per_cpu_pageset boot_pageset[NR_CPUS];
2657
 
2658
/*
2659
 * Dynamically allocate memory for the
2660
 * per cpu pageset array in struct zone.
2661
 */
2662
static int __cpuinit process_zones(int cpu)
2663
{
2664
        struct zone *zone, *dzone;
2665
        int node = cpu_to_node(cpu);
2666
 
2667
        node_set_state(node, N_CPU);    /* this node has a cpu */
2668
 
2669
        for_each_zone(zone) {
2670
 
2671
                if (!populated_zone(zone))
2672
                        continue;
2673
 
2674
                zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2675
                                         GFP_KERNEL, node);
2676
                if (!zone_pcp(zone, cpu))
2677
                        goto bad;
2678
 
2679
                setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2680
 
2681
                if (percpu_pagelist_fraction)
2682
                        setup_pagelist_highmark(zone_pcp(zone, cpu),
2683
                                (zone->present_pages / percpu_pagelist_fraction));
2684
        }
2685
 
2686
        return 0;
2687
bad:
2688
        for_each_zone(dzone) {
2689
                if (!populated_zone(dzone))
2690
                        continue;
2691
                if (dzone == zone)
2692
                        break;
2693
                kfree(zone_pcp(dzone, cpu));
2694
                zone_pcp(dzone, cpu) = NULL;
2695
        }
2696
        return -ENOMEM;
2697
}
2698
 
2699
static inline void free_zone_pagesets(int cpu)
2700
{
2701
        struct zone *zone;
2702
 
2703
        for_each_zone(zone) {
2704
                struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2705
 
2706
                /* Free per_cpu_pageset if it is slab allocated */
2707
                if (pset != &boot_pageset[cpu])
2708
                        kfree(pset);
2709
                zone_pcp(zone, cpu) = NULL;
2710
        }
2711
}
2712
 
2713
static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2714
                unsigned long action,
2715
                void *hcpu)
2716
{
2717
        int cpu = (long)hcpu;
2718
        int ret = NOTIFY_OK;
2719
 
2720
        switch (action) {
2721
        case CPU_UP_PREPARE:
2722
        case CPU_UP_PREPARE_FROZEN:
2723
                if (process_zones(cpu))
2724
                        ret = NOTIFY_BAD;
2725
                break;
2726
        case CPU_UP_CANCELED:
2727
        case CPU_UP_CANCELED_FROZEN:
2728
        case CPU_DEAD:
2729
        case CPU_DEAD_FROZEN:
2730
                free_zone_pagesets(cpu);
2731
                break;
2732
        default:
2733
                break;
2734
        }
2735
        return ret;
2736
}
2737
 
2738
static struct notifier_block __cpuinitdata pageset_notifier =
2739
        { &pageset_cpuup_callback, NULL, 0 };
2740
 
2741
void __init setup_per_cpu_pageset(void)
2742
{
2743
        int err;
2744
 
2745
        /* Initialize per_cpu_pageset for cpu 0.
2746
         * A cpuup callback will do this for every cpu
2747
         * as it comes online
2748
         */
2749
        err = process_zones(smp_processor_id());
2750
        BUG_ON(err);
2751
        register_cpu_notifier(&pageset_notifier);
2752
}
2753
 
2754
#endif
2755
 
2756
static noinline __init_refok
2757
int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2758
{
2759
        int i;
2760
        struct pglist_data *pgdat = zone->zone_pgdat;
2761
        size_t alloc_size;
2762
 
2763
        /*
2764
         * The per-page waitqueue mechanism uses hashed waitqueues
2765
         * per zone.
2766
         */
2767
        zone->wait_table_hash_nr_entries =
2768
                 wait_table_hash_nr_entries(zone_size_pages);
2769
        zone->wait_table_bits =
2770
                wait_table_bits(zone->wait_table_hash_nr_entries);
2771
        alloc_size = zone->wait_table_hash_nr_entries
2772
                                        * sizeof(wait_queue_head_t);
2773
 
2774
        if (system_state == SYSTEM_BOOTING) {
2775
                zone->wait_table = (wait_queue_head_t *)
2776
                        alloc_bootmem_node(pgdat, alloc_size);
2777
        } else {
2778
                /*
2779
                 * This case means that a zone whose size was 0 gets new memory
2780
                 * via memory hot-add.
2781
                 * But it may be the case that a new node was hot-added.  In
2782
                 * this case vmalloc() will not be able to use this new node's
2783
                 * memory - this wait_table must be initialized to use this new
2784
                 * node itself as well.
2785
                 * To use this new node's memory, further consideration will be
2786
                 * necessary.
2787
                 */
2788
                zone->wait_table = vmalloc(alloc_size);
2789
        }
2790
        if (!zone->wait_table)
2791
                return -ENOMEM;
2792
 
2793
        for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2794
                init_waitqueue_head(zone->wait_table + i);
2795
 
2796
        return 0;
2797
}
2798
 
2799
static __meminit void zone_pcp_init(struct zone *zone)
2800
{
2801
        int cpu;
2802
        unsigned long batch = zone_batchsize(zone);
2803
 
2804
        for (cpu = 0; cpu < NR_CPUS; cpu++) {
2805
#ifdef CONFIG_NUMA
2806
                /* Early boot. Slab allocator not functional yet */
2807
                zone_pcp(zone, cpu) = &boot_pageset[cpu];
2808
                setup_pageset(&boot_pageset[cpu],0);
2809
#else
2810
                setup_pageset(zone_pcp(zone,cpu), batch);
2811
#endif
2812
        }
2813
        if (zone->present_pages)
2814
                printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2815
                        zone->name, zone->present_pages, batch);
2816
}
2817
 
2818
__meminit int init_currently_empty_zone(struct zone *zone,
2819
                                        unsigned long zone_start_pfn,
2820
                                        unsigned long size,
2821
                                        enum memmap_context context)
2822
{
2823
        struct pglist_data *pgdat = zone->zone_pgdat;
2824
        int ret;
2825
        ret = zone_wait_table_init(zone, size);
2826
        if (ret)
2827
                return ret;
2828
        pgdat->nr_zones = zone_idx(zone) + 1;
2829
 
2830
        zone->zone_start_pfn = zone_start_pfn;
2831
 
2832
        memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2833
 
2834
        zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2835
 
2836
        return 0;
2837
}
2838
 
2839
#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2840
/*
2841
 * Basic iterator support. Return the first range of PFNs for a node
2842
 * Note: nid == MAX_NUMNODES returns first region regardless of node
2843
 */
2844
static int __meminit first_active_region_index_in_nid(int nid)
2845
{
2846
        int i;
2847
 
2848
        for (i = 0; i < nr_nodemap_entries; i++)
2849
                if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2850
                        return i;
2851
 
2852
        return -1;
2853
}
2854
 
2855
/*
2856
 * Basic iterator support. Return the next active range of PFNs for a node
2857
 * Note: nid == MAX_NUMNODES returns next region regardless of node
2858
 */
2859
static int __meminit next_active_region_index_in_nid(int index, int nid)
2860
{
2861
        for (index = index + 1; index < nr_nodemap_entries; index++)
2862
                if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2863
                        return index;
2864
 
2865
        return -1;
2866
}
2867
 
2868
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2869
/*
2870
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2871
 * Architectures may implement their own version but if add_active_range()
2872
 * was used and there are no special requirements, this is a convenient
2873
 * alternative
2874
 */
2875
int __meminit early_pfn_to_nid(unsigned long pfn)
2876
{
2877
        int i;
2878
 
2879
        for (i = 0; i < nr_nodemap_entries; i++) {
2880
                unsigned long start_pfn = early_node_map[i].start_pfn;
2881
                unsigned long end_pfn = early_node_map[i].end_pfn;
2882
 
2883
                if (start_pfn <= pfn && pfn < end_pfn)
2884
                        return early_node_map[i].nid;
2885
        }
2886
 
2887
        return 0;
2888
}
2889
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2890
 
2891
/* Basic iterator support to walk early_node_map[] */
2892
#define for_each_active_range_index_in_nid(i, nid) \
2893
        for (i = first_active_region_index_in_nid(nid); i != -1; \
2894
                                i = next_active_region_index_in_nid(i, nid))
2895
 
