OpenCores
URL https://opencores.org/ocsvn/or1k_soc_on_altera_embedded_dev_kit/or1k_soc_on_altera_embedded_dev_kit/trunk

Subversion Repositories or1k_soc_on_altera_embedded_dev_kit

[/] [or1k_soc_on_altera_embedded_dev_kit/] [trunk/] [linux-2.6/] [linux-2.6.24/] [mm/] [shmem.c] - Blame information for rev 3

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 3 xianfeng
/*
2
 * Resizable virtual memory filesystem for Linux.
3
 *
4
 * Copyright (C) 2000 Linus Torvalds.
5
 *               2000 Transmeta Corp.
6
 *               2000-2001 Christoph Rohland
7
 *               2000-2001 SAP AG
8
 *               2002 Red Hat Inc.
9
 * Copyright (C) 2002-2005 Hugh Dickins.
10
 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11
 * Copyright (C) 2004 Andi Kleen, SuSE Labs
12
 *
13
 * Extended attribute support for tmpfs:
14
 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15
 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16
 *
17
 * This file is released under the GPL.
18
 */
19
 
20
/*
21
 * This virtual memory filesystem is heavily based on the ramfs. It
22
 * extends ramfs by the ability to use swap and honor resource limits
23
 * which makes it a completely usable filesystem.
24
 */
25
 
26
#include <linux/module.h>
27
#include <linux/init.h>
28
#include <linux/fs.h>
29
#include <linux/xattr.h>
30
#include <linux/exportfs.h>
31
#include <linux/generic_acl.h>
32
#include <linux/mm.h>
33
#include <linux/mman.h>
34
#include <linux/file.h>
35
#include <linux/swap.h>
36
#include <linux/pagemap.h>
37
#include <linux/string.h>
38
#include <linux/slab.h>
39
#include <linux/backing-dev.h>
40
#include <linux/shmem_fs.h>
41
#include <linux/mount.h>
42
#include <linux/writeback.h>
43
#include <linux/vfs.h>
44
#include <linux/blkdev.h>
45
#include <linux/security.h>
46
#include <linux/swapops.h>
47
#include <linux/mempolicy.h>
48
#include <linux/namei.h>
49
#include <linux/ctype.h>
50
#include <linux/migrate.h>
51
#include <linux/highmem.h>
52
 
53
#include <asm/uaccess.h>
54
#include <asm/div64.h>
55
#include <asm/pgtable.h>
56
 
57
/* This magic number is used in glibc for posix shared memory */
58
#define TMPFS_MAGIC     0x01021994
59
 
60
#define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
61
#define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
62
#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
63
 
64
#define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
65
#define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
66
 
67
#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
68
 
69
/* info->flags needs VM_flags to handle pagein/truncate races efficiently */
70
#define SHMEM_PAGEIN     VM_READ
71
#define SHMEM_TRUNCATE   VM_WRITE
72
 
73
/* Definition to limit shmem_truncate's steps between cond_rescheds */
74
#define LATENCY_LIMIT    64
75
 
76
/* Pretend that each entry is of this size in directory's i_size */
77
#define BOGO_DIRENT_SIZE 20
78
 
79
/* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
80
enum sgp_type {
81
        SGP_QUICK,      /* don't try more than file page cache lookup */
82
        SGP_READ,       /* don't exceed i_size, don't allocate page */
83
        SGP_CACHE,      /* don't exceed i_size, may allocate page */
84
        SGP_WRITE,      /* may exceed i_size, may allocate page */
85
        SGP_FAULT,      /* same as SGP_CACHE, return with page locked */
86
};
87
 
88
static int shmem_getpage(struct inode *inode, unsigned long idx,
89
                         struct page **pagep, enum sgp_type sgp, int *type);
90
 
91
static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
92
{
93
        /*
94
         * The above definition of ENTRIES_PER_PAGE, and the use of
95
         * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
96
         * might be reconsidered if it ever diverges from PAGE_SIZE.
97
         *
98
         * Mobility flags are masked out as swap vectors cannot move
99
         */
100
        return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
101
                                PAGE_CACHE_SHIFT-PAGE_SHIFT);
102
}
103
 
104
static inline void shmem_dir_free(struct page *page)
105
{
106
        __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
107
}
108
 
109
static struct page **shmem_dir_map(struct page *page)
110
{
111
        return (struct page **)kmap_atomic(page, KM_USER0);
112
}
113
 
114
static inline void shmem_dir_unmap(struct page **dir)
115
{
116
        kunmap_atomic(dir, KM_USER0);
117
}
118
 
119
static swp_entry_t *shmem_swp_map(struct page *page)
120
{
121
        return (swp_entry_t *)kmap_atomic(page, KM_USER1);
122
}
123
 
124
static inline void shmem_swp_balance_unmap(void)
125
{
126
        /*
127
         * When passing a pointer to an i_direct entry, to code which
128
         * also handles indirect entries and so will shmem_swp_unmap,
129
         * we must arrange for the preempt count to remain in balance.
130
         * What kmap_atomic of a lowmem page does depends on config
131
         * and architecture, so pretend to kmap_atomic some lowmem page.
132
         */
133
        (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
134
}
135
 
136
static inline void shmem_swp_unmap(swp_entry_t *entry)
137
{
138
        kunmap_atomic(entry, KM_USER1);
139
}
140
 
141
static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
142
{
143
        return sb->s_fs_info;
144
}
145
 
146
/*
147
 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
148
 * for shared memory and for shared anonymous (/dev/zero) mappings
149
 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
150
 * consistent with the pre-accounting of private mappings ...
151
 */
152
static inline int shmem_acct_size(unsigned long flags, loff_t size)
153
{
154
        return (flags & VM_ACCOUNT)?
155
                security_vm_enough_memory(VM_ACCT(size)): 0;
156
}
157
 
158
static inline void shmem_unacct_size(unsigned long flags, loff_t size)
159
{
160
        if (flags & VM_ACCOUNT)
161
                vm_unacct_memory(VM_ACCT(size));
162
}
163
 
164
/*
165
 * ... whereas tmpfs objects are accounted incrementally as
166
 * pages are allocated, in order to allow huge sparse files.
167
 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
168
 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
169
 */
170
static inline int shmem_acct_block(unsigned long flags)
171
{
172
        return (flags & VM_ACCOUNT)?
173
                0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
174
}
175
 
176
static inline void shmem_unacct_blocks(unsigned long flags, long pages)
177
{
178
        if (!(flags & VM_ACCOUNT))
179
                vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
180
}
181
 
182
static const struct super_operations shmem_ops;
183
static const struct address_space_operations shmem_aops;
184
static const struct file_operations shmem_file_operations;
185
static const struct inode_operations shmem_inode_operations;
186
static const struct inode_operations shmem_dir_inode_operations;
187
static const struct inode_operations shmem_special_inode_operations;
188
static struct vm_operations_struct shmem_vm_ops;
189
 
190
static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
191
        .ra_pages       = 0,     /* No readahead */
192
        .capabilities   = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
193
        .unplug_io_fn   = default_unplug_io_fn,
194
};
195
 
196
static LIST_HEAD(shmem_swaplist);
197
static DEFINE_SPINLOCK(shmem_swaplist_lock);
198
 
199
static void shmem_free_blocks(struct inode *inode, long pages)
200
{
201
        struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
202
        if (sbinfo->max_blocks) {
203
                spin_lock(&sbinfo->stat_lock);
204
                sbinfo->free_blocks += pages;
205
                inode->i_blocks -= pages*BLOCKS_PER_PAGE;
206
                spin_unlock(&sbinfo->stat_lock);
207
        }
208
}
209
 
210
/*
211
 * shmem_recalc_inode - recalculate the size of an inode
212
 *
213
 * @inode: inode to recalc
214
 *
215
 * We have to calculate the free blocks since the mm can drop
216
 * undirtied hole pages behind our back.
217
 *
218
 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
219
 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
220
 *
221
 * It has to be called with the spinlock held.
222
 */
223
static void shmem_recalc_inode(struct inode *inode)
224
{
225
        struct shmem_inode_info *info = SHMEM_I(inode);
226
        long freed;
227
 
228
        freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
229
        if (freed > 0) {
230
                info->alloced -= freed;
231
                shmem_unacct_blocks(info->flags, freed);
232
                shmem_free_blocks(inode, freed);
233
        }
234
}
235
 
236
/*
237
 * shmem_swp_entry - find the swap vector position in the info structure
238
 *
239
 * @info:  info structure for the inode
240
 * @index: index of the page to find
241
 * @page:  optional page to add to the structure. Has to be preset to
242
 *         all zeros
243
 *
244
 * If there is no space allocated yet it will return NULL when
245
 * page is NULL, else it will use the page for the needed block,
246
 * setting it to NULL on return to indicate that it has been used.
247
 *
248
 * The swap vector is organized the following way:
249
 *
250
 * There are SHMEM_NR_DIRECT entries directly stored in the
251
 * shmem_inode_info structure. So small files do not need an addional
252
 * allocation.
253
 *
254
 * For pages with index > SHMEM_NR_DIRECT there is the pointer
255
 * i_indirect which points to a page which holds in the first half
256
 * doubly indirect blocks, in the second half triple indirect blocks:
257
 *
258
 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
259
 * following layout (for SHMEM_NR_DIRECT == 16):
260
 *
261
 * i_indirect -> dir --> 16-19
262
 *            |      +-> 20-23
263
 *            |
264
 *            +-->dir2 --> 24-27
265
 *            |        +-> 28-31
266
 *            |        +-> 32-35
267
 *            |        +-> 36-39
268
 *            |
269
 *            +-->dir3 --> 40-43
270
 *                     +-> 44-47
271
 *                     +-> 48-51
272
 *                     +-> 52-55
273
 */
274
static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
275
{
276
        unsigned long offset;
277
        struct page **dir;
278
        struct page *subdir;
279
 
280
        if (index < SHMEM_NR_DIRECT) {
281
                shmem_swp_balance_unmap();
282
                return info->i_direct+index;
283
        }
284
        if (!info->i_indirect) {
285
                if (page) {
286
                        info->i_indirect = *page;
287
                        *page = NULL;
288
                }
289
                return NULL;                    /* need another page */
290
        }
291
 
292
        index -= SHMEM_NR_DIRECT;
293
        offset = index % ENTRIES_PER_PAGE;
294
        index /= ENTRIES_PER_PAGE;
295
        dir = shmem_dir_map(info->i_indirect);
296
 
297
        if (index >= ENTRIES_PER_PAGE/2) {
298
                index -= ENTRIES_PER_PAGE/2;
299
                dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
300
                index %= ENTRIES_PER_PAGE;
301
                subdir = *dir;
302
                if (!subdir) {
303
                        if (page) {
304
                                *dir = *page;
305
                                *page = NULL;
306
                        }
307
                        shmem_dir_unmap(dir);
308
                        return NULL;            /* need another page */
309
                }
310
                shmem_dir_unmap(dir);
311
                dir = shmem_dir_map(subdir);
312
        }
313
 
314
        dir += index;
315
        subdir = *dir;
316
        if (!subdir) {
317
                if (!page || !(subdir = *page)) {
318
                        shmem_dir_unmap(dir);
319
                        return NULL;            /* need a page */
320
                }
321
                *dir = subdir;
322
                *page = NULL;
323
        }
324
        shmem_dir_unmap(dir);
325
        return shmem_swp_map(subdir) + offset;
326
}
327
 