2896
/**
2897
 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2898
 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2899
 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2900
 *
2901
 * If an architecture guarantees that all ranges registered with
2902
 * add_active_ranges() contain no holes and may be freed, this
2903
 * this function may be used instead of calling free_bootmem() manually.
2904
 */
2905
void __init free_bootmem_with_active_regions(int nid,
2906
                                                unsigned long max_low_pfn)
2907
{
2908
        int i;
2909
 
2910
        for_each_active_range_index_in_nid(i, nid) {
2911
                unsigned long size_pages = 0;
2912
                unsigned long end_pfn = early_node_map[i].end_pfn;
2913
 
2914
                if (early_node_map[i].start_pfn >= max_low_pfn)
2915
                        continue;
2916
 
2917
                if (end_pfn > max_low_pfn)
2918
                        end_pfn = max_low_pfn;
2919
 
2920
                size_pages = end_pfn - early_node_map[i].start_pfn;
2921
                free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2922
                                PFN_PHYS(early_node_map[i].start_pfn),
2923
                                size_pages << PAGE_SHIFT);
2924
        }
2925
}
2926
 
2927
/**
2928
 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2929
 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2930
 *
2931
 * If an architecture guarantees that all ranges registered with
2932
 * add_active_ranges() contain no holes and may be freed, this
2933
 * function may be used instead of calling memory_present() manually.
2934
 */
2935
void __init sparse_memory_present_with_active_regions(int nid)
2936
{
2937
        int i;
2938
 
2939
        for_each_active_range_index_in_nid(i, nid)
2940
                memory_present(early_node_map[i].nid,
2941
                                early_node_map[i].start_pfn,
2942
                                early_node_map[i].end_pfn);
2943
}
2944
 
2945
/**
2946
 * push_node_boundaries - Push node boundaries to at least the requested boundary
2947
 * @nid: The nid of the node to push the boundary for
2948
 * @start_pfn: The start pfn of the node
2949
 * @end_pfn: The end pfn of the node
2950
 *
2951
 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2952
 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2953
 * be hotplugged even though no physical memory exists. This function allows
2954
 * an arch to push out the node boundaries so mem_map is allocated that can
2955
 * be used later.
2956
 */
2957
#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2958
void __init push_node_boundaries(unsigned int nid,
2959
                unsigned long start_pfn, unsigned long end_pfn)
2960
{
2961
        printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2962
                        nid, start_pfn, end_pfn);
2963
 
2964
        /* Initialise the boundary for this node if necessary */
2965
        if (node_boundary_end_pfn[nid] == 0)
2966
                node_boundary_start_pfn[nid] = -1UL;
2967
 
2968
        /* Update the boundaries */
2969
        if (node_boundary_start_pfn[nid] > start_pfn)
2970
                node_boundary_start_pfn[nid] = start_pfn;
2971
        if (node_boundary_end_pfn[nid] < end_pfn)
2972
                node_boundary_end_pfn[nid] = end_pfn;
2973
}
2974
 
2975
/* If necessary, push the node boundary out for reserve hotadd */
2976
static void __meminit account_node_boundary(unsigned int nid,
2977
                unsigned long *start_pfn, unsigned long *end_pfn)
2978
{
2979
        printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2980
                        nid, *start_pfn, *end_pfn);
2981
 
2982
        /* Return if boundary information has not been provided */
2983
        if (node_boundary_end_pfn[nid] == 0)
2984
                return;
2985
 
2986
        /* Check the boundaries and update if necessary */
2987
        if (node_boundary_start_pfn[nid] < *start_pfn)
2988
                *start_pfn = node_boundary_start_pfn[nid];
2989
        if (node_boundary_end_pfn[nid] > *end_pfn)
2990
                *end_pfn = node_boundary_end_pfn[nid];
2991
}
2992
#else
2993
void __init push_node_boundaries(unsigned int nid,
2994
                unsigned long start_pfn, unsigned long end_pfn) {}
2995
 
2996
static void __meminit account_node_boundary(unsigned int nid,
2997
                unsigned long *start_pfn, unsigned long *end_pfn) {}
2998
#endif
2999
 
3000
 
3001
/**
3002
 * get_pfn_range_for_nid - Return the start and end page frames for a node
3003
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3004
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3005
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3006
 *
3007
 * It returns the start and end page frame of a node based on information
3008
 * provided by an arch calling add_active_range(). If called for a node
3009
 * with no available memory, a warning is printed and the start and end
3010
 * PFNs will be 0.
3011
 */
3012
void __meminit get_pfn_range_for_nid(unsigned int nid,
3013
                        unsigned long *start_pfn, unsigned long *end_pfn)
3014
{
3015
        int i;
3016
        *start_pfn = -1UL;
3017
        *end_pfn = 0;
3018
 
3019
        for_each_active_range_index_in_nid(i, nid) {
3020
                *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3021
                *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3022
        }
3023
 
3024
        if (*start_pfn == -1UL)
3025
                *start_pfn = 0;
3026
 
3027
        /* Push the node boundaries out if requested */
3028
        account_node_boundary(nid, start_pfn, end_pfn);
3029
}
3030
 
3031
/*
3032
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3033
 * assumption is made that zones within a node are ordered in monotonic
3034
 * increasing memory addresses so that the "highest" populated zone is used
3035
 */
3036
void __init find_usable_zone_for_movable(void)
3037
{
3038
        int zone_index;
3039
        for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3040
                if (zone_index == ZONE_MOVABLE)
3041
                        continue;
3042
 
3043
                if (arch_zone_highest_possible_pfn[zone_index] >
3044
                                arch_zone_lowest_possible_pfn[zone_index])
3045
                        break;
3046
        }
3047
 
3048
        VM_BUG_ON(zone_index == -1);
3049
        movable_zone = zone_index;
3050
}
3051
 
3052
/*
3053
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3054
 * because it is sized independant of architecture. Unlike the other zones,
3055
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3056
 * in each node depending on the size of each node and how evenly kernelcore
3057
 * is distributed. This helper function adjusts the zone ranges
3058
 * provided by the architecture for a given node by using the end of the
3059
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3060
 * zones within a node are in order of monotonic increases memory addresses
3061
 */
3062
void __meminit adjust_zone_range_for_zone_movable(int nid,
3063
                                        unsigned long zone_type,
3064
                                        unsigned long node_start_pfn,
3065
                                        unsigned long node_end_pfn,
3066
                                        unsigned long *zone_start_pfn,
3067
                                        unsigned long *zone_end_pfn)
3068
{
3069
        /* Only adjust if ZONE_MOVABLE is on this node */
3070
        if (zone_movable_pfn[nid]) {
3071
                /* Size ZONE_MOVABLE */
3072
                if (zone_type == ZONE_MOVABLE) {
3073
                        *zone_start_pfn = zone_movable_pfn[nid];
3074
                        *zone_end_pfn = min(node_end_pfn,
3075
                                arch_zone_highest_possible_pfn[movable_zone]);
3076
 
3077
                /* Adjust for ZONE_MOVABLE starting within this range */
3078
                } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3079
                                *zone_end_pfn > zone_movable_pfn[nid]) {
3080
                        *zone_end_pfn = zone_movable_pfn[nid];
3081
 
3082
                /* Check if this whole range is within ZONE_MOVABLE */
3083
                } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3084
                        *zone_start_pfn = *zone_end_pfn;
3085
        }
3086
}
3087
 
3088
/*
3089
 * Return the number of pages a zone spans in a node, including holes
3090
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3091
 */
3092
static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3093
                                        unsigned long zone_type,
3094
                                        unsigned long *ignored)
3095
{
3096
        unsigned long node_start_pfn, node_end_pfn;
3097
        unsigned long zone_start_pfn, zone_end_pfn;
3098
 
3099
        /* Get the start and end of the node and zone */
3100
        get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3101
        zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3102
        zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3103
        adjust_zone_range_for_zone_movable(nid, zone_type,
3104
                                node_start_pfn, node_end_pfn,
3105
                                &zone_start_pfn, &zone_end_pfn);
3106
 
3107
        /* Check that this node has pages within the zone's required range */
3108
        if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3109
                return 0;
3110
 
3111
        /* Move the zone boundaries inside the node if necessary */
3112
        zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3113
        zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3114
 
3115
        /* Return the spanned pages */
3116
        return zone_end_pfn - zone_start_pfn;
3117
}
3118
 
3119
/*
3120
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3121
 * then all holes in the requested range will be accounted for.
3122
 */
3123
unsigned long __meminit __absent_pages_in_range(int nid,
3124
                                unsigned long range_start_pfn,
3125
                                unsigned long range_end_pfn)
3126
{
3127
        int i = 0;
3128
        unsigned long prev_end_pfn = 0, hole_pages = 0;
3129
        unsigned long start_pfn;
3130
 
3131
        /* Find the end_pfn of the first active range of pfns in the node */
3132
        i = first_active_region_index_in_nid(nid);
3133
        if (i == -1)
3134
                return 0;
3135
 
3136
        prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3137
 
3138
        /* Account for ranges before physical memory on this node */
3139
        if (early_node_map[i].start_pfn > range_start_pfn)
3140
                hole_pages = prev_end_pfn - range_start_pfn;
3141
 
3142
        /* Find all holes for the zone within the node */
3143
        for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3144
 
3145
                /* No need to continue if prev_end_pfn is outside the zone */
3146
                if (prev_end_pfn >= range_end_pfn)
3147
                        break;
3148
 
3149
                /* Make sure the end of the zone is not within the hole */
3150
                start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3151
                prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3152
 
3153
                /* Update the hole size cound and move on */
3154
                if (start_pfn > range_start_pfn) {
3155
                        BUG_ON(prev_end_pfn > start_pfn);
3156
                        hole_pages += start_pfn - prev_end_pfn;
3157
                }
3158
                prev_end_pfn = early_node_map[i].end_pfn;
3159
        }
3160
 
3161
        /* Account for ranges past physical memory on this node */
3162
        if (range_end_pfn > prev_end_pfn)
3163
                hole_pages += range_end_pfn -
3164
                                max(range_start_pfn, prev_end_pfn);
3165
 
3166
        return hole_pages;
3167
}
3168
 
3169
/**
3170
 * absent_pages_in_range - Return number of page frames in holes within a range
3171
 * @start_pfn: The start PFN to start searching for holes
3172
 * @end_pfn: The end PFN to stop searching for holes
3173
 *
3174
 * It returns the number of pages frames in memory holes within a range.
3175
 */
3176
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3177
                                                        unsigned long end_pfn)
3178
{
3179
        return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3180
}
3181
 
3182
/* Return the number of page frames in holes in a zone on a node */
3183
static unsigned long __meminit zone_absent_pages_in_node(int nid,
3184
                                        unsigned long zone_type,
3185
                                        unsigned long *ignored)
3186
{
3187
        unsigned long node_start_pfn, node_end_pfn;
3188
        unsigned long zone_start_pfn, zone_end_pfn;
3189
 
3190
        get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3191
        zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3192
                                                        node_start_pfn);
3193
        zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3194
                                                        node_end_pfn);
3195
 
3196
        adjust_zone_range_for_zone_movable(nid, zone_type,
3197
                        node_start_pfn, node_end_pfn,
3198
                        &zone_start_pfn, &zone_end_pfn);
3199
        return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3200
}
3201
 
3202
#else
3203
static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3204
                                        unsigned long zone_type,
3205
                                        unsigned long *zones_size)
3206
{
3207
        return zones_size[zone_type];
3208
}
3209
 
3210
static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3211
                                                unsigned long zone_type,
3212
                                                unsigned long *zholes_size)
3213
{
3214
        if (!zholes_size)
3215
                return 0;
3216
 
3217
        return zholes_size[zone_type];
3218
}
3219
 
3220
#endif
3221
 
3222
static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3223
                unsigned long *zones_size, unsigned long *zholes_size)
3224
{
3225
        unsigned long realtotalpages, totalpages = 0;
3226
        enum zone_type i;
3227
 
3228
        for (i = 0; i < MAX_NR_ZONES; i++)
3229
                totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3230
                                                                zones_size);
3231
        pgdat->node_spanned_pages = totalpages;
3232
 
3233
        realtotalpages = totalpages;
3234
        for (i = 0; i < MAX_NR_ZONES; i++)
3235
                realtotalpages -=
3236
                        zone_absent_pages_in_node(pgdat->node_id, i,
3237
                                                                zholes_size);
3238
        pgdat->node_present_pages = realtotalpages;
3239
        printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3240
                                                        realtotalpages);
3241
}
3242
 
3243
#ifndef CONFIG_SPARSEMEM
3244
/*
3245
 * Calculate the size of the zone->blockflags rounded to an unsigned long
3246
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3247
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3248
 * round what is now in bits to nearest long in bits, then return it in
3249
 * bytes.
3250
 */
3251
static unsigned long __init usemap_size(unsigned long zonesize)
3252
{
3253
        unsigned long usemapsize;
3254
 
3255
        usemapsize = roundup(zonesize, pageblock_nr_pages);
3256
        usemapsize = usemapsize >> pageblock_order;
3257
        usemapsize *= NR_PAGEBLOCK_BITS;
3258
        usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3259
 
3260
        return usemapsize / 8;
3261
}
3262
 
3263
static void __init setup_usemap(struct pglist_data *pgdat,
3264
                                struct zone *zone, unsigned long zonesize)
3265
{
3266
        unsigned long usemapsize = usemap_size(zonesize);
3267
        zone->pageblock_flags = NULL;
3268
        if (usemapsize) {
3269
                zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3270
                memset(zone->pageblock_flags, 0, usemapsize);
3271
        }
3272
}
3273
#else
3274
static void inline setup_usemap(struct pglist_data *pgdat,
3275
                                struct zone *zone, unsigned long zonesize) {}
3276
#endif /* CONFIG_SPARSEMEM */
3277
 
3278
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3279
 
3280
/* Return a sensible default order for the pageblock size. */
3281
static inline int pageblock_default_order(void)
3282
{
3283
        if (HPAGE_SHIFT > PAGE_SHIFT)
3284
                return HUGETLB_PAGE_ORDER;
3285
 
3286
        return MAX_ORDER-1;
3287
}
3288
 
3289
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3290
static inline void __init set_pageblock_order(unsigned int order)
3291
{
3292
        /* Check that pageblock_nr_pages has not already been setup */
3293
        if (pageblock_order)
3294
                return;
3295
 
3296
        /*
3297
         * Assume the largest contiguous order of interest is a huge page.
3298
         * This value may be variable depending on boot parameters on IA64
3299
         */
3300
        pageblock_order = order;
3301
}
3302
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3303
 
3304
/*
3305
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3306
 * and pageblock_default_order() are unused as pageblock_order is set
3307
 * at compile-time. See include/linux/pageblock-flags.h for the values of
3308
 * pageblock_order based on the kernel config
3309
 */
3310
static inline int pageblock_default_order(unsigned int order)
3311
{
3312
        return MAX_ORDER-1;
3313
}
3314
#define set_pageblock_order(x)  do {} while (0)
3315
 
3316
#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3317
 
3318
/*
3319
 * Set up the zone data structures:
3320
 *   - mark all pages reserved
3321
 *   - mark all memory queues empty
3322
 *   - clear the memory bitmaps
3323
 */
3324
static void __meminit free_area_init_core(struct pglist_data *pgdat,
3325
                unsigned long *zones_size, unsigned long *zholes_size)
3326
{
3327
        enum zone_type j;
3328
        int nid = pgdat->node_id;
3329
        unsigned long zone_start_pfn = pgdat->node_start_pfn;
3330
        int ret;
3331
 
3332
        pgdat_resize_init(pgdat);
3333
        pgdat->nr_zones = 0;
3334
        init_waitqueue_head(&pgdat->kswapd_wait);
3335
        pgdat->kswapd_max_order = 0;
3336
 
3337
        for (j = 0; j < MAX_NR_ZONES; j++) {
3338
                struct zone *zone = pgdat->node_zones + j;
3339
                unsigned long size, realsize, memmap_pages;
3340
 
3341
                size = zone_spanned_pages_in_node(nid, j, zones_size);
3342
                realsize = size - zone_absent_pages_in_node(nid, j,
3343
                                                                zholes_size);
3344
 
3345
                /*
3346
                 * Adjust realsize so that it accounts for how much memory
3347
                 * is used by this zone for memmap. This affects the watermark
3348
                 * and per-cpu initialisations
3349
                 */
3350
                memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
3351
                if (realsize >= memmap_pages) {
3352
                        realsize -= memmap_pages;
3353
                        printk(KERN_DEBUG
3354
                                "  %s zone: %lu pages used for memmap\n",
3355
                                zone_names[j], memmap_pages);
3356
                } else
3357
                        printk(KERN_WARNING
3358
                                "  %s zone: %lu pages exceeds realsize %lu\n",
3359
                                zone_names[j], memmap_pages, realsize);
3360
 