328
static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
329
{
330
        long incdec = value? 1: -1;
331
 
332
        entry->val = value;
333
        info->swapped += incdec;
334
        if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
335
                struct page *page = kmap_atomic_to_page(entry);
336
                set_page_private(page, page_private(page) + incdec);
337
        }
338
}
339
 
340
/*
341
 * shmem_swp_alloc - get the position of the swap entry for the page.
342
 *                   If it does not exist allocate the entry.
343
 *
344
 * @info:       info structure for the inode
345
 * @index:      index of the page to find
346
 * @sgp:        check and recheck i_size? skip allocation?
347
 */
348
static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
349
{
350
        struct inode *inode = &info->vfs_inode;
351
        struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
352
        struct page *page = NULL;
353
        swp_entry_t *entry;
354
 
355
        if (sgp != SGP_WRITE &&
356
            ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
357
                return ERR_PTR(-EINVAL);
358
 
359
        while (!(entry = shmem_swp_entry(info, index, &page))) {
360
                if (sgp == SGP_READ)
361
                        return shmem_swp_map(ZERO_PAGE(0));
362
                /*
363
                 * Test free_blocks against 1 not 0, since we have 1 data
364
                 * page (and perhaps indirect index pages) yet to allocate:
365
                 * a waste to allocate index if we cannot allocate data.
366
                 */
367
                if (sbinfo->max_blocks) {
368
                        spin_lock(&sbinfo->stat_lock);
369
                        if (sbinfo->free_blocks <= 1) {
370
                                spin_unlock(&sbinfo->stat_lock);
371
                                return ERR_PTR(-ENOSPC);
372
                        }
373
                        sbinfo->free_blocks--;
374
                        inode->i_blocks += BLOCKS_PER_PAGE;
375
                        spin_unlock(&sbinfo->stat_lock);
376
                }
377
 
378
                spin_unlock(&info->lock);
379
                page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
380
                if (page)
381
                        set_page_private(page, 0);
382
                spin_lock(&info->lock);
383
 
384
                if (!page) {
385
                        shmem_free_blocks(inode, 1);
386
                        return ERR_PTR(-ENOMEM);
387
                }
388
                if (sgp != SGP_WRITE &&
389
                    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
390
                        entry = ERR_PTR(-EINVAL);
391
                        break;
392
                }
393
                if (info->next_index <= index)
394
                        info->next_index = index + 1;
395
        }
396
        if (page) {
397
                /* another task gave its page, or truncated the file */
398
                shmem_free_blocks(inode, 1);
399
                shmem_dir_free(page);
400
        }
401
        if (info->next_index <= index && !IS_ERR(entry))
402
                info->next_index = index + 1;
403
        return entry;
404
}
405
 
406
/*
407
 * shmem_free_swp - free some swap entries in a directory
408
 *
409
 * @dir:        pointer to the directory
410
 * @edir:       pointer after last entry of the directory
411
 * @punch_lock: pointer to spinlock when needed for the holepunch case
412
 */
413
static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
414
                                                spinlock_t *punch_lock)
415
{
416
        spinlock_t *punch_unlock = NULL;
417
        swp_entry_t *ptr;
418
        int freed = 0;
419
 
420
        for (ptr = dir; ptr < edir; ptr++) {
421
                if (ptr->val) {
422
                        if (unlikely(punch_lock)) {
423
                                punch_unlock = punch_lock;
424
                                punch_lock = NULL;
425
                                spin_lock(punch_unlock);
426
                                if (!ptr->val)
427
                                        continue;
428
                        }
429
                        free_swap_and_cache(*ptr);
430
                        *ptr = (swp_entry_t){0};
431
                        freed++;
432
                }
433
        }
434
        if (punch_unlock)
435
                spin_unlock(punch_unlock);
436
        return freed;
437
}
438
 
439
static int shmem_map_and_free_swp(struct page *subdir, int offset,
440
                int limit, struct page ***dir, spinlock_t *punch_lock)
441
{
442
        swp_entry_t *ptr;
443
        int freed = 0;
444
 
445
        ptr = shmem_swp_map(subdir);
446
        for (; offset < limit; offset += LATENCY_LIMIT) {
447
                int size = limit - offset;
448
                if (size > LATENCY_LIMIT)
449
                        size = LATENCY_LIMIT;
450
                freed += shmem_free_swp(ptr+offset, ptr+offset+size,
451
                                                        punch_lock);
452
                if (need_resched()) {
453
                        shmem_swp_unmap(ptr);
454
                        if (*dir) {
455
                                shmem_dir_unmap(*dir);
456
                                *dir = NULL;
457
                        }
458
                        cond_resched();
459
                        ptr = shmem_swp_map(subdir);
460
                }
461
        }
462
        shmem_swp_unmap(ptr);
463
        return freed;
464
}
465
 
466
static void shmem_free_pages(struct list_head *next)
467
{
468
        struct page *page;
469
        int freed = 0;
470
 
471
        do {
472
                page = container_of(next, struct page, lru);
473
                next = next->next;
474
                shmem_dir_free(page);
475
                freed++;
476
                if (freed >= LATENCY_LIMIT) {
477
                        cond_resched();
478
                        freed = 0;
479
                }
480
        } while (next);
481
}
482
 
483
static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
484
{
485
        struct shmem_inode_info *info = SHMEM_I(inode);
486
        unsigned long idx;
487
        unsigned long size;
488
        unsigned long limit;
489
        unsigned long stage;
490
        unsigned long diroff;
491
        struct page **dir;
492
        struct page *topdir;
493
        struct page *middir;
494
        struct page *subdir;
495
        swp_entry_t *ptr;
496
        LIST_HEAD(pages_to_free);
497
        long nr_pages_to_free = 0;
498
        long nr_swaps_freed = 0;
499
        int offset;
500
        int freed;
501
        int punch_hole;
502
        spinlock_t *needs_lock;
503
        spinlock_t *punch_lock;
504
        unsigned long upper_limit;
505
 
506
        inode->i_ctime = inode->i_mtime = CURRENT_TIME;
507
        idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
508
        if (idx >= info->next_index)
509
                return;
510
 
511
        spin_lock(&info->lock);
512
        info->flags |= SHMEM_TRUNCATE;
513
        if (likely(end == (loff_t) -1)) {
514
                limit = info->next_index;
515
                upper_limit = SHMEM_MAX_INDEX;
516
                info->next_index = idx;
517
                needs_lock = NULL;
518
                punch_hole = 0;
519
        } else {
520
                if (end + 1 >= inode->i_size) { /* we may free a little more */
521
                        limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
522
                                                        PAGE_CACHE_SHIFT;
523
                        upper_limit = SHMEM_MAX_INDEX;
524
                } else {
525
                        limit = (end + 1) >> PAGE_CACHE_SHIFT;
526
                        upper_limit = limit;
527
                }
528
                needs_lock = &info->lock;
529
                punch_hole = 1;
530
        }
531
 
532
        topdir = info->i_indirect;
533
        if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
534
                info->i_indirect = NULL;
535
                nr_pages_to_free++;
536
                list_add(&topdir->lru, &pages_to_free);
537
        }
538
        spin_unlock(&info->lock);
539
 
540
        if (info->swapped && idx < SHMEM_NR_DIRECT) {
541
                ptr = info->i_direct;
542
                size = limit;
543
                if (size > SHMEM_NR_DIRECT)
544
                        size = SHMEM_NR_DIRECT;
545
                nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
546
        }
547
 
548
        /*
549
         * If there are no indirect blocks or we are punching a hole
550
         * below indirect blocks, nothing to be done.
551
         */
552
        if (!topdir || limit <= SHMEM_NR_DIRECT)
553
                goto done2;
554
 
555
        /*
556
         * The truncation case has already dropped info->lock, and we're safe
557
         * because i_size and next_index have already been lowered, preventing
558
         * access beyond.  But in the punch_hole case, we still need to take
559
         * the lock when updating the swap directory, because there might be
560
         * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
561
         * shmem_writepage.  However, whenever we find we can remove a whole
562
         * directory page (not at the misaligned start or end of the range),
563
         * we first NULLify its pointer in the level above, and then have no
564
         * need to take the lock when updating its contents: needs_lock and
565
         * punch_lock (either pointing to info->lock or NULL) manage this.
566
         */
567
 
568
        upper_limit -= SHMEM_NR_DIRECT;
569
        limit -= SHMEM_NR_DIRECT;
570
        idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
571
        offset = idx % ENTRIES_PER_PAGE;
572
        idx -= offset;
573
 
574
        dir = shmem_dir_map(topdir);
575
        stage = ENTRIES_PER_PAGEPAGE/2;
576
        if (idx < ENTRIES_PER_PAGEPAGE/2) {
577
                middir = topdir;
578
                diroff = idx/ENTRIES_PER_PAGE;
579
        } else {
580
                dir += ENTRIES_PER_PAGE/2;
581
                dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
582
                while (stage <= idx)
583
                        stage += ENTRIES_PER_PAGEPAGE;
584
                middir = *dir;
585
                if (*dir) {
586
                        diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
587
                                ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
588
                        if (!diroff && !offset && upper_limit >= stage) {
589
                                if (needs_lock) {
590
                                        spin_lock(needs_lock);
591
                                        *dir = NULL;
592
                                        spin_unlock(needs_lock);
593
                                        needs_lock = NULL;
594
                                } else
595
                                        *dir = NULL;
596
                                nr_pages_to_free++;
597
                                list_add(&middir->lru, &pages_to_free);
598
                        }
599
                        shmem_dir_unmap(dir);
600
                        dir = shmem_dir_map(middir);
601
                } else {
602
                        diroff = 0;
603
                        offset = 0;
604
                        idx = stage;
605
                }
606
        }
607
 
608
        for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
609
                if (unlikely(idx == stage)) {
610
                        shmem_dir_unmap(dir);
611
                        dir = shmem_dir_map(topdir) +
612
                            ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
613
                        while (!*dir) {
614
                                dir++;
615
                                idx += ENTRIES_PER_PAGEPAGE;
616
                                if (idx >= limit)
617
                                        goto done1;
618
                        }
619
                        stage = idx + ENTRIES_PER_PAGEPAGE;
620
                        middir = *dir;
621
                        if (punch_hole)
622
                                needs_lock = &info->lock;
623
                        if (upper_limit >= stage) {
624
                                if (needs_lock) {
625
                                        spin_lock(needs_lock);
626
                                        *dir = NULL;
627
                                        spin_unlock(needs_lock);
628
                                        needs_lock = NULL;
629
                                } else
630
                                        *dir = NULL;
631
                                nr_pages_to_free++;
632
                                list_add(&middir->lru, &pages_to_free);
633
                        }
634
                        shmem_dir_unmap(dir);
635
                        cond_resched();
636
                        dir = shmem_dir_map(middir);
637
                        diroff = 0;
638
                }
639
                punch_lock = needs_lock;
640
                subdir = dir[diroff];
641
                if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
642
                        if (needs_lock) {
643
                                spin_lock(needs_lock);
644
                                dir[diroff] = NULL;
645
                                spin_unlock(needs_lock);
646
                                punch_lock = NULL;
647
                        } else
648
                                dir[diroff] = NULL;
649
                        nr_pages_to_free++;
650
                        list_add(&subdir->lru, &pages_to_free);
651
                }
652
                if (subdir && page_private(subdir) /* has swap entries */) {
653
                        size = limit - idx;
654
                        if (size > ENTRIES_PER_PAGE)
655
                                size = ENTRIES_PER_PAGE;
656
                        freed = shmem_map_and_free_swp(subdir,
657
                                        offset, size, &dir, punch_lock);
658
                        if (!dir)
659
                                dir = shmem_dir_map(middir);
660
                        nr_swaps_freed += freed;
661
                        if (offset || punch_lock) {
662
                                spin_lock(&info->lock);
663
                                set_page_private(subdir,
664
                                        page_private(subdir) - freed);
665
                                spin_unlock(&info->lock);
666
                        } else
667
                                BUG_ON(page_private(subdir) != freed);
668
                }
669
                offset = 0;
670
        }
671
done1:
672
        shmem_dir_unmap(dir);
673
done2:
674
        if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
675
                /*
676
                 * Call truncate_inode_pages again: racing shmem_unuse_inode
677
                 * may have swizzled a page in from swap since vmtruncate or
678
                 * generic_delete_inode did it, before we lowered next_index.
679
                 * Also, though shmem_getpage checks i_size before adding to
680
                 * cache, no recheck after: so fix the narrow window there too.
681
                 *
682
                 * Recalling truncate_inode_pages_range and unmap_mapping_range
683
                 * every time for punch_hole (which never got a chance to clear
684
                 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
685
                 * yet hardly ever necessary: try to optimize them out later.
686
                 */
687
                truncate_inode_pages_range(inode->i_mapping, start, end);
688
                if (punch_hole)
689
                        unmap_mapping_range(inode->i_mapping, start,
690
                                                        end - start, 1);
691
        }
692
 