3361
                /* Account for reserved pages */
3362
                if (j == 0 && realsize > dma_reserve) {
3363
                        realsize -= dma_reserve;
3364
                        printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
3365
                                        zone_names[0], dma_reserve);
3366
                }
3367
 
3368
                if (!is_highmem_idx(j))
3369
                        nr_kernel_pages += realsize;
3370
                nr_all_pages += realsize;
3371
 
3372
                zone->spanned_pages = size;
3373
                zone->present_pages = realsize;
3374
#ifdef CONFIG_NUMA
3375
                zone->node = nid;
3376
                zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3377
                                                / 100;
3378
                zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3379
#endif
3380
                zone->name = zone_names[j];
3381
                spin_lock_init(&zone->lock);
3382
                spin_lock_init(&zone->lru_lock);
3383
                zone_seqlock_init(zone);
3384
                zone->zone_pgdat = pgdat;
3385
 
3386
                zone->prev_priority = DEF_PRIORITY;
3387
 
3388
                zone_pcp_init(zone);
3389
                INIT_LIST_HEAD(&zone->active_list);
3390
                INIT_LIST_HEAD(&zone->inactive_list);
3391
                zone->nr_scan_active = 0;
3392
                zone->nr_scan_inactive = 0;
3393
                zap_zone_vm_stats(zone);
3394
                zone->flags = 0;
3395
                if (!size)
3396
                        continue;
3397
 
3398
                set_pageblock_order(pageblock_default_order());
3399
                setup_usemap(pgdat, zone, size);
3400
                ret = init_currently_empty_zone(zone, zone_start_pfn,
3401
                                                size, MEMMAP_EARLY);
3402
                BUG_ON(ret);
3403
                zone_start_pfn += size;
3404
        }
3405
}
3406
 
3407
static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3408
{
3409
        /* Skip empty nodes */
3410
        if (!pgdat->node_spanned_pages)
3411
                return;
3412
 
3413
#ifdef CONFIG_FLAT_NODE_MEM_MAP
3414
        /* ia64 gets its own node_mem_map, before this, without bootmem */
3415
        if (!pgdat->node_mem_map) {
3416
                unsigned long size, start, end;
3417
                struct page *map;
3418
 
3419
                /*
3420
                 * The zone's endpoints aren't required to be MAX_ORDER
3421
                 * aligned but the node_mem_map endpoints must be in order
3422
                 * for the buddy allocator to function correctly.
3423
                 */
3424
                start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3425
                end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3426
                end = ALIGN(end, MAX_ORDER_NR_PAGES);
3427
                size =  (end - start) * sizeof(struct page);
3428
                map = alloc_remap(pgdat->node_id, size);
3429
                if (!map)
3430
                        map = alloc_bootmem_node(pgdat, size);
3431
                pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3432
        }
3433
#ifndef CONFIG_NEED_MULTIPLE_NODES
3434
        /*
3435
         * With no DISCONTIG, the global mem_map is just set as node 0's
3436
         */
3437
        if (pgdat == NODE_DATA(0)) {
3438
                mem_map = NODE_DATA(0)->node_mem_map;
3439
#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3440
                if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3441
                        mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3442
#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3443
        }
3444
#endif
3445
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
3446
}
3447
 
3448
void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
3449
                unsigned long *zones_size, unsigned long node_start_pfn,
3450
                unsigned long *zholes_size)
3451
{
3452
        pgdat->node_id = nid;
3453
        pgdat->node_start_pfn = node_start_pfn;
3454
        calculate_node_totalpages(pgdat, zones_size, zholes_size);
3455
 
3456
        alloc_node_mem_map(pgdat);
3457
 
3458
        free_area_init_core(pgdat, zones_size, zholes_size);
3459
}
3460
 
3461
#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3462
 
3463
#if MAX_NUMNODES > 1
3464
/*
3465
 * Figure out the number of possible node ids.
3466
 */
3467
static void __init setup_nr_node_ids(void)
3468
{
3469
        unsigned int node;
3470
        unsigned int highest = 0;
3471
 
3472
        for_each_node_mask(node, node_possible_map)
3473
                highest = node;
3474
        nr_node_ids = highest + 1;
3475
}
3476
#else
3477
static inline void setup_nr_node_ids(void)
3478
{
3479
}
3480
#endif
3481
 
3482
/**
3483
 * add_active_range - Register a range of PFNs backed by physical memory
3484
 * @nid: The node ID the range resides on
3485
 * @start_pfn: The start PFN of the available physical memory
3486
 * @end_pfn: The end PFN of the available physical memory
3487
 *
3488
 * These ranges are stored in an early_node_map[] and later used by
3489
 * free_area_init_nodes() to calculate zone sizes and holes. If the
3490
 * range spans a memory hole, it is up to the architecture to ensure
3491
 * the memory is not freed by the bootmem allocator. If possible
3492
 * the range being registered will be merged with existing ranges.
3493
 */
3494
void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3495
                                                unsigned long end_pfn)
3496
{
3497
        int i;
3498
 
3499
        printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3500
                          "%d entries of %d used\n",
3501
                          nid, start_pfn, end_pfn,
3502
                          nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3503
 
3504
        /* Merge with existing active regions if possible */
3505
        for (i = 0; i < nr_nodemap_entries; i++) {
3506
                if (early_node_map[i].nid != nid)
3507
                        continue;
3508
 
3509
                /* Skip if an existing region covers this new one */
3510
                if (start_pfn >= early_node_map[i].start_pfn &&
3511
                                end_pfn <= early_node_map[i].end_pfn)
3512
                        return;
3513
 
3514
                /* Merge forward if suitable */
3515
                if (start_pfn <= early_node_map[i].end_pfn &&
3516
                                end_pfn > early_node_map[i].end_pfn) {
3517
                        early_node_map[i].end_pfn = end_pfn;
3518
                        return;
3519
                }
3520
 
3521
                /* Merge backward if suitable */
3522
                if (start_pfn < early_node_map[i].end_pfn &&
3523
                                end_pfn >= early_node_map[i].start_pfn) {
3524
                        early_node_map[i].start_pfn = start_pfn;
3525
                        return;
3526
                }
3527
        }
3528
 
3529
        /* Check that early_node_map is large enough */
3530
        if (i >= MAX_ACTIVE_REGIONS) {
3531
                printk(KERN_CRIT "More than %d memory regions, truncating\n",
3532
                                                        MAX_ACTIVE_REGIONS);
3533
                return;
3534
        }
3535
 
3536
        early_node_map[i].nid = nid;
3537
        early_node_map[i].start_pfn = start_pfn;
3538
        early_node_map[i].end_pfn = end_pfn;
3539
        nr_nodemap_entries = i + 1;
3540
}
3541
 
3542
/**
3543
 * shrink_active_range - Shrink an existing registered range of PFNs
3544
 * @nid: The node id the range is on that should be shrunk
3545
 * @old_end_pfn: The old end PFN of the range
3546
 * @new_end_pfn: The new PFN of the range
3547
 *
3548
 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3549
 * The map is kept at the end physical page range that has already been
3550
 * registered with add_active_range(). This function allows an arch to shrink
3551
 * an existing registered range.
3552
 */
3553
void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3554
                                                unsigned long new_end_pfn)
3555
{
3556
        int i;
3557
 
3558
        /* Find the old active region end and shrink */
3559
        for_each_active_range_index_in_nid(i, nid)
3560
                if (early_node_map[i].end_pfn == old_end_pfn) {
3561
                        early_node_map[i].end_pfn = new_end_pfn;
3562
                        break;
3563
                }
3564
}
3565
 
3566
/**
3567
 * remove_all_active_ranges - Remove all currently registered regions
3568
 *
3569
 * During discovery, it may be found that a table like SRAT is invalid
3570
 * and an alternative discovery method must be used. This function removes
3571
 * all currently registered regions.
3572
 */
3573
void __init remove_all_active_ranges(void)
3574
{
3575
        memset(early_node_map, 0, sizeof(early_node_map));
3576
        nr_nodemap_entries = 0;
3577
#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3578
        memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3579
        memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3580
#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3581
}
3582
 
3583
/* Compare two active node_active_regions */
3584
static int __init cmp_node_active_region(const void *a, const void *b)
3585
{
3586
        struct node_active_region *arange = (struct node_active_region *)a;
3587
        struct node_active_region *brange = (struct node_active_region *)b;
3588
 