693
        spin_lock(&info->lock);
694
        info->flags &= ~SHMEM_TRUNCATE;
695
        info->swapped -= nr_swaps_freed;
696
        if (nr_pages_to_free)
697
                shmem_free_blocks(inode, nr_pages_to_free);
698
        shmem_recalc_inode(inode);
699
        spin_unlock(&info->lock);
700
 
701
        /*
702
         * Empty swap vector directory pages to be freed?
703
         */
704
        if (!list_empty(&pages_to_free)) {
705
                pages_to_free.prev->next = NULL;
706
                shmem_free_pages(pages_to_free.next);
707
        }
708
}
709
 
710
static void shmem_truncate(struct inode *inode)
711
{
712
        shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
713
}
714
 
715
static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
716
{
717
        struct inode *inode = dentry->d_inode;
718
        struct page *page = NULL;
719
        int error;
720
 
721
        if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
722
                if (attr->ia_size < inode->i_size) {
723
                        /*
724
                         * If truncating down to a partial page, then
725
                         * if that page is already allocated, hold it
726
                         * in memory until the truncation is over, so
727
                         * truncate_partial_page cannnot miss it were
728
                         * it assigned to swap.
729
                         */
730
                        if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
731
                                (void) shmem_getpage(inode,
732
                                        attr->ia_size>>PAGE_CACHE_SHIFT,
733
                                                &page, SGP_READ, NULL);
734
                        }
735
                        /*
736
                         * Reset SHMEM_PAGEIN flag so that shmem_truncate can
737
                         * detect if any pages might have been added to cache
738
                         * after truncate_inode_pages.  But we needn't bother
739
                         * if it's being fully truncated to zero-length: the
740
                         * nrpages check is efficient enough in that case.
741
                         */
742
                        if (attr->ia_size) {
743
                                struct shmem_inode_info *info = SHMEM_I(inode);
744
                                spin_lock(&info->lock);
745
                                info->flags &= ~SHMEM_PAGEIN;
746
                                spin_unlock(&info->lock);
747
                        }
748
                }
749
        }
750
 
751
        error = inode_change_ok(inode, attr);
752
        if (!error)
753
                error = inode_setattr(inode, attr);
754
#ifdef CONFIG_TMPFS_POSIX_ACL
755
        if (!error && (attr->ia_valid & ATTR_MODE))
756
                error = generic_acl_chmod(inode, &shmem_acl_ops);
757
#endif
758
        if (page)
759
                page_cache_release(page);
760
        return error;
761
}
762
 
763
static void shmem_delete_inode(struct inode *inode)
764
{
765
        struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
766
        struct shmem_inode_info *info = SHMEM_I(inode);
767
 
768
        if (inode->i_op->truncate == shmem_truncate) {
769
                truncate_inode_pages(inode->i_mapping, 0);
770
                shmem_unacct_size(info->flags, inode->i_size);
771
                inode->i_size = 0;
772
                shmem_truncate(inode);
773
                if (!list_empty(&info->swaplist)) {
774
                        spin_lock(&shmem_swaplist_lock);
775
                        list_del_init(&info->swaplist);
776
                        spin_unlock(&shmem_swaplist_lock);
777
                }
778
        }
779
        BUG_ON(inode->i_blocks);
780
        if (sbinfo->max_inodes) {
781
                spin_lock(&sbinfo->stat_lock);
782
                sbinfo->free_inodes++;
783
                spin_unlock(&sbinfo->stat_lock);
784
        }
785
        clear_inode(inode);
786
}
787
 
788
static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
789
{
790
        swp_entry_t *ptr;
791
 
792
        for (ptr = dir; ptr < edir; ptr++) {
793
                if (ptr->val == entry.val)
794
                        return ptr - dir;
795
        }
796
        return -1;
797
}
798
 
799
static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
800
{
801
        struct inode *inode;
802
        unsigned long idx;
803
        unsigned long size;
804
        unsigned long limit;
805
        unsigned long stage;
806
        struct page **dir;
807
        struct page *subdir;
808
        swp_entry_t *ptr;
809
        int offset;
810
 
811
        idx = 0;
812
        ptr = info->i_direct;
813
        spin_lock(&info->lock);
814
        limit = info->next_index;
815
        size = limit;
816
        if (size > SHMEM_NR_DIRECT)
817
                size = SHMEM_NR_DIRECT;
818
        offset = shmem_find_swp(entry, ptr, ptr+size);
819
        if (offset >= 0) {
820
                shmem_swp_balance_unmap();
821
                goto found;
822
        }
823
        if (!info->i_indirect)
824
                goto lost2;
825
 
826
        dir = shmem_dir_map(info->i_indirect);
827
        stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
828
 
829
        for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
830
                if (unlikely(idx == stage)) {
831
                        shmem_dir_unmap(dir-1);
832
                        dir = shmem_dir_map(info->i_indirect) +
833
                            ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
834
                        while (!*dir) {
835
                                dir++;
836
                                idx += ENTRIES_PER_PAGEPAGE;
837
                                if (idx >= limit)
838
                                        goto lost1;
839
                        }
840
                        stage = idx + ENTRIES_PER_PAGEPAGE;
841
                        subdir = *dir;
842
                        shmem_dir_unmap(dir);
843
                        dir = shmem_dir_map(subdir);
844
                }
845
                subdir = *dir;
846
                if (subdir && page_private(subdir)) {
847
                        ptr = shmem_swp_map(subdir);
848
                        size = limit - idx;
849
                        if (size > ENTRIES_PER_PAGE)
850
                                size = ENTRIES_PER_PAGE;
851
                        offset = shmem_find_swp(entry, ptr, ptr+size);
852
                        if (offset >= 0) {
853
                                shmem_dir_unmap(dir);
854
                                goto found;
855
                        }
856
                        shmem_swp_unmap(ptr);
857
                }
858
        }
859
lost1:
860
        shmem_dir_unmap(dir-1);
861
lost2:
862
        spin_unlock(&info->lock);
863
        return 0;
864
found:
865
        idx += offset;
866
        inode = &info->vfs_inode;
867
        if (move_from_swap_cache(page, idx, inode->i_mapping) == 0) {
868
                info->flags |= SHMEM_PAGEIN;
869
                shmem_swp_set(info, ptr + offset, 0);
870
        }
871
        shmem_swp_unmap(ptr);
872
        spin_unlock(&info->lock);
873
        /*
874
         * Decrement swap count even when the entry is left behind:
875
         * try_to_unuse will skip over mms, then reincrement count.
876
         */
877
        swap_free(entry);
878
        return 1;
879
}
880
 
881
/*
882
 * shmem_unuse() search for an eventually swapped out shmem page.
883
 */
884
int shmem_unuse(swp_entry_t entry, struct page *page)
885
{
886
        struct list_head *p, *next;
887
        struct shmem_inode_info *info;
888
        int found = 0;
889
 
890
        spin_lock(&shmem_swaplist_lock);
891
        list_for_each_safe(p, next, &shmem_swaplist) {
892
                info = list_entry(p, struct shmem_inode_info, swaplist);
893
                if (!info->swapped)
894
                        list_del_init(&info->swaplist);
895
                else if (shmem_unuse_inode(info, entry, page)) {
896
                        /* move head to start search for next from here */
897
                        list_move_tail(&shmem_swaplist, &info->swaplist);
898
                        found = 1;
899
                        break;
900
                }
901
        }
902
        spin_unlock(&shmem_swaplist_lock);
903
        return found;
904
}
905
 
906
/*
907
 * Move the page from the page cache to the swap cache.
908
 */
909
static int shmem_writepage(struct page *page, struct writeback_control *wbc)
910
{
911
        struct shmem_inode_info *info;
912
        swp_entry_t *entry, swap;
913
        struct address_space *mapping;
914
        unsigned long index;
915
        struct inode *inode;
916
 
917
        BUG_ON(!PageLocked(page));
918
        /*
919
         * shmem_backing_dev_info's capabilities prevent regular writeback or
920
         * sync from ever calling shmem_writepage; but a stacking filesystem
921
         * may use the ->writepage of its underlying filesystem, in which case
922
         * we want to do nothing when that underlying filesystem is tmpfs
923
         * (writing out to swap is useful as a response to memory pressure, but
924
         * of no use to stabilize the data) - just redirty the page, unlock it
925
         * and claim success in this case.  AOP_WRITEPAGE_ACTIVATE, and the
926
         * page_mapped check below, must be avoided unless we're in reclaim.
927
         */
928
        if (!wbc->for_reclaim) {
929
                set_page_dirty(page);
930
                unlock_page(page);
931
                return 0;
932
        }
933
        BUG_ON(page_mapped(page));
934
 
935
        mapping = page->mapping;
936
        index = page->index;
937
        inode = mapping->host;
938
        info = SHMEM_I(inode);
939
        if (info->flags & VM_LOCKED)
940
                goto redirty;
941
        swap = get_swap_page();
942
        if (!swap.val)
943
                goto redirty;
944
 
945
        spin_lock(&info->lock);
946
        shmem_recalc_inode(inode);
947
        if (index >= info->next_index) {
948
                BUG_ON(!(info->flags & SHMEM_TRUNCATE));
949
                goto unlock;
950
        }
951
        entry = shmem_swp_entry(info, index, NULL);
952
        BUG_ON(!entry);
953
        BUG_ON(entry->val);
954
 
955
        if (move_to_swap_cache(page, swap) == 0) {
956
                shmem_swp_set(info, entry, swap.val);
957
                shmem_swp_unmap(entry);
958
                spin_unlock(&info->lock);
959
                if (list_empty(&info->swaplist)) {
960
                        spin_lock(&shmem_swaplist_lock);
961
                        /* move instead of add in case we're racing */
962
                        list_move_tail(&info->swaplist, &shmem_swaplist);
963
                        spin_unlock(&shmem_swaplist_lock);
964
                }
965
                unlock_page(page);
966
                return 0;
967
        }
968
 
969
        shmem_swp_unmap(entry);
970
unlock:
971
        spin_unlock(&info->lock);
972
        swap_free(swap);
973
redirty:
974
        set_page_dirty(page);
975
        return AOP_WRITEPAGE_ACTIVATE;  /* Return with the page locked */
976
}
977
 
978
#ifdef CONFIG_NUMA
979
static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
980
{
981
        char *nodelist = strchr(value, ':');
982
        int err = 1;
983
 
984
        if (nodelist) {
985
                /* NUL-terminate policy string */
986
                *nodelist++ = '\0';
987
                if (nodelist_parse(nodelist, *policy_nodes))
988
                        goto out;
989
                if (!nodes_subset(*policy_nodes, node_states[N_HIGH_MEMORY]))
990
                        goto out;
991
        }
992
        if (!strcmp(value, "default")) {
993
                *policy = MPOL_DEFAULT;
994
                /* Don't allow a nodelist */
995
                if (!nodelist)
996
                        err = 0;
997
        } else if (!strcmp(value, "prefer")) {
998
                *policy = MPOL_PREFERRED;
999
                /* Insist on a nodelist of one node only */
1000
                if (nodelist) {
1001
                        char *rest = nodelist;
1002
                        while (isdigit(*rest))
1003
                                rest++;
1004
                        if (!*rest)
1005
                                err = 0;
1006
                }
1007
        } else if (!strcmp(value, "bind")) {
1008
                *policy = MPOL_BIND;
1009
                /* Insist on a nodelist */
1010
                if (nodelist)
1011
                        err = 0;
1012
        } else if (!strcmp(value, "interleave")) {
1013
                *policy = MPOL_INTERLEAVE;
1014
                /*
1015
                 * Default to online nodes with memory if no nodelist
1016
                 */
1017
                if (!nodelist)
1018
                        *policy_nodes = node_states[N_HIGH_MEMORY];
1019
                err = 0;
1020
        }
1021
out:
1022
        /* Restore string for error message */
1023
        if (nodelist)
1024
                *--nodelist = ':';
1025
        return err;
1026
}
1027
 
1028
static struct page *shmem_swapin_async(struct shared_policy *p,
1029
                                       swp_entry_t entry, unsigned long idx)
1030
{
1031
        struct page *page;
1032
        struct vm_area_struct pvma;
1033
 
1034
        /* Create a pseudo vma that just contains the policy */
1035
        memset(&pvma, 0, sizeof(struct vm_area_struct));
1036
        pvma.vm_end = PAGE_SIZE;
1037
        pvma.vm_pgoff = idx;
1038
        pvma.vm_policy = mpol_shared_policy_lookup(p, idx);
1039
        page = read_swap_cache_async(entry, &pvma, 0);
1040
        mpol_free(pvma.vm_policy);
1041
        return page;
1042
}
1043
 
1044
static struct page *shmem_swapin(struct shmem_inode_info *info,
1045
                                 swp_entry_t entry, unsigned long idx)
1046
{
1047
        struct shared_policy *p = &info->policy;
1048
        int i, num;
1049
        struct page *page;
1050
        unsigned long offset;
1051
 
1052
        num = valid_swaphandles(entry, &offset);
1053
        for (i = 0; i < num; offset++, i++) {
1054
                page = shmem_swapin_async(p,
1055
                                swp_entry(swp_type(entry), offset), idx);
1056
                if (!page)
1057
                        break;
1058
                page_cache_release(page);
1059
        }
1060
        lru_add_drain();        /* Push any new pages onto the LRU now */
1061
        return shmem_swapin_async(p, entry, idx);
1062
}
1063
 
1064
static struct page *
1065
shmem_alloc_page(gfp_t gfp, struct shmem_inode_info *info,
1066
                 unsigned long idx)
1067
{
1068
        struct vm_area_struct pvma;
1069
        struct page *page;
1070
 
1071
        memset(&pvma, 0, sizeof(struct vm_area_struct));
1072
        pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1073
        pvma.vm_pgoff = idx;
1074
        pvma.vm_end = PAGE_SIZE;
1075
        page = alloc_page_vma(gfp, &pvma, 0);
1076
        mpol_free(pvma.vm_policy);
1077
        return page;
1078
}
1079
#else
1080
static inline int shmem_parse_mpol(char *value, int *policy,
1081
                                                nodemask_t *policy_nodes)
1082
{
1083
        return 1;
1084
}
1085
 
1086
static inline struct page *
1087
shmem_swapin(struct shmem_inode_info *info,swp_entry_t entry,unsigned long idx)
1088
{
1089
        swapin_readahead(entry, 0, NULL);
1090
        return read_swap_cache_async(entry, NULL, 0);
1091
}
1092
 
1093
static inline struct page *
1094
shmem_alloc_page(gfp_t gfp,struct shmem_inode_info *info, unsigned long idx)
1095
{
1096
        return alloc_page(gfp);
1097
}
1098
#endif
1099
 
1100
/*
1101
 * shmem_getpage - either get the page from swap or allocate a new one
1102
 *
1103
 * If we allocate a new one we do not mark it dirty. That's up to the
1104
 * vm. If we swap it in we mark it dirty since we also free the swap
1105
 * entry since a page cannot live in both the swap and page cache
1106
 */
1107
static int shmem_getpage(struct inode *inode, unsigned long idx,
1108
                        struct page **pagep, enum sgp_type sgp, int *type)
1109
{
1110
        struct address_space *mapping = inode->i_mapping;
1111
        struct shmem_inode_info *info = SHMEM_I(inode);
1112
        struct shmem_sb_info *sbinfo;
1113
        struct page *filepage = *pagep;
1114
        struct page *swappage;
1115
        swp_entry_t *entry;
1116
        swp_entry_t swap;
1117
        int error;
1118
 
1119
        if (idx >= SHMEM_MAX_INDEX)
1120
                return -EFBIG;
1121
 
1122
        if (type)
1123
                *type = 0;
1124
 
1125
        /*
1126
         * Normally, filepage is NULL on entry, and either found
1127
         * uptodate immediately, or allocated and zeroed, or read
1128
         * in under swappage, which is then assigned to filepage.
1129
         * But shmem_readpage and shmem_write_begin pass in a locked
1130
         * filepage, which may be found not uptodate by other callers
1131
         * too, and may need to be copied from the swappage read in.
1132
         */
1133
repeat:
1134
        if (!filepage)
1135
                filepage = find_lock_page(mapping, idx);
1136
        if (filepage && PageUptodate(filepage))
1137
                goto done;
1138
        error = 0;
1139
        if (sgp == SGP_QUICK)
1140
                goto failed;
1141
 
1142
        spin_lock(&info->lock);
1143
        shmem_recalc_inode(inode);
1144
        entry = shmem_swp_alloc(info, idx, sgp);
1145
        if (IS_ERR(entry)) {
1146
                spin_unlock(&info->lock);
1147
                error = PTR_ERR(entry);
1148
                goto failed;
1149
        }
1150
        swap = *entry;
1151
 
1152
        if (swap.val) {
1153
                /* Look it up and read it in.. */
1154
                swappage = lookup_swap_cache(swap);
1155
                if (!swappage) {
1156
                        shmem_swp_unmap(entry);
1157
                        /* here we actually do the io */
1158
                        if (type && !(*type & VM_FAULT_MAJOR)) {
1159
                                __count_vm_event(PGMAJFAULT);
1160
                                *type |= VM_FAULT_MAJOR;
1161
                        }
1162
                        spin_unlock(&info->lock);
1163
                        swappage = shmem_swapin(info, swap, idx);
1164
                        if (!swappage) {
1165
                                spin_lock(&info->lock);
1166
                                entry = shmem_swp_alloc(info, idx, sgp);
1167
                                if (IS_ERR(entry))
1168
                                        error = PTR_ERR(entry);
1169
                                else {
1170
                                        if (entry->val == swap.val)
1171
                                                error = -ENOMEM;
1172
                                        shmem_swp_unmap(entry);
1173
                                }
1174
                                spin_unlock(&info->lock);
1175
                                if (error)
1176
                                        goto failed;
1177
                                goto repeat;
1178
                        }
1179
                        wait_on_page_locked(swappage);
1180
                        page_cache_release(swappage);
1181
                        goto repeat;
1182
                }
1183
 
1184
                /* We have to do this with page locked to prevent races */
1185
                if (TestSetPageLocked(swappage)) {
1186
                        shmem_swp_unmap(entry);
1187
                        spin_unlock(&info->lock);
1188
                        wait_on_page_locked(swappage);
1189
                        page_cache_release(swappage);
1190
                        goto repeat;
1191
                }
1192
                if (PageWriteback(swappage)) {
1193
                        shmem_swp_unmap(entry);
1194
                        spin_unlock(&info->lock);
1195
                        wait_on_page_writeback(swappage);
1196
                        unlock_page(swappage);
1197
                        page_cache_release(swappage);
1198
                        goto repeat;
1199
                }
1200
                if (!PageUptodate(swappage)) {
1201
                        shmem_swp_unmap(entry);
1202
                        spin_unlock(&info->lock);
1203
                        unlock_page(swappage);
1204
                        page_cache_release(swappage);
1205
                        error = -EIO;
1206
                        goto failed;
1207
                }
1208
 
1209
                if (filepage) {
1210
                        shmem_swp_set(info, entry, 0);
1211
                        shmem_swp_unmap(entry);
1212
                        delete_from_swap_cache(swappage);
1213
                        spin_unlock(&info->lock);
1214
                        copy_highpage(filepage, swappage);
1215
                        unlock_page(swappage);
1216
                        page_cache_release(swappage);
1217
                        flush_dcache_page(filepage);
1218
                        SetPageUptodate(filepage);
1219
                        set_page_dirty(filepage);
1220
                        swap_free(swap);
1221
                } else if (!(error = move_from_swap_cache(
1222
                                swappage, idx, mapping))) {
1223
                        info->flags |= SHMEM_PAGEIN;
1224
                        shmem_swp_set(info, entry, 0);
1225
                        shmem_swp_unmap(entry);
1226
                        spin_unlock(&info->lock);
1227
                        filepage = swappage;
1228
                        swap_free(swap);
1229
                } else {
1230
                        shmem_swp_unmap(entry);
1231
                        spin_unlock(&info->lock);
1232
                        unlock_page(swappage);
1233
                        page_cache_release(swappage);
1234
                        if (error == -ENOMEM) {
1235
                                /* let kswapd refresh zone for GFP_ATOMICs */
1236
                                congestion_wait(WRITE, HZ/50);
1237
                        }
1238
                        goto repeat;
1239
                }
1240
        } else if (sgp == SGP_READ && !filepage) {
1241
                shmem_swp_unmap(entry);
1242
                filepage = find_get_page(mapping, idx);
1243
                if (filepage &&
1244
                    (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1245
                        spin_unlock(&info->lock);
1246
                        wait_on_page_locked(filepage);
1247
                        page_cache_release(filepage);
1248
                        filepage = NULL;
1249
                        goto repeat;
1250
                }
1251
                spin_unlock(&info->lock);
1252
        } else {
1253
                shmem_swp_unmap(entry);
1254
                sbinfo = SHMEM_SB(inode->i_sb);
1255
                if (sbinfo->max_blocks) {
1256
                        spin_lock(&sbinfo->stat_lock);
1257
                        if (sbinfo->free_blocks == 0 ||
1258
                            shmem_acct_block(info->flags)) {
1259
                                spin_unlock(&sbinfo->stat_lock);
1260
                                spin_unlock(&info->lock);
1261
                                error = -ENOSPC;
1262
                                goto failed;
1263
                        }
1264
                        sbinfo->free_blocks--;
1265
                        inode->i_blocks += BLOCKS_PER_PAGE;
1266
                        spin_unlock(&sbinfo->stat_lock);
1267
                } else if (shmem_acct_block(info->flags)) {
1268
                        spin_unlock(&info->lock);
1269
                        error = -ENOSPC;
1270
                        goto failed;
1271
                }
1272
 