3589
        /* Done this way to avoid overflows */
3590
        if (arange->start_pfn > brange->start_pfn)
3591
                return 1;
3592
        if (arange->start_pfn < brange->start_pfn)
3593
                return -1;
3594
 
3595
        return 0;
3596
}
3597
 
3598
/* sort the node_map by start_pfn */
3599
static void __init sort_node_map(void)
3600
{
3601
        sort(early_node_map, (size_t)nr_nodemap_entries,
3602
                        sizeof(struct node_active_region),
3603
                        cmp_node_active_region, NULL);
3604
}
3605
 
3606
/* Find the lowest pfn for a node */
3607
unsigned long __init find_min_pfn_for_node(unsigned long nid)
3608
{
3609
        int i;
3610
        unsigned long min_pfn = ULONG_MAX;
3611
 
3612
        /* Assuming a sorted map, the first range found has the starting pfn */
3613
        for_each_active_range_index_in_nid(i, nid)
3614
                min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3615
 
3616
        if (min_pfn == ULONG_MAX) {
3617
                printk(KERN_WARNING
3618
                        "Could not find start_pfn for node %lu\n", nid);
3619
                return 0;
3620
        }
3621
 
3622
        return min_pfn;
3623
}
3624
 
3625
/**
3626
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3627
 *
3628
 * It returns the minimum PFN based on information provided via
3629
 * add_active_range().
3630
 */
3631
unsigned long __init find_min_pfn_with_active_regions(void)
3632
{
3633
        return find_min_pfn_for_node(MAX_NUMNODES);
3634
}
3635
 
3636
/**
3637
 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3638
 *
3639
 * It returns the maximum PFN based on information provided via
3640
 * add_active_range().
3641
 */
3642
unsigned long __init find_max_pfn_with_active_regions(void)
3643
{
3644
        int i;
3645
        unsigned long max_pfn = 0;
3646
 
3647
        for (i = 0; i < nr_nodemap_entries; i++)
3648
                max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3649
 
3650
        return max_pfn;
3651
}
3652
 
3653
/*
3654
 * early_calculate_totalpages()
3655
 * Sum pages in active regions for movable zone.
3656
 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3657
 */
3658
static unsigned long __init early_calculate_totalpages(void)
3659
{
3660
        int i;
3661
        unsigned long totalpages = 0;
3662
 
3663
        for (i = 0; i < nr_nodemap_entries; i++) {
3664
                unsigned long pages = early_node_map[i].end_pfn -
3665
                                                early_node_map[i].start_pfn;
3666
                totalpages += pages;
3667
                if (pages)
3668
                        node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3669
        }
3670
        return totalpages;
3671
}
3672
 
3673
/*
3674
 * Find the PFN the Movable zone begins in each node. Kernel memory
3675
 * is spread evenly between nodes as long as the nodes have enough
3676
 * memory. When they don't, some nodes will have more kernelcore than
3677
 * others
3678
 */
3679
void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3680
{
3681
        int i, nid;
3682
        unsigned long usable_startpfn;
3683
        unsigned long kernelcore_node, kernelcore_remaining;
3684
        unsigned long totalpages = early_calculate_totalpages();
3685
        int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3686
 
3687
        /*
3688
         * If movablecore was specified, calculate what size of
3689
         * kernelcore that corresponds so that memory usable for
3690
         * any allocation type is evenly spread. If both kernelcore
3691
         * and movablecore are specified, then the value of kernelcore
3692
         * will be used for required_kernelcore if it's greater than
3693
         * what movablecore would have allowed.
3694
         */
3695
        if (required_movablecore) {
3696
                unsigned long corepages;
3697
 
3698
                /*
3699
                 * Round-up so that ZONE_MOVABLE is at least as large as what
3700
                 * was requested by the user
3701
                 */
3702
                required_movablecore =
3703
                        roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3704
                corepages = totalpages - required_movablecore;
3705
 
3706
                required_kernelcore = max(required_kernelcore, corepages);
3707
        }
3708
 
3709
        /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3710
        if (!required_kernelcore)
3711
                return;
3712
 
3713
        /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3714
        find_usable_zone_for_movable();
3715
        usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3716
 
3717
restart:
3718
        /* Spread kernelcore memory as evenly as possible throughout nodes */
3719
        kernelcore_node = required_kernelcore / usable_nodes;
3720
        for_each_node_state(nid, N_HIGH_MEMORY) {
3721
                /*
3722
                 * Recalculate kernelcore_node if the division per node
3723
                 * now exceeds what is necessary to satisfy the requested
3724
                 * amount of memory for the kernel
3725
                 */
3726
                if (required_kernelcore < kernelcore_node)
3727
                        kernelcore_node = required_kernelcore / usable_nodes;
3728
 
3729
                /*
3730
                 * As the map is walked, we track how much memory is usable
3731
                 * by the kernel using kernelcore_remaining. When it is
3732
                 * 0, the rest of the node is usable by ZONE_MOVABLE
3733
                 */
3734
                kernelcore_remaining = kernelcore_node;
3735
 
3736
                /* Go through each range of PFNs within this node */
3737
                for_each_active_range_index_in_nid(i, nid) {
3738
                        unsigned long start_pfn, end_pfn;
3739
                        unsigned long size_pages;
3740
 
3741
                        start_pfn = max(early_node_map[i].start_pfn,
3742
                                                zone_movable_pfn[nid]);
3743
                        end_pfn = early_node_map[i].end_pfn;
3744
                        if (start_pfn >= end_pfn)
3745
                                continue;
3746
 
3747
                        /* Account for what is only usable for kernelcore */
3748
                        if (start_pfn < usable_startpfn) {
3749
                                unsigned long kernel_pages;
3750
                                kernel_pages = min(end_pfn, usable_startpfn)
3751
                                                                - start_pfn;
3752
 
3753
                                kernelcore_remaining -= min(kernel_pages,
3754
                                                        kernelcore_remaining);
3755
                                required_kernelcore -= min(kernel_pages,
3756
                                                        required_kernelcore);
3757
 
3758
                                /* Continue if range is now fully accounted */
3759
                                if (end_pfn <= usable_startpfn) {
3760
 
3761
                                        /*
3762
                                         * Push zone_movable_pfn to the end so
3763
                                         * that if we have to rebalance
3764
                                         * kernelcore across nodes, we will
3765
                                         * not double account here
3766
                                         */
3767
                                        zone_movable_pfn[nid] = end_pfn;
3768
                                        continue;
3769
                                }
3770
                                start_pfn = usable_startpfn;
3771
                        }
3772
 
3773
                        /*
3774
                         * The usable PFN range for ZONE_MOVABLE is from
3775
                         * start_pfn->end_pfn. Calculate size_pages as the
3776
                         * number of pages used as kernelcore
3777
                         */
3778
                        size_pages = end_pfn - start_pfn;
3779
                        if (size_pages > kernelcore_remaining)
3780
                                size_pages = kernelcore_remaining;
3781
                        zone_movable_pfn[nid] = start_pfn + size_pages;
3782
 
3783
                        /*
3784
                         * Some kernelcore has been met, update counts and
3785
                         * break if the kernelcore for this node has been
3786
                         * satisified
3787
                         */
3788
                        required_kernelcore -= min(required_kernelcore,
3789
                                                                size_pages);
3790
                        kernelcore_remaining -= size_pages;
3791
                        if (!kernelcore_remaining)
3792
                                break;
3793
                }
3794
        }
3795
 
3796
        /*
3797
         * If there is still required_kernelcore, we do another pass with one
3798
         * less node in the count. This will push zone_movable_pfn[nid] further
3799
         * along on the nodes that still have memory until kernelcore is
3800
         * satisified
3801
         */
3802
        usable_nodes--;
3803
        if (usable_nodes && required_kernelcore > usable_nodes)
3804
                goto restart;
3805
 
3806
        /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3807
        for (nid = 0; nid < MAX_NUMNODES; nid++)
3808
                zone_movable_pfn[nid] =
3809
                        roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3810
}
3811
 
3812
/* Any regular memory on that node ? */
3813
static void check_for_regular_memory(pg_data_t *pgdat)
3814
{
3815
#ifdef CONFIG_HIGHMEM
3816
        enum zone_type zone_type;
3817
 
3818
        for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3819
                struct zone *zone = &pgdat->node_zones[zone_type];
3820
                if (zone->present_pages)
3821
                        node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3822
        }
3823
#endif
3824
}
3825
 