1273
                if (!filepage) {
1274
                        spin_unlock(&info->lock);
1275
                        filepage = shmem_alloc_page(mapping_gfp_mask(mapping),
1276
                                                    info,
1277
                                                    idx);
1278
                        if (!filepage) {
1279
                                shmem_unacct_blocks(info->flags, 1);
1280
                                shmem_free_blocks(inode, 1);
1281
                                error = -ENOMEM;
1282
                                goto failed;
1283
                        }
1284
 
1285
                        spin_lock(&info->lock);
1286
                        entry = shmem_swp_alloc(info, idx, sgp);
1287
                        if (IS_ERR(entry))
1288
                                error = PTR_ERR(entry);
1289
                        else {
1290
                                swap = *entry;
1291
                                shmem_swp_unmap(entry);
1292
                        }
1293
                        if (error || swap.val || 0 != add_to_page_cache_lru(
1294
                                        filepage, mapping, idx, GFP_ATOMIC)) {
1295
                                spin_unlock(&info->lock);
1296
                                page_cache_release(filepage);
1297
                                shmem_unacct_blocks(info->flags, 1);
1298
                                shmem_free_blocks(inode, 1);
1299
                                filepage = NULL;
1300
                                if (error)
1301
                                        goto failed;
1302
                                goto repeat;
1303
                        }
1304
                        info->flags |= SHMEM_PAGEIN;
1305
                }
1306
 
1307
                info->alloced++;
1308
                spin_unlock(&info->lock);
1309
                clear_highpage(filepage);
1310
                flush_dcache_page(filepage);
1311
                SetPageUptodate(filepage);
1312
        }
1313
done:
1314
        if (*pagep != filepage) {
1315
                *pagep = filepage;
1316
                if (sgp != SGP_FAULT)
1317
                        unlock_page(filepage);
1318
 
1319
        }
1320
        return 0;
1321
 
1322
failed:
1323
        if (*pagep != filepage) {
1324
                unlock_page(filepage);
1325
                page_cache_release(filepage);
1326
        }
1327
        return error;
1328
}
1329
 
1330
static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1331
{
1332
        struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1333
        int error;
1334
        int ret;
1335
 
1336
        if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1337
                return VM_FAULT_SIGBUS;
1338
 
1339
        error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_FAULT, &ret);
1340
        if (error)
1341
                return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1342
 
1343
        mark_page_accessed(vmf->page);
1344
        return ret | VM_FAULT_LOCKED;
1345
}
1346
 
1347
#ifdef CONFIG_NUMA
1348
static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1349
{
1350
        struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1351
        return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1352
}
1353
 
1354
static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1355
                                          unsigned long addr)
1356
{
1357
        struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1358
        unsigned long idx;
1359
 
1360
        idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1361
        return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1362
}
1363
#endif
1364
 
1365
int shmem_lock(struct file *file, int lock, struct user_struct *user)
1366
{
1367
        struct inode *inode = file->f_path.dentry->d_inode;
1368
        struct shmem_inode_info *info = SHMEM_I(inode);
1369
        int retval = -ENOMEM;
1370
 
1371
        spin_lock(&info->lock);
1372
        if (lock && !(info->flags & VM_LOCKED)) {
1373
                if (!user_shm_lock(inode->i_size, user))
1374
                        goto out_nomem;
1375
                info->flags |= VM_LOCKED;
1376
        }
1377
        if (!lock && (info->flags & VM_LOCKED) && user) {
1378
                user_shm_unlock(inode->i_size, user);
1379
                info->flags &= ~VM_LOCKED;
1380
        }
1381
        retval = 0;
1382
out_nomem:
1383
        spin_unlock(&info->lock);
1384
        return retval;
1385
}
1386
 
1387
static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1388
{
1389
        file_accessed(file);
1390
        vma->vm_ops = &shmem_vm_ops;
1391
        vma->vm_flags |= VM_CAN_NONLINEAR;
1392
        return 0;
1393
}
1394
 
1395
static struct inode *
1396
shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1397
{
1398
        struct inode *inode;
1399
        struct shmem_inode_info *info;
1400
        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1401
 
1402
        if (sbinfo->max_inodes) {
1403
                spin_lock(&sbinfo->stat_lock);
1404
                if (!sbinfo->free_inodes) {
1405
                        spin_unlock(&sbinfo->stat_lock);
1406
                        return NULL;
1407
                }
1408
                sbinfo->free_inodes--;
1409
                spin_unlock(&sbinfo->stat_lock);
1410
        }
1411
 
1412
        inode = new_inode(sb);
1413
        if (inode) {
1414
                inode->i_mode = mode;
1415
                inode->i_uid = current->fsuid;
1416
                inode->i_gid = current->fsgid;
1417
                inode->i_blocks = 0;
1418
                inode->i_mapping->a_ops = &shmem_aops;
1419
                inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1420
                inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1421
                inode->i_generation = get_seconds();
1422
                info = SHMEM_I(inode);
1423
                memset(info, 0, (char *)inode - (char *)info);
1424
                spin_lock_init(&info->lock);
1425
                INIT_LIST_HEAD(&info->swaplist);
1426
 
1427
                switch (mode & S_IFMT) {
1428
                default:
1429
                        inode->i_op = &shmem_special_inode_operations;
1430
                        init_special_inode(inode, mode, dev);
1431
                        break;
1432
                case S_IFREG:
1433
                        inode->i_op = &shmem_inode_operations;
1434
                        inode->i_fop = &shmem_file_operations;
1435
                        mpol_shared_policy_init(&info->policy, sbinfo->policy,
1436
                                                        &sbinfo->policy_nodes);
1437
                        break;
1438
                case S_IFDIR:
1439
                        inc_nlink(inode);
1440
                        /* Some things misbehave if size == 0 on a directory */
1441
                        inode->i_size = 2 * BOGO_DIRENT_SIZE;
1442
                        inode->i_op = &shmem_dir_inode_operations;
1443
                        inode->i_fop = &simple_dir_operations;
1444
                        break;
1445
                case S_IFLNK:
1446
                        /*
1447
                         * Must not load anything in the rbtree,
1448
                         * mpol_free_shared_policy will not be called.
1449
                         */
1450
                        mpol_shared_policy_init(&info->policy, MPOL_DEFAULT,
1451
                                                NULL);
1452
                        break;
1453
                }
1454
        } else if (sbinfo->max_inodes) {
1455
                spin_lock(&sbinfo->stat_lock);
1456
                sbinfo->free_inodes++;
1457
                spin_unlock(&sbinfo->stat_lock);
1458
        }
1459
        return inode;
1460
}
1461
 
1462
#ifdef CONFIG_TMPFS
1463
static const struct inode_operations shmem_symlink_inode_operations;
1464
static const struct inode_operations shmem_symlink_inline_operations;
1465
 
1466
/*
1467
 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1468
 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1469
 * below the loop driver, in the generic fashion that many filesystems support.
1470
 */
1471
static int shmem_readpage(struct file *file, struct page *page)
1472
{
1473
        struct inode *inode = page->mapping->host;
1474
        int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1475
        unlock_page(page);
1476
        return error;
1477
}
1478
 
1479
static int
1480
shmem_write_begin(struct file *file, struct address_space *mapping,
1481
                        loff_t pos, unsigned len, unsigned flags,
1482
                        struct page **pagep, void **fsdata)
1483
{
1484
        struct inode *inode = mapping->host;
1485
        pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1486
        *pagep = NULL;
1487
        return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1488
}
1489
 
1490
static int
1491
shmem_write_end(struct file *file, struct address_space *mapping,
1492
                        loff_t pos, unsigned len, unsigned copied,
1493
                        struct page *page, void *fsdata)
1494
{
1495
        struct inode *inode = mapping->host;
1496
 
1497
        set_page_dirty(page);
1498
        page_cache_release(page);
1499
 
1500
        if (pos+copied > inode->i_size)
1501
                i_size_write(inode, pos+copied);
1502
 
1503
        return copied;
1504
}
1505
 
1506
static ssize_t
1507
shmem_file_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
1508
{
1509
        struct inode    *inode = file->f_path.dentry->d_inode;
1510
        loff_t          pos;
1511
        unsigned long   written;
1512
        ssize_t         err;
1513
 
1514
        if ((ssize_t) count < 0)
1515
                return -EINVAL;
1516
 
1517
        if (!access_ok(VERIFY_READ, buf, count))
1518
                return -EFAULT;
1519
 
1520
        mutex_lock(&inode->i_mutex);
1521
 
1522
        pos = *ppos;
1523
        written = 0;
1524
 
1525
        err = generic_write_checks(file, &pos, &count, 0);
1526
        if (err || !count)
1527
                goto out;
1528
 
1529
        err = remove_suid(file->f_path.dentry);
1530
        if (err)
1531
                goto out;
1532
 
1533
        inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1534
 
1535
        do {
1536
                struct page *page = NULL;
1537
                unsigned long bytes, index, offset;
1538
                char *kaddr;
1539
                int left;
1540
 
1541
                offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1542
                index = pos >> PAGE_CACHE_SHIFT;
1543
                bytes = PAGE_CACHE_SIZE - offset;
1544
                if (bytes > count)
1545
                        bytes = count;
1546
 
1547
                /*
1548
                 * We don't hold page lock across copy from user -
1549
                 * what would it guard against? - so no deadlock here.
1550
                 * But it still may be a good idea to prefault below.
1551
                 */
1552
 
1553
                err = shmem_getpage(inode, index, &page, SGP_WRITE, NULL);
1554
                if (err)
1555
                        break;
1556
 
1557
                left = bytes;
1558
                if (PageHighMem(page)) {
1559
                        volatile unsigned char dummy;
1560
                        __get_user(dummy, buf);
1561
                        __get_user(dummy, buf + bytes - 1);
1562
 
1563
                        kaddr = kmap_atomic(page, KM_USER0);
1564
                        left = __copy_from_user_inatomic(kaddr + offset,
1565
                                                        buf, bytes);
1566
                        kunmap_atomic(kaddr, KM_USER0);
1567
                }
1568
                if (left) {
1569
                        kaddr = kmap(page);
1570
                        left = __copy_from_user(kaddr + offset, buf, bytes);
1571
                        kunmap(page);
1572
                }
1573
 
1574
                written += bytes;
1575
                count -= bytes;
1576
                pos += bytes;
1577
                buf += bytes;
1578
                if (pos > inode->i_size)
1579
                        i_size_write(inode, pos);
1580
 
1581
                flush_dcache_page(page);
1582
                set_page_dirty(page);
1583
                mark_page_accessed(page);
1584
                page_cache_release(page);
1585
 
1586
                if (left) {
1587
                        pos -= left;
1588
                        written -= left;
1589
                        err = -EFAULT;
1590
                        break;
1591
                }
1592
 
1593
                /*
1594
                 * Our dirty pages are not counted in nr_dirty,
1595
                 * and we do not attempt to balance dirty pages.
1596
                 */
1597
 
1598
                cond_resched();
1599
        } while (count);
1600
 
1601
        *ppos = pos;
1602
        if (written)
1603
                err = written;
1604
out:
1605
        mutex_unlock(&inode->i_mutex);
1606
        return err;
1607
}
1608
 
1609
static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1610
{
1611
        struct inode *inode = filp->f_path.dentry->d_inode;
1612
        struct address_space *mapping = inode->i_mapping;
1613
        unsigned long index, offset;
1614
 
1615
        index = *ppos >> PAGE_CACHE_SHIFT;
1616
        offset = *ppos & ~PAGE_CACHE_MASK;
1617
 
1618
        for (;;) {
1619
                struct page *page = NULL;
1620
                unsigned long end_index, nr, ret;
1621
                loff_t i_size = i_size_read(inode);
1622
 
1623
                end_index = i_size >> PAGE_CACHE_SHIFT;
1624
                if (index > end_index)
1625
                        break;
1626
                if (index == end_index) {
1627
                        nr = i_size & ~PAGE_CACHE_MASK;
1628
                        if (nr <= offset)
1629
                                break;
1630
                }
1631
 
1632
                desc->error = shmem_getpage(inode, index, &page, SGP_READ, NULL);
1633
                if (desc->error) {
1634
                        if (desc->error == -EINVAL)
1635
                                desc->error = 0;
1636
                        break;
1637
                }
1638
 
1639
                /*
1640
                 * We must evaluate after, since reads (unlike writes)
1641
                 * are called without i_mutex protection against truncate
1642
                 */
1643
                nr = PAGE_CACHE_SIZE;
1644
                i_size = i_size_read(inode);
1645
                end_index = i_size >> PAGE_CACHE_SHIFT;
1646
                if (index == end_index) {
1647
                        nr = i_size & ~PAGE_CACHE_MASK;
1648
                        if (nr <= offset) {
1649
                                if (page)
1650
                                        page_cache_release(page);
1651
                                break;
1652
                        }
1653
                }
1654
                nr -= offset;
1655
 
1656
                if (page) {
1657
                        /*
1658
                         * If users can be writing to this page using arbitrary
1659
                         * virtual addresses, take care about potential aliasing
1660
                         * before reading the page on the kernel side.
1661
                         */
1662
                        if (mapping_writably_mapped(mapping))
1663
                                flush_dcache_page(page);
1664
                        /*
1665
                         * Mark the page accessed if we read the beginning.
1666
                         */
1667
                        if (!offset)
1668
                                mark_page_accessed(page);
1669
                } else {
1670
                        page = ZERO_PAGE(0);
1671
                        page_cache_get(page);
1672
                }
1673
 
1674
                /*
1675
                 * Ok, we have the page, and it's up-to-date, so
1676
                 * now we can copy it to user space...
1677
                 *
1678
                 * The actor routine returns how many bytes were actually used..
1679
                 * NOTE! This may not be the same as how much of a user buffer
1680
                 * we filled up (we may be padding etc), so we can only update
1681
                 * "pos" here (the actor routine has to update the user buffer
1682
                 * pointers and the remaining count).
1683
                 */
1684
                ret = actor(desc, page, offset, nr);
1685
                offset += ret;
1686
                index += offset >> PAGE_CACHE_SHIFT;
1687
                offset &= ~PAGE_CACHE_MASK;
1688
 
1689
                page_cache_release(page);
1690
                if (ret != nr || !desc->count)
1691
                        break;
1692
 
1693
                cond_resched();
1694
        }
1695
 
1696
        *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1697
        file_accessed(filp);
1698
}
1699
 
1700
static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1701
{
1702
        read_descriptor_t desc;
1703
 
1704
        if ((ssize_t) count < 0)
1705
                return -EINVAL;
1706
        if (!access_ok(VERIFY_WRITE, buf, count))
1707
                return -EFAULT;
1708
        if (!count)
1709
                return 0;
1710
 
1711
        desc.written = 0;
1712
        desc.count = count;
1713
        desc.arg.buf = buf;
1714
        desc.error = 0;
1715
 
1716
        do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1717
        if (desc.written)
1718
                return desc.written;
1719
        return desc.error;
1720
}
1721
 
1722
static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1723
{
1724
        struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1725
 
1726
        buf->f_type = TMPFS_MAGIC;
1727
        buf->f_bsize = PAGE_CACHE_SIZE;
1728
        buf->f_namelen = NAME_MAX;
1729
        spin_lock(&sbinfo->stat_lock);
1730
        if (sbinfo->max_blocks) {
1731
                buf->f_blocks = sbinfo->max_blocks;
1732
                buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1733
        }
1734
        if (sbinfo->max_inodes) {
1735
                buf->f_files = sbinfo->max_inodes;
1736
                buf->f_ffree = sbinfo->free_inodes;
1737
        }
1738
        /* else leave those fields 0 like simple_statfs */
1739
        spin_unlock(&sbinfo->stat_lock);
1740
        return 0;
1741
}
1742
 
1743
/*
1744
 * File creation. Allocate an inode, and we're done..
1745
 */
1746
static int
1747
shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1748
{
1749
        struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1750
        int error = -ENOSPC;
1751
 
1752
        if (inode) {
1753
                error = security_inode_init_security(inode, dir, NULL, NULL,
1754
                                                     NULL);
1755
                if (error) {
1756
                        if (error != -EOPNOTSUPP) {
1757
                                iput(inode);
1758
                                return error;
1759
                        }
1760
                }
1761
                error = shmem_acl_init(inode, dir);
1762
                if (error) {
1763
                        iput(inode);
1764
                        return error;
1765
                }
1766
                if (dir->i_mode & S_ISGID) {
1767
                        inode->i_gid = dir->i_gid;
1768
                        if (S_ISDIR(mode))
1769
                                inode->i_mode |= S_ISGID;
1770
                }
1771
                dir->i_size += BOGO_DIRENT_SIZE;
1772
                dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1773
                d_instantiate(dentry, inode);
1774
                dget(dentry); /* Extra count - pin the dentry in core */
1775
        }
1776
        return error;
1777
}
1778
 
1779
static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1780
{
1781
        int error;
1782
 
1783
        if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1784
                return error;
1785
        inc_nlink(dir);
1786
        return 0;
1787
}
1788
 
1789
static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1790
                struct nameidata *nd)
1791
{
1792
        return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1793
}
1794
 
1795
/*
1796
 * Link a file..
1797
 */
1798
static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1799
{
1800
        struct inode *inode = old_dentry->d_inode;
1801
        struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1802
 
1803
        /*
1804
         * No ordinary (disk based) filesystem counts links as inodes;
1805
         * but each new link needs a new dentry, pinning lowmem, and
1806
         * tmpfs dentries cannot be pruned until they are unlinked.
1807
         */
1808
        if (sbinfo->max_inodes) {
1809
                spin_lock(&sbinfo->stat_lock);
1810
                if (!sbinfo->free_inodes) {
1811
                        spin_unlock(&sbinfo->stat_lock);
1812
                        return -ENOSPC;
1813
                }
1814
                sbinfo->free_inodes--;
1815
                spin_unlock(&sbinfo->stat_lock);
1816
        }
1817
 
1818
        dir->i_size += BOGO_DIRENT_SIZE;
1819
        inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1820
        inc_nlink(inode);
1821
        atomic_inc(&inode->i_count);    /* New dentry reference */
1822
        dget(dentry);           /* Extra pinning count for the created dentry */
1823
        d_instantiate(dentry, inode);
1824
        return 0;
1825
}
1826
 
1827
static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1828
{
1829
        struct inode *inode = dentry->d_inode;
1830
 
1831
        if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) {
1832
                struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1833
                if (sbinfo->max_inodes) {
1834
                        spin_lock(&sbinfo->stat_lock);
1835
                        sbinfo->free_inodes++;
1836
                        spin_unlock(&sbinfo->stat_lock);
1837
                }
1838
        }
1839
 
1840
        dir->i_size -= BOGO_DIRENT_SIZE;
1841
        inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1842
        drop_nlink(inode);
1843
        dput(dentry);   /* Undo the count from "create" - this does all the work */
1844
        return 0;
1845
}
1846
 
1847
static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1848
{
1849
        if (!simple_empty(dentry))
1850
                return -ENOTEMPTY;
1851
 
1852
        drop_nlink(dentry->d_inode);
1853
        drop_nlink(dir);
1854
        return shmem_unlink(dir, dentry);
1855
}
1856
 
1857
/*
1858
 * The VFS layer already does all the dentry stuff for rename,
1859
 * we just have to decrement the usage count for the target if
1860
 * it exists so that the VFS layer correctly free's it when it
1861
 * gets overwritten.
1862
 */
1863
static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1864
{
1865
        struct inode *inode = old_dentry->d_inode;
1866
        int they_are_dirs = S_ISDIR(inode->i_mode);
1867
 
1868
        if (!simple_empty(new_dentry))
1869
                return -ENOTEMPTY;
1870
 
1871
        if (new_dentry->d_inode) {
1872
                (void) shmem_unlink(new_dir, new_dentry);
1873
                if (they_are_dirs)
1874
                        drop_nlink(old_dir);
1875
        } else if (they_are_dirs) {
1876
                drop_nlink(old_dir);
1877
                inc_nlink(new_dir);
1878
        }
1879
 
1880
        old_dir->i_size -= BOGO_DIRENT_SIZE;
1881
        new_dir->i_size += BOGO_DIRENT_SIZE;
1882
        old_dir->i_ctime = old_dir->i_mtime =
1883
        new_dir->i_ctime = new_dir->i_mtime =
1884
        inode->i_ctime = CURRENT_TIME;
1885
        return 0;
1886
}
1887
 
1888
static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1889
{
1890
        int error;
1891
        int len;
1892
        struct inode *inode;
1893
        struct page *page = NULL;
1894
        char *kaddr;
1895
        struct shmem_inode_info *info;
1896
 
1897
        len = strlen(symname) + 1;
1898
        if (len > PAGE_CACHE_SIZE)
1899
                return -ENAMETOOLONG;
1900
 
1901
        inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1902
        if (!inode)
1903
                return -ENOSPC;
1904
 
1905
        error = security_inode_init_security(inode, dir, NULL, NULL,
1906
                                             NULL);
1907
        if (error) {
1908
                if (error != -EOPNOTSUPP) {
1909
                        iput(inode);
1910
                        return error;
1911
                }
1912
                error = 0;
1913
        }
1914
 
1915
        info = SHMEM_I(inode);
1916
        inode->i_size = len-1;
1917
        if (len <= (char *)inode - (char *)info) {
1918
                /* do it inline */
1919
                memcpy(info, symname, len);
1920
                inode->i_op = &shmem_symlink_inline_operations;
1921
        } else {
1922
                error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1923
                if (error) {
1924
                        iput(inode);
1925
                        return error;
1926
                }
1927
                inode->i_op = &shmem_symlink_inode_operations;
1928
                kaddr = kmap_atomic(page, KM_USER0);
1929
                memcpy(kaddr, symname, len);
1930
                kunmap_atomic(kaddr, KM_USER0);
1931
                set_page_dirty(page);
1932
                page_cache_release(page);
1933
        }
1934
        if (dir->i_mode & S_ISGID)
1935
                inode->i_gid = dir->i_gid;
1936
        dir->i_size += BOGO_DIRENT_SIZE;
1937
        dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1938
        d_instantiate(dentry, inode);
1939
        dget(dentry);
1940
        return 0;
1941
}
1942
 