3826
/**
3827
 * free_area_init_nodes - Initialise all pg_data_t and zone data
3828
 * @max_zone_pfn: an array of max PFNs for each zone
3829
 *
3830
 * This will call free_area_init_node() for each active node in the system.
3831
 * Using the page ranges provided by add_active_range(), the size of each
3832
 * zone in each node and their holes is calculated. If the maximum PFN
3833
 * between two adjacent zones match, it is assumed that the zone is empty.
3834
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3835
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3836
 * starts where the previous one ended. For example, ZONE_DMA32 starts
3837
 * at arch_max_dma_pfn.
3838
 */
3839
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3840
{
3841
        unsigned long nid;
3842
        enum zone_type i;
3843
 
3844
        /* Sort early_node_map as initialisation assumes it is sorted */
3845
        sort_node_map();
3846
 
3847
        /* Record where the zone boundaries are */
3848
        memset(arch_zone_lowest_possible_pfn, 0,
3849
                                sizeof(arch_zone_lowest_possible_pfn));
3850
        memset(arch_zone_highest_possible_pfn, 0,
3851
                                sizeof(arch_zone_highest_possible_pfn));
3852
        arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3853
        arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3854
        for (i = 1; i < MAX_NR_ZONES; i++) {
3855
                if (i == ZONE_MOVABLE)
3856
                        continue;
3857
                arch_zone_lowest_possible_pfn[i] =
3858
                        arch_zone_highest_possible_pfn[i-1];
3859
                arch_zone_highest_possible_pfn[i] =
3860
                        max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3861
        }
3862
        arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3863
        arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3864
 
3865
        /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3866
        memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3867
        find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3868
 
3869
        /* Print out the zone ranges */
3870
        printk("Zone PFN ranges:\n");
3871
        for (i = 0; i < MAX_NR_ZONES; i++) {
3872
                if (i == ZONE_MOVABLE)
3873
                        continue;
3874
                printk("  %-8s %8lu -> %8lu\n",
3875
                                zone_names[i],
3876
                                arch_zone_lowest_possible_pfn[i],
3877
                                arch_zone_highest_possible_pfn[i]);
3878
        }
3879
 
3880
        /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3881
        printk("Movable zone start PFN for each node\n");
3882
        for (i = 0; i < MAX_NUMNODES; i++) {
3883
                if (zone_movable_pfn[i])
3884
                        printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
3885
        }
3886
 
3887
        /* Print out the early_node_map[] */
3888
        printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3889
        for (i = 0; i < nr_nodemap_entries; i++)
3890
                printk("  %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3891
                                                early_node_map[i].start_pfn,
3892
                                                early_node_map[i].end_pfn);
3893
 
3894
        /* Initialise every node */
3895
        setup_nr_node_ids();
3896
        for_each_online_node(nid) {
3897
                pg_data_t *pgdat = NODE_DATA(nid);
3898
                free_area_init_node(nid, pgdat, NULL,
3899
                                find_min_pfn_for_node(nid), NULL);
3900
 
3901
                /* Any memory on that node */
3902
                if (pgdat->node_present_pages)
3903
                        node_set_state(nid, N_HIGH_MEMORY);
3904
                check_for_regular_memory(pgdat);
3905
        }
3906
}
3907
 
3908
static int __init cmdline_parse_core(char *p, unsigned long *core)
3909
{
3910
        unsigned long long coremem;
3911
        if (!p)
3912
                return -EINVAL;
3913
 
3914
        coremem = memparse(p, &p);
3915
        *core = coremem >> PAGE_SHIFT;
3916
 
3917
        /* Paranoid check that UL is enough for the coremem value */
3918
        WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3919
 
3920
        return 0;
3921
}
3922
 
3923
/*
3924
 * kernelcore=size sets the amount of memory for use for allocations that
3925
 * cannot be reclaimed or migrated.
3926
 */
3927
static int __init cmdline_parse_kernelcore(char *p)
3928
{
3929
        return cmdline_parse_core(p, &required_kernelcore);
3930
}
3931
 
3932
/*
3933
 * movablecore=size sets the amount of memory for use for allocations that
3934
 * can be reclaimed or migrated.
3935
 */
3936
static int __init cmdline_parse_movablecore(char *p)
3937
{
3938
        return cmdline_parse_core(p, &required_movablecore);
3939
}
3940
 
3941
early_param("kernelcore", cmdline_parse_kernelcore);
3942
early_param("movablecore", cmdline_parse_movablecore);
3943
 
3944
#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3945
 
3946
/**
3947
 * set_dma_reserve - set the specified number of pages reserved in the first zone
3948
 * @new_dma_reserve: The number of pages to mark reserved
3949
 *
3950
 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3951
 * In the DMA zone, a significant percentage may be consumed by kernel image
3952
 * and other unfreeable allocations which can skew the watermarks badly. This
3953
 * function may optionally be used to account for unfreeable pages in the
3954
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3955
 * smaller per-cpu batchsize.
3956
 */
3957
void __init set_dma_reserve(unsigned long new_dma_reserve)
3958
{
3959
        dma_reserve = new_dma_reserve;
3960
}
3961
 
3962
#ifndef CONFIG_NEED_MULTIPLE_NODES
3963
static bootmem_data_t contig_bootmem_data;
3964
struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3965
 
3966
EXPORT_SYMBOL(contig_page_data);
3967
#endif
3968
 
3969
void __init free_area_init(unsigned long *zones_size)
3970
{
3971
        free_area_init_node(0, NODE_DATA(0), zones_size,
3972
                        __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3973
}
3974
 
3975
static int page_alloc_cpu_notify(struct notifier_block *self,
3976
                                 unsigned long action, void *hcpu)
3977
{
3978
        int cpu = (unsigned long)hcpu;
3979
 
3980
        if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3981
                local_irq_disable();
3982
                __drain_pages(cpu);
3983
                vm_events_fold_cpu(cpu);
3984
                local_irq_enable();
3985
                refresh_cpu_vm_stats(cpu);
3986
        }
3987
        return NOTIFY_OK;
3988
}
3989
 
3990
void __init page_alloc_init(void)
3991
{
3992
        hotcpu_notifier(page_alloc_cpu_notify, 0);
3993
}
3994
 
3995
/*
3996
 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3997
 *      or min_free_kbytes changes.
3998
 */
3999
static void calculate_totalreserve_pages(void)
4000
{
4001
        struct pglist_data *pgdat;
4002
        unsigned long reserve_pages = 0;
4003
        enum zone_type i, j;
4004
 
4005
        for_each_online_pgdat(pgdat) {
4006
                for (i = 0; i < MAX_NR_ZONES; i++) {
4007
                        struct zone *zone = pgdat->node_zones + i;
4008
                        unsigned long max = 0;
4009
 
4010
                        /* Find valid and maximum lowmem_reserve in the zone */
4011
                        for (j = i; j < MAX_NR_ZONES; j++) {
4012
                                if (zone->lowmem_reserve[j] > max)
4013
                                        max = zone->lowmem_reserve[j];
4014
                        }
4015
 
4016
                        /* we treat pages_high as reserved pages. */
4017
                        max += zone->pages_high;
4018
 
4019
                        if (max > zone->present_pages)
4020
                                max = zone->present_pages;
4021
                        reserve_pages += max;
4022
                }
4023
        }
4024
        totalreserve_pages = reserve_pages;
4025
}
4026
 
4027
/*
4028
 * setup_per_zone_lowmem_reserve - called whenever
4029
 *      sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4030
 *      has a correct pages reserved value, so an adequate number of
4031
 *      pages are left in the zone after a successful __alloc_pages().
4032
 */
4033
static void setup_per_zone_lowmem_reserve(void)
4034
{
4035
        struct pglist_data *pgdat;
4036
        enum zone_type j, idx;
4037
 
4038
        for_each_online_pgdat(pgdat) {
4039
                for (j = 0; j < MAX_NR_ZONES; j++) {
4040
                        struct zone *zone = pgdat->node_zones + j;
4041
                        unsigned long present_pages = zone->present_pages;
4042
 
4043
                        zone->lowmem_reserve[j] = 0;
4044
 
4045
                        idx = j;
4046
                        while (idx) {
4047
                                struct zone *lower_zone;
4048
 
4049
                                idx--;
4050
 
4051
                                if (sysctl_lowmem_reserve_ratio[idx] < 1)
4052
                                        sysctl_lowmem_reserve_ratio[idx] = 1;
4053
 
4054
                                lower_zone = pgdat->node_zones + idx;
4055
                                lower_zone->lowmem_reserve[j] = present_pages /
4056
                                        sysctl_lowmem_reserve_ratio[idx];
4057
                                present_pages += lower_zone->present_pages;
4058
                        }
4059
                }
4060
        }
4061
 
4062
        /* update totalreserve_pages */
4063
        calculate_totalreserve_pages();
4064
}
4065
 
4066
/**
4067
 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4068
 *
4069
 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4070
 * with respect to min_free_kbytes.
4071
 */
4072
void setup_per_zone_pages_min(void)
4073
{
4074
        unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4075
        unsigned long lowmem_pages = 0;
4076
        struct zone *zone;
4077
        unsigned long flags;
4078
 
4079
        /* Calculate total number of !ZONE_HIGHMEM pages */
4080
        for_each_zone(zone) {
4081
                if (!is_highmem(zone))
4082
                        lowmem_pages += zone->present_pages;
4083
        }
4084
 
4085
        for_each_zone(zone) {
4086
                u64 tmp;
4087
 
4088
                spin_lock_irqsave(&zone->lru_lock, flags);
4089
                tmp = (u64)pages_min * zone->present_pages;
4090
                do_div(tmp, lowmem_pages);
4091
                if (is_highmem(zone)) {
4092
                        /*
4093
                         * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4094
                         * need highmem pages, so cap pages_min to a small
4095
                         * value here.
4096
                         *
4097
                         * The (pages_high-pages_low) and (pages_low-pages_min)
4098
                         * deltas controls asynch page reclaim, and so should
4099
                         * not be capped for highmem.
4100
                         */
4101
                        int min_pages;
4102
 
4103
                        min_pages = zone->present_pages / 1024;
4104
                        if (min_pages < SWAP_CLUSTER_MAX)
4105
                                min_pages = SWAP_CLUSTER_MAX;
4106
                        if (min_pages > 128)
4107
                                min_pages = 128;
4108
                        zone->pages_min = min_pages;
4109
                } else {
4110
                        /*
4111
                         * If it's a lowmem zone, reserve a number of pages
4112
                         * proportionate to the zone's size.
4113
                         */
4114
                        zone->pages_min = tmp;
4115
                }
4116
 
4117
                zone->pages_low   = zone->pages_min + (tmp >> 2);
4118
                zone->pages_high  = zone->pages_min + (tmp >> 1);
4119
                setup_zone_migrate_reserve(zone);
4120
                spin_unlock_irqrestore(&zone->lru_lock, flags);
4121
        }
4122
 
4123
        /* update totalreserve_pages */
4124
        calculate_totalreserve_pages();
4125
}
4126
 
4127
/*
4128
 * Initialise min_free_kbytes.
4129
 *
4130
 * For small machines we want it small (128k min).  For large machines
4131
 * we want it large (64MB max).  But it is not linear, because network
4132
 * bandwidth does not increase linearly with machine size.  We use
4133
 *
4134
 *      min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4135
 *      min_free_kbytes = sqrt(lowmem_kbytes * 16)
4136
 *
4137
 * which yields
4138
 *
4139
 * 16MB:        512k
4140
 * 32MB:        724k
4141
 * 64MB:        1024k
4142
 * 128MB:       1448k
4143
 * 256MB:       2048k
4144
 * 512MB:       2896k
4145
 * 1024MB:      4096k
4146
 * 2048MB:      5792k
4147
 * 4096MB:      8192k
4148
 * 8192MB:      11584k
4149
 * 16384MB:     16384k
4150
 */
4151
static int __init init_per_zone_pages_min(void)
4152
{
4153
        unsigned long lowmem_kbytes;
4154
 
4155
        lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4156
 
4157
        min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4158
        if (min_free_kbytes < 128)
4159
                min_free_kbytes = 128;
4160
        if (min_free_kbytes > 65536)
4161
                min_free_kbytes = 65536;
4162
        setup_per_zone_pages_min();
4163
        setup_per_zone_lowmem_reserve();
4164
        return 0;
4165
}
4166
module_init(init_per_zone_pages_min)
4167
 
4168
/*
4169
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4170
 *      that we can call two helper functions whenever min_free_kbytes
4171
 *      changes.
4172
 */
4173
int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4174
        struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4175
{
4176
        proc_dointvec(table, write, file, buffer, length, ppos);
4177
        if (write)
4178
                setup_per_zone_pages_min();
4179
        return 0;
4180
}
4181
 
4182
#ifdef CONFIG_NUMA
4183
int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4184
        struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4185
{
4186
        struct zone *zone;
4187
        int rc;
4188
 
4189
        rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4190
        if (rc)
4191
                return rc;
4192
 
4193
        for_each_zone(zone)
4194
                zone->min_unmapped_pages = (zone->present_pages *
4195
                                sysctl_min_unmapped_ratio) / 100;
4196
        return 0;
4197
}
4198
 
4199
int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4200
        struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4201
{
4202
        struct zone *zone;
4203
        int rc;
4204
 
4205
        rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4206
        if (rc)
4207
                return rc;
4208
 
4209
        for_each_zone(zone)
4210
                zone->min_slab_pages = (zone->present_pages *
4211
                                sysctl_min_slab_ratio) / 100;
4212
        return 0;
4213
}
4214
#endif
4215
 
4216
/*
4217
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4218
 *      proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4219
 *      whenever sysctl_lowmem_reserve_ratio changes.
4220
 *
4221
 * The reserve ratio obviously has absolutely no relation with the
4222
 * pages_min watermarks. The lowmem reserve ratio can only make sense
4223
 * if in function of the boot time zone sizes.
4224
 */
4225
int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4226
        struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4227
{
4228
        proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4229
        setup_per_zone_lowmem_reserve();
4230
        return 0;
4231
}
4232
 
4233
/*
4234
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4235
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4236
 * can have before it gets flushed back to buddy allocator.
4237
 */
4238
 
4239
int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4240
        struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4241
{
4242
        struct zone *zone;
4243
        unsigned int cpu;
4244
        int ret;
4245
 
4246
        ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4247
        if (!write || (ret == -EINVAL))
4248
                return ret;
4249
        for_each_zone(zone) {
4250
                for_each_online_cpu(cpu) {
4251
                        unsigned long  high;
4252
                        high = zone->present_pages / percpu_pagelist_fraction;
4253
                        setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4254
                }
4255
        }
4256
        return 0;
4257
}
4258
 
4259
int hashdist = HASHDIST_DEFAULT;
4260
 
4261
#ifdef CONFIG_NUMA
4262
static int __init set_hashdist(char *str)
4263
{
4264
        if (!str)
4265
                return 0;
4266
        hashdist = simple_strtoul(str, &str, 0);
4267
        return 1;
4268
}
4269
__setup("hashdist=", set_hashdist);
4270
#endif
4271
 
4272
/*
4273
 * allocate a large system hash table from bootmem
4274
 * - it is assumed that the hash table must contain an exact power-of-2
4275
 *   quantity of entries
4276
 * - limit is the number of hash buckets, not the total allocation size
4277
 */
4278
void *__init alloc_large_system_hash(const char *tablename,
4279
                                     unsigned long bucketsize,
4280
                                     unsigned long numentries,
4281
                                     int scale,
4282
                                     int flags,
4283
                                     unsigned int *_hash_shift,
4284
                                     unsigned int *_hash_mask,
4285
                                     unsigned long limit)
4286
{
4287
        unsigned long long max = limit;
4288
        unsigned long log2qty, size;
4289
        void *table = NULL;
4290
 
4291
        /* allow the kernel cmdline to have a say */
4292
        if (!numentries) {
4293
                /* round applicable memory size up to nearest megabyte */
4294
                numentries = nr_kernel_pages;
4295
                numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4296
                numentries >>= 20 - PAGE_SHIFT;
4297
                numentries <<= 20 - PAGE_SHIFT;
4298
 
4299
                /* limit to 1 bucket per 2^scale bytes of low memory */
4300
                if (scale > PAGE_SHIFT)
4301
                        numentries >>= (scale - PAGE_SHIFT);
4302
                else
4303
                        numentries <<= (PAGE_SHIFT - scale);
4304
 
4305
                /* Make sure we've got at least a 0-order allocation.. */
4306
                if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4307
                        numentries = PAGE_SIZE / bucketsize;
4308
        }
4309
        numentries = roundup_pow_of_two(numentries);
4310
 