1943
static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1944
{
1945
        nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1946
        return NULL;
1947
}
1948
 
1949
static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1950
{
1951
        struct page *page = NULL;
1952
        int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1953
        nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1954
        return page;
1955
}
1956
 
1957
static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1958
{
1959
        if (!IS_ERR(nd_get_link(nd))) {
1960
                struct page *page = cookie;
1961
                kunmap(page);
1962
                mark_page_accessed(page);
1963
                page_cache_release(page);
1964
        }
1965
}
1966
 
1967
static const struct inode_operations shmem_symlink_inline_operations = {
1968
        .readlink       = generic_readlink,
1969
        .follow_link    = shmem_follow_link_inline,
1970
};
1971
 
1972
static const struct inode_operations shmem_symlink_inode_operations = {
1973
        .truncate       = shmem_truncate,
1974
        .readlink       = generic_readlink,
1975
        .follow_link    = shmem_follow_link,
1976
        .put_link       = shmem_put_link,
1977
};
1978
 
1979
#ifdef CONFIG_TMPFS_POSIX_ACL
1980
/**
1981
 * Superblocks without xattr inode operations will get security.* xattr
1982
 * support from the VFS "for free". As soon as we have any other xattrs
1983
 * like ACLs, we also need to implement the security.* handlers at
1984
 * filesystem level, though.
1985
 */
1986
 
1987
static size_t shmem_xattr_security_list(struct inode *inode, char *list,
1988
                                        size_t list_len, const char *name,
1989
                                        size_t name_len)
1990
{
1991
        return security_inode_listsecurity(inode, list, list_len);
1992
}
1993
 
1994
static int shmem_xattr_security_get(struct inode *inode, const char *name,
1995
                                    void *buffer, size_t size)
1996
{
1997
        if (strcmp(name, "") == 0)
1998
                return -EINVAL;
1999
        return security_inode_getsecurity(inode, name, buffer, size,
2000
                                          -EOPNOTSUPP);
2001
}
2002
 
2003
static int shmem_xattr_security_set(struct inode *inode, const char *name,
2004
                                    const void *value, size_t size, int flags)
2005
{
2006
        if (strcmp(name, "") == 0)
2007
                return -EINVAL;
2008
        return security_inode_setsecurity(inode, name, value, size, flags);
2009
}
2010
 
2011
static struct xattr_handler shmem_xattr_security_handler = {
2012
        .prefix = XATTR_SECURITY_PREFIX,
2013
        .list   = shmem_xattr_security_list,
2014
        .get    = shmem_xattr_security_get,
2015
        .set    = shmem_xattr_security_set,
2016
};
2017
 
2018
static struct xattr_handler *shmem_xattr_handlers[] = {
2019
        &shmem_xattr_acl_access_handler,
2020
        &shmem_xattr_acl_default_handler,
2021
        &shmem_xattr_security_handler,
2022
        NULL
2023
};
2024
#endif
2025
 
2026
static struct dentry *shmem_get_parent(struct dentry *child)
2027
{
2028
        return ERR_PTR(-ESTALE);
2029
}
2030
 
2031
static int shmem_match(struct inode *ino, void *vfh)
2032
{
2033
        __u32 *fh = vfh;
2034
        __u64 inum = fh[2];
2035
        inum = (inum << 32) | fh[1];
2036
        return ino->i_ino == inum && fh[0] == ino->i_generation;
2037
}
2038
 
2039
static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2040
                struct fid *fid, int fh_len, int fh_type)
2041
{
2042
        struct inode *inode;
2043
        struct dentry *dentry = NULL;
2044
        u64 inum = fid->raw[2];
2045
        inum = (inum << 32) | fid->raw[1];
2046
 
2047
        if (fh_len < 3)
2048
                return NULL;
2049
 
2050
        inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2051
                        shmem_match, fid->raw);
2052
        if (inode) {
2053
                dentry = d_find_alias(inode);
2054
                iput(inode);
2055
        }
2056
 
2057
        return dentry;
2058
}
2059
 
2060
static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2061
                                int connectable)
2062
{
2063
        struct inode *inode = dentry->d_inode;
2064
 
2065
        if (*len < 3)
2066
                return 255;
2067
 
2068
        if (hlist_unhashed(&inode->i_hash)) {
2069
                /* Unfortunately insert_inode_hash is not idempotent,
2070
                 * so as we hash inodes here rather than at creation
2071
                 * time, we need a lock to ensure we only try
2072
                 * to do it once
2073
                 */
2074
                static DEFINE_SPINLOCK(lock);
2075
                spin_lock(&lock);
2076
                if (hlist_unhashed(&inode->i_hash))
2077
                        __insert_inode_hash(inode,
2078
                                            inode->i_ino + inode->i_generation);
2079
                spin_unlock(&lock);
2080
        }
2081
 
2082
        fh[0] = inode->i_generation;
2083
        fh[1] = inode->i_ino;
2084
        fh[2] = ((__u64)inode->i_ino) >> 32;
2085
 
2086
        *len = 3;
2087
        return 1;
2088
}
2089
 
2090
static const struct export_operations shmem_export_ops = {
2091
        .get_parent     = shmem_get_parent,
2092
        .encode_fh      = shmem_encode_fh,
2093
        .fh_to_dentry   = shmem_fh_to_dentry,
2094
};
2095
 
2096
static int shmem_parse_options(char *options, int *mode, uid_t *uid,
2097
        gid_t *gid, unsigned long *blocks, unsigned long *inodes,
2098
        int *policy, nodemask_t *policy_nodes)
2099
{
2100
        char *this_char, *value, *rest;
2101
 
2102
        while (options != NULL) {
2103
                this_char = options;
2104
                for (;;) {
2105
                        /*
2106
                         * NUL-terminate this option: unfortunately,
2107
                         * mount options form a comma-separated list,
2108
                         * but mpol's nodelist may also contain commas.
2109
                         */
2110
                        options = strchr(options, ',');
2111
                        if (options == NULL)
2112
                                break;
2113
                        options++;
2114
                        if (!isdigit(*options)) {
2115
                                options[-1] = '\0';
2116
                                break;
2117
                        }
2118
                }
2119
                if (!*this_char)
2120
                        continue;
2121
                if ((value = strchr(this_char,'=')) != NULL) {
2122
                        *value++ = 0;
2123
                } else {
2124
                        printk(KERN_ERR
2125
                            "tmpfs: No value for mount option '%s'\n",
2126
                            this_char);
2127
                        return 1;
2128
                }
2129
 
2130
                if (!strcmp(this_char,"size")) {
2131
                        unsigned long long size;
2132
                        size = memparse(value,&rest);
2133
                        if (*rest == '%') {
2134
                                size <<= PAGE_SHIFT;
2135
                                size *= totalram_pages;
2136
                                do_div(size, 100);
2137
                                rest++;
2138
                        }
2139
                        if (*rest)
2140
                                goto bad_val;
2141
                        *blocks = size >> PAGE_CACHE_SHIFT;
2142
                } else if (!strcmp(this_char,"nr_blocks")) {
2143
                        *blocks = memparse(value,&rest);
2144
                        if (*rest)
2145
                                goto bad_val;
2146
                } else if (!strcmp(this_char,"nr_inodes")) {
2147
                        *inodes = memparse(value,&rest);
2148
                        if (*rest)
2149
                                goto bad_val;
2150
                } else if (!strcmp(this_char,"mode")) {
2151
                        if (!mode)
2152
                                continue;
2153
                        *mode = simple_strtoul(value,&rest,8);
2154
                        if (*rest)
2155
                                goto bad_val;
2156
                } else if (!strcmp(this_char,"uid")) {
2157
                        if (!uid)
2158
                                continue;
2159
                        *uid = simple_strtoul(value,&rest,0);
2160
                        if (*rest)
2161
                                goto bad_val;
2162
                } else if (!strcmp(this_char,"gid")) {
2163
                        if (!gid)
2164
                                continue;
2165
                        *gid = simple_strtoul(value,&rest,0);
2166
                        if (*rest)
2167
                                goto bad_val;
2168
                } else if (!strcmp(this_char,"mpol")) {
2169
                        if (shmem_parse_mpol(value,policy,policy_nodes))
2170
                                goto bad_val;
2171
                } else {
2172
                        printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2173
                               this_char);
2174
                        return 1;
2175
                }
2176
        }
2177
        return 0;
2178
 
2179
bad_val:
2180
        printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2181
               value, this_char);
2182
        return 1;
2183
 
2184
}
2185
 
2186
static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2187
{
2188
        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2189
        unsigned long max_blocks = sbinfo->max_blocks;
2190
        unsigned long max_inodes = sbinfo->max_inodes;
2191
        int policy = sbinfo->policy;
2192
        nodemask_t policy_nodes = sbinfo->policy_nodes;
2193
        unsigned long blocks;
2194
        unsigned long inodes;
2195
        int error = -EINVAL;
2196
 
2197
        if (shmem_parse_options(data, NULL, NULL, NULL, &max_blocks,
2198
                                &max_inodes, &policy, &policy_nodes))
2199
                return error;
2200
 
2201
        spin_lock(&sbinfo->stat_lock);
2202
        blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2203
        inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2204
        if (max_blocks < blocks)
2205
                goto out;
2206
        if (max_inodes < inodes)
2207
                goto out;
2208
        /*
2209
         * Those tests also disallow limited->unlimited while any are in
2210
         * use, so i_blocks will always be zero when max_blocks is zero;
2211
         * but we must separately disallow unlimited->limited, because
2212
         * in that case we have no record of how much is already in use.
2213
         */
2214
        if (max_blocks && !sbinfo->max_blocks)
2215
                goto out;
2216
        if (max_inodes && !sbinfo->max_inodes)
2217
                goto out;
2218
 
2219
        error = 0;
2220
        sbinfo->max_blocks  = max_blocks;
2221
        sbinfo->free_blocks = max_blocks - blocks;
2222
        sbinfo->max_inodes  = max_inodes;
2223
        sbinfo->free_inodes = max_inodes - inodes;
2224
        sbinfo->policy = policy;
2225
        sbinfo->policy_nodes = policy_nodes;
2226
out:
2227
        spin_unlock(&sbinfo->stat_lock);
2228
        return error;
2229
}
2230
#endif
2231
 
2232
static void shmem_put_super(struct super_block *sb)
2233
{
2234
        kfree(sb->s_fs_info);
2235
        sb->s_fs_info = NULL;
2236
}
2237
 
2238
static int shmem_fill_super(struct super_block *sb,
2239
                            void *data, int silent)
2240
{
2241
        struct inode *inode;
2242
        struct dentry *root;
2243
        int mode   = S_IRWXUGO | S_ISVTX;
2244
        uid_t uid = current->fsuid;
2245
        gid_t gid = current->fsgid;
2246
        int err = -ENOMEM;
2247
        struct shmem_sb_info *sbinfo;
2248
        unsigned long blocks = 0;
2249
        unsigned long inodes = 0;
2250
        int policy = MPOL_DEFAULT;
2251
        nodemask_t policy_nodes = node_states[N_HIGH_MEMORY];
2252
 
2253
#ifdef CONFIG_TMPFS
2254
        /*
2255
         * Per default we only allow half of the physical ram per
2256
         * tmpfs instance, limiting inodes to one per page of lowmem;
2257
         * but the internal instance is left unlimited.
2258
         */
2259
        if (!(sb->s_flags & MS_NOUSER)) {
2260
                blocks = totalram_pages / 2;
2261
                inodes = totalram_pages - totalhigh_pages;
2262
                if (inodes > blocks)
2263
                        inodes = blocks;
2264
                if (shmem_parse_options(data, &mode, &uid, &gid, &blocks,
2265
                                        &inodes, &policy, &policy_nodes))
2266
                        return -EINVAL;
2267
        }
2268
        sb->s_export_op = &shmem_export_ops;
2269
#else
2270
        sb->s_flags |= MS_NOUSER;
2271
#endif
2272
 
2273
        /* Round up to L1_CACHE_BYTES to resist false sharing */
2274
        sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2275
                                L1_CACHE_BYTES), GFP_KERNEL);
2276
        if (!sbinfo)
2277
                return -ENOMEM;
2278
 
2279
        spin_lock_init(&sbinfo->stat_lock);
2280
        sbinfo->max_blocks = blocks;
2281
        sbinfo->free_blocks = blocks;
2282
        sbinfo->max_inodes = inodes;
2283
        sbinfo->free_inodes = inodes;
2284
        sbinfo->policy = policy;
2285
        sbinfo->policy_nodes = policy_nodes;
2286
 
2287
        sb->s_fs_info = sbinfo;
2288
        sb->s_maxbytes = SHMEM_MAX_BYTES;
2289
        sb->s_blocksize = PAGE_CACHE_SIZE;
2290
        sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2291
        sb->s_magic = TMPFS_MAGIC;
2292
        sb->s_op = &shmem_ops;
2293
        sb->s_time_gran = 1;
2294
#ifdef CONFIG_TMPFS_POSIX_ACL
2295
        sb->s_xattr = shmem_xattr_handlers;
2296
        sb->s_flags |= MS_POSIXACL;
2297
#endif
2298
 
2299
        inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2300
        if (!inode)
2301
                goto failed;
2302
        inode->i_uid = uid;
2303
        inode->i_gid = gid;
2304
        root = d_alloc_root(inode);
2305
        if (!root)
2306
                goto failed_iput;
2307
        sb->s_root = root;
2308
        return 0;
2309
 
2310
failed_iput:
2311
        iput(inode);
2312
failed:
2313
        shmem_put_super(sb);
2314
        return err;
2315
}
2316
 
2317
static struct kmem_cache *shmem_inode_cachep;
2318
 
2319
static struct inode *shmem_alloc_inode(struct super_block *sb)
2320
{
2321
        struct shmem_inode_info *p;
2322
        p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2323
        if (!p)
2324
                return NULL;
2325
        return &p->vfs_inode;
2326
}
2327
 
2328
static void shmem_destroy_inode(struct inode *inode)
2329
{
2330
        if ((inode->i_mode & S_IFMT) == S_IFREG) {
2331
                /* only struct inode is valid if it's an inline symlink */
2332
                mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2333
        }
2334
        shmem_acl_destroy_inode(inode);
2335
        kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2336
}
2337
 
2338
static void init_once(struct kmem_cache *cachep, void *foo)
2339
{
2340
        struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2341
 
2342
        inode_init_once(&p->vfs_inode);
2343
#ifdef CONFIG_TMPFS_POSIX_ACL
2344
        p->i_acl = NULL;
2345
        p->i_default_acl = NULL;
2346
#endif
2347
}
2348
 
2349
static int init_inodecache(void)
2350
{
2351
        shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2352
                                sizeof(struct shmem_inode_info),
2353
                                0, SLAB_PANIC, init_once);
2354
        return 0;
2355
}
2356
 
2357
static void destroy_inodecache(void)
2358
{
2359
        kmem_cache_destroy(shmem_inode_cachep);
2360
}
2361
 
2362
static const struct address_space_operations shmem_aops = {
2363
        .writepage      = shmem_writepage,
2364
        .set_page_dirty = __set_page_dirty_no_writeback,
2365
#ifdef CONFIG_TMPFS
2366
        .readpage       = shmem_readpage,
2367
        .write_begin    = shmem_write_begin,
2368
        .write_end      = shmem_write_end,
2369
#endif
2370
        .migratepage    = migrate_page,
2371
};
2372
 
2373
static const struct file_operations shmem_file_operations = {
2374
        .mmap           = shmem_mmap,
2375
#ifdef CONFIG_TMPFS
2376
        .llseek         = generic_file_llseek,
2377
        .read           = shmem_file_read,
2378
        .write          = shmem_file_write,
2379
        .fsync          = simple_sync_file,
2380
        .splice_read    = generic_file_splice_read,
2381
        .splice_write   = generic_file_splice_write,
2382
#endif
2383
};
2384
 
2385
static const struct inode_operations shmem_inode_operations = {
2386
        .truncate       = shmem_truncate,
2387
        .setattr        = shmem_notify_change,
2388
        .truncate_range = shmem_truncate_range,
2389
#ifdef CONFIG_TMPFS_POSIX_ACL
2390
        .setxattr       = generic_setxattr,
2391
        .getxattr       = generic_getxattr,
2392
        .listxattr      = generic_listxattr,
2393
        .removexattr    = generic_removexattr,
2394
        .permission     = shmem_permission,
2395
#endif
2396
 
2397
};
2398
 
2399
static const struct inode_operations shmem_dir_inode_operations = {
2400
#ifdef CONFIG_TMPFS
2401
        .create         = shmem_create,
2402
        .lookup         = simple_lookup,
2403
        .link           = shmem_link,
2404
        .unlink         = shmem_unlink,
2405
        .symlink        = shmem_symlink,
2406
        .mkdir          = shmem_mkdir,
2407
        .rmdir          = shmem_rmdir,
2408
        .mknod          = shmem_mknod,
2409
        .rename         = shmem_rename,
2410
#endif
2411
#ifdef CONFIG_TMPFS_POSIX_ACL
2412
        .setattr        = shmem_notify_change,
2413
        .setxattr       = generic_setxattr,
2414
        .getxattr       = generic_getxattr,
2415
        .listxattr      = generic_listxattr,
2416
        .removexattr    = generic_removexattr,
2417
        .permission     = shmem_permission,
2418
#endif
2419
};
2420
 
2421
static const struct inode_operations shmem_special_inode_operations = {
2422
#ifdef CONFIG_TMPFS_POSIX_ACL
2423
        .setattr        = shmem_notify_change,
2424
        .setxattr       = generic_setxattr,
2425
        .getxattr       = generic_getxattr,
2426
        .listxattr      = generic_listxattr,
2427
        .removexattr    = generic_removexattr,
2428
        .permission     = shmem_permission,
2429
#endif
2430
};
2431
 
2432
static const struct super_operations shmem_ops = {
2433
        .alloc_inode    = shmem_alloc_inode,
2434
        .destroy_inode  = shmem_destroy_inode,
2435
#ifdef CONFIG_TMPFS
2436
        .statfs         = shmem_statfs,
2437
        .remount_fs     = shmem_remount_fs,
2438
#endif
2439
        .delete_inode   = shmem_delete_inode,
2440
        .drop_inode     = generic_delete_inode,
2441
        .put_super      = shmem_put_super,
2442
};
2443
 
2444
static struct vm_operations_struct shmem_vm_ops = {
2445
        .fault          = shmem_fault,
2446
#ifdef CONFIG_NUMA
2447
        .set_policy     = shmem_set_policy,
2448
        .get_policy     = shmem_get_policy,
2449
#endif
2450
};
2451
 
2452
 
2453
static int shmem_get_sb(struct file_system_type *fs_type,
2454
        int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2455
{
2456
        return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2457
}
2458
 
2459
static struct file_system_type tmpfs_fs_type = {
2460
        .owner          = THIS_MODULE,
2461
        .name           = "tmpfs",
2462
        .get_sb         = shmem_get_sb,
2463
        .kill_sb        = kill_litter_super,
2464
};
2465
static struct vfsmount *shm_mnt;
2466
 
2467
static int __init init_tmpfs(void)
2468
{
2469
        int error;
2470
 
2471
        error = bdi_init(&shmem_backing_dev_info);
2472
        if (error)
2473
                goto out4;
2474
 
2475
        error = init_inodecache();
2476
        if (error)
2477
                goto out3;
2478
 
2479
        error = register_filesystem(&tmpfs_fs_type);
2480
        if (error) {
2481
                printk(KERN_ERR "Could not register tmpfs\n");
2482
                goto out2;
2483
        }
2484
 
2485
        shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2486
                                tmpfs_fs_type.name, NULL);
2487
        if (IS_ERR(shm_mnt)) {
2488
                error = PTR_ERR(shm_mnt);
2489
                printk(KERN_ERR "Could not kern_mount tmpfs\n");
2490
                goto out1;
2491
        }
2492
        return 0;
2493
 
2494
out1:
2495
        unregister_filesystem(&tmpfs_fs_type);
2496
out2:
2497
        destroy_inodecache();
2498
out3:
2499
        bdi_destroy(&shmem_backing_dev_info);
2500
out4:
2501
        shm_mnt = ERR_PTR(error);
2502
        return error;
2503
}
2504
module_init(init_tmpfs)
2505
 
2506
/*
2507
 * shmem_file_setup - get an unlinked file living in tmpfs
2508
 *
2509
 * @name: name for dentry (to be seen in /proc/<pid>/maps
2510
 * @size: size to be set for the file
2511
 *
2512
 */
2513
struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2514
{
2515
        int error;
2516
        struct file *file;
2517
        struct inode *inode;
2518
        struct dentry *dentry, *root;
2519
        struct qstr this;
2520
 
2521
        if (IS_ERR(shm_mnt))
2522
                return (void *)shm_mnt;
2523
 
2524
        if (size < 0 || size > SHMEM_MAX_BYTES)
2525
                return ERR_PTR(-EINVAL);
2526
 
2527
        if (shmem_acct_size(flags, size))
2528
                return ERR_PTR(-ENOMEM);
2529
 
2530
        error = -ENOMEM;
2531
        this.name = name;
2532
        this.len = strlen(name);
2533
        this.hash = 0; /* will go */
2534
        root = shm_mnt->mnt_root;
2535
        dentry = d_alloc(root, &this);
2536
        if (!dentry)
2537
                goto put_memory;
2538
 
2539
        error = -ENFILE;
2540
        file = get_empty_filp();
2541
        if (!file)
2542
                goto put_dentry;
2543
 
2544
        error = -ENOSPC;
2545
        inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2546
        if (!inode)
2547
                goto close_file;
2548
 
2549
        SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2550
        d_instantiate(dentry, inode);
2551
        inode->i_size = size;
2552
        inode->i_nlink = 0;      /* It is unlinked */
2553
        init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2554
                        &shmem_file_operations);
2555
        return file;
2556
 
2557
close_file:
2558
        put_filp(file);
2559
put_dentry:
2560
        dput(dentry);
2561
put_memory:
2562
        shmem_unacct_size(flags, size);
2563
        return ERR_PTR(error);
2564
}
2565
 
2566
/*
2567
 * shmem_zero_setup - setup a shared anonymous mapping
2568
 *
2569
 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2570
 */
2571
int shmem_zero_setup(struct vm_area_struct *vma)
2572
{
2573
        struct file *file;
2574
        loff_t size = vma->vm_end - vma->vm_start;
2575
 
2576
        file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2577
        if (IS_ERR(file))
2578
                return PTR_ERR(file);
2579
 
2580
        if (vma->vm_file)
2581
                fput(vma->vm_file);
2582
        vma->vm_file = file;
2583
        vma->vm_ops = &shmem_vm_ops;
2584
        return 0;
2585
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.