4311
        /* limit allocation size to 1/16 total memory by default */
4312
        if (max == 0) {
4313
                max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4314
                do_div(max, bucketsize);
4315
        }
4316
 
4317
        if (numentries > max)
4318
                numentries = max;
4319
 
4320
        log2qty = ilog2(numentries);
4321
 
4322
        do {
4323
                size = bucketsize << log2qty;
4324
                if (flags & HASH_EARLY)
4325
                        table = alloc_bootmem(size);
4326
                else if (hashdist)
4327
                        table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4328
                else {
4329
                        unsigned long order;
4330
                        for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
4331
                                ;
4332
                        table = (void*) __get_free_pages(GFP_ATOMIC, order);
4333
                        /*
4334
                         * If bucketsize is not a power-of-two, we may free
4335
                         * some pages at the end of hash table.
4336
                         */
4337
                        if (table) {
4338
                                unsigned long alloc_end = (unsigned long)table +
4339
                                                (PAGE_SIZE << order);
4340
                                unsigned long used = (unsigned long)table +
4341
                                                PAGE_ALIGN(size);
4342
                                split_page(virt_to_page(table), order);
4343
                                while (used < alloc_end) {
4344
                                        free_page(used);
4345
                                        used += PAGE_SIZE;
4346
                                }
4347
                        }
4348
                }
4349
        } while (!table && size > PAGE_SIZE && --log2qty);
4350
 
4351
        if (!table)
4352
                panic("Failed to allocate %s hash table\n", tablename);
4353
 
4354
        printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4355
               tablename,
4356
               (1U << log2qty),
4357
               ilog2(size) - PAGE_SHIFT,
4358
               size);
4359
 
4360
        if (_hash_shift)
4361
                *_hash_shift = log2qty;
4362
        if (_hash_mask)
4363
                *_hash_mask = (1 << log2qty) - 1;
4364
 
4365
        return table;
4366
}
4367
 
4368
#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4369
struct page *pfn_to_page(unsigned long pfn)
4370
{
4371
        return __pfn_to_page(pfn);
4372
}
4373
unsigned long page_to_pfn(struct page *page)
4374
{
4375
        return __page_to_pfn(page);
4376
}
4377
EXPORT_SYMBOL(pfn_to_page);
4378
EXPORT_SYMBOL(page_to_pfn);
4379
#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4380
 
4381
/* Return a pointer to the bitmap storing bits affecting a block of pages */
4382
static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4383
                                                        unsigned long pfn)
4384
{
4385
#ifdef CONFIG_SPARSEMEM
4386
        return __pfn_to_section(pfn)->pageblock_flags;
4387
#else
4388
        return zone->pageblock_flags;
4389
#endif /* CONFIG_SPARSEMEM */
4390
}
4391
 
4392
static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4393
{
4394
#ifdef CONFIG_SPARSEMEM
4395
        pfn &= (PAGES_PER_SECTION-1);
4396
        return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4397
#else
4398
        pfn = pfn - zone->zone_start_pfn;
4399
        return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4400
#endif /* CONFIG_SPARSEMEM */
4401
}
4402
 
4403
/**
4404
 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4405
 * @page: The page within the block of interest
4406
 * @start_bitidx: The first bit of interest to retrieve
4407
 * @end_bitidx: The last bit of interest
4408
 * returns pageblock_bits flags
4409
 */
4410
unsigned long get_pageblock_flags_group(struct page *page,
4411
                                        int start_bitidx, int end_bitidx)
4412
{
4413
        struct zone *zone;
4414
        unsigned long *bitmap;
4415
        unsigned long pfn, bitidx;
4416
        unsigned long flags = 0;
4417
        unsigned long value = 1;
4418
 
4419
        zone = page_zone(page);
4420
        pfn = page_to_pfn(page);
4421
        bitmap = get_pageblock_bitmap(zone, pfn);
4422
        bitidx = pfn_to_bitidx(zone, pfn);
4423
 
4424
        for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4425
                if (test_bit(bitidx + start_bitidx, bitmap))
4426
                        flags |= value;
4427
 
4428
        return flags;
4429
}
4430
 
4431
/**
4432
 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4433
 * @page: The page within the block of interest
4434
 * @start_bitidx: The first bit of interest
4435
 * @end_bitidx: The last bit of interest
4436
 * @flags: The flags to set
4437
 */
4438
void set_pageblock_flags_group(struct page *page, unsigned long flags,
4439
                                        int start_bitidx, int end_bitidx)
4440
{
4441
        struct zone *zone;
4442
        unsigned long *bitmap;
4443
        unsigned long pfn, bitidx;
4444
        unsigned long value = 1;
4445
 
4446
        zone = page_zone(page);
4447
        pfn = page_to_pfn(page);
4448
        bitmap = get_pageblock_bitmap(zone, pfn);
4449
        bitidx = pfn_to_bitidx(zone, pfn);
4450
 
4451
        for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4452
                if (flags & value)
4453
                        __set_bit(bitidx + start_bitidx, bitmap);
4454
                else
4455
                        __clear_bit(bitidx + start_bitidx, bitmap);
4456
}
4457
 
4458
/*
4459
 * This is designed as sub function...plz see page_isolation.c also.
4460
 * set/clear page block's type to be ISOLATE.
4461
 * page allocater never alloc memory from ISOLATE block.
4462
 */
4463
 
4464
int set_migratetype_isolate(struct page *page)
4465
{
4466
        struct zone *zone;
4467
        unsigned long flags;
4468
        int ret = -EBUSY;
4469
 
4470
        zone = page_zone(page);
4471
        spin_lock_irqsave(&zone->lock, flags);
4472
        /*
4473
         * In future, more migrate types will be able to be isolation target.
4474
         */
4475
        if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4476
                goto out;
4477
        set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4478
        move_freepages_block(zone, page, MIGRATE_ISOLATE);
4479
        ret = 0;
4480
out:
4481
        spin_unlock_irqrestore(&zone->lock, flags);
4482
        if (!ret)
4483
                drain_all_local_pages();
4484
        return ret;
4485
}
4486
 
4487
void unset_migratetype_isolate(struct page *page)
4488
{
4489
        struct zone *zone;
4490
        unsigned long flags;
4491
        zone = page_zone(page);
4492
        spin_lock_irqsave(&zone->lock, flags);
4493
        if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4494
                goto out;
4495
        set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4496
        move_freepages_block(zone, page, MIGRATE_MOVABLE);
4497
out:
4498
        spin_unlock_irqrestore(&zone->lock, flags);
4499
}
4500
 
4501
#ifdef CONFIG_MEMORY_HOTREMOVE
4502
/*
4503
 * All pages in the range must be isolated before calling this.
4504
 */
4505
void
4506
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4507
{
4508
        struct page *page;
4509
        struct zone *zone;
4510
        int order, i;
4511
        unsigned long pfn;
4512
        unsigned long flags;
4513
        /* find the first valid pfn */
4514
        for (pfn = start_pfn; pfn < end_pfn; pfn++)
4515
                if (pfn_valid(pfn))
4516
                        break;
4517
        if (pfn == end_pfn)
4518
                return;
4519
        zone = page_zone(pfn_to_page(pfn));
4520
        spin_lock_irqsave(&zone->lock, flags);
4521
        pfn = start_pfn;
4522
        while (pfn < end_pfn) {
4523
                if (!pfn_valid(pfn)) {
4524
                        pfn++;
4525
                        continue;
4526
                }
4527
                page = pfn_to_page(pfn);
4528
                BUG_ON(page_count(page));
4529
                BUG_ON(!PageBuddy(page));
4530
                order = page_order(page);
4531
#ifdef CONFIG_DEBUG_VM
4532
                printk(KERN_INFO "remove from free list %lx %d %lx\n",
4533
                       pfn, 1 << order, end_pfn);
4534
#endif
4535
                list_del(&page->lru);
4536
                rmv_page_order(page);
4537
                zone->free_area[order].nr_free--;
4538
                __mod_zone_page_state(zone, NR_FREE_PAGES,
4539
                                      - (1UL << order));
4540
                for (i = 0; i < (1 << order); i++)
4541
                        SetPageReserved((page+i));
4542
                pfn += (1 << order);
4543
        }
4544
        spin_unlock_irqrestore(&zone->lock, flags);
4545
}
4546
#endif

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.