OpenCores
URL https://opencores.org/ocsvn/or1k_soc_on_altera_embedded_dev_kit/or1k_soc_on_altera_embedded_dev_kit/trunk

Subversion Repositories or1k_soc_on_altera_embedded_dev_kit

[/] [or1k_soc_on_altera_embedded_dev_kit/] [trunk/] [linux-2.6/] [linux-2.6.24/] [mm/] [slub.c] - Blame information for rev 3

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 3 xianfeng
/*
2
 * SLUB: A slab allocator that limits cache line use instead of queuing
3
 * objects in per cpu and per node lists.
4
 *
5
 * The allocator synchronizes using per slab locks and only
6
 * uses a centralized lock to manage a pool of partial slabs.
7
 *
8
 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9
 */
10
 
11
#include <linux/mm.h>
12
#include <linux/module.h>
13
#include <linux/bit_spinlock.h>
14
#include <linux/interrupt.h>
15
#include <linux/bitops.h>
16
#include <linux/slab.h>
17
#include <linux/seq_file.h>
18
#include <linux/cpu.h>
19
#include <linux/cpuset.h>
20
#include <linux/mempolicy.h>
21
#include <linux/ctype.h>
22
#include <linux/kallsyms.h>
23
#include <linux/memory.h>
24
 
25
/*
26
 * Lock order:
27
 *   1. slab_lock(page)
28
 *   2. slab->list_lock
29
 *
30
 *   The slab_lock protects operations on the object of a particular
31
 *   slab and its metadata in the page struct. If the slab lock
32
 *   has been taken then no allocations nor frees can be performed
33
 *   on the objects in the slab nor can the slab be added or removed
34
 *   from the partial or full lists since this would mean modifying
35
 *   the page_struct of the slab.
36
 *
37
 *   The list_lock protects the partial and full list on each node and
38
 *   the partial slab counter. If taken then no new slabs may be added or
39
 *   removed from the lists nor make the number of partial slabs be modified.
40
 *   (Note that the total number of slabs is an atomic value that may be
41
 *   modified without taking the list lock).
42
 *
43
 *   The list_lock is a centralized lock and thus we avoid taking it as
44
 *   much as possible. As long as SLUB does not have to handle partial
45
 *   slabs, operations can continue without any centralized lock. F.e.
46
 *   allocating a long series of objects that fill up slabs does not require
47
 *   the list lock.
48
 *
49
 *   The lock order is sometimes inverted when we are trying to get a slab
50
 *   off a list. We take the list_lock and then look for a page on the list
51
 *   to use. While we do that objects in the slabs may be freed. We can
52
 *   only operate on the slab if we have also taken the slab_lock. So we use
53
 *   a slab_trylock() on the slab. If trylock was successful then no frees
54
 *   can occur anymore and we can use the slab for allocations etc. If the
55
 *   slab_trylock() does not succeed then frees are in progress in the slab and
56
 *   we must stay away from it for a while since we may cause a bouncing
57
 *   cacheline if we try to acquire the lock. So go onto the next slab.
58
 *   If all pages are busy then we may allocate a new slab instead of reusing
59
 *   a partial slab. A new slab has noone operating on it and thus there is
60
 *   no danger of cacheline contention.
61
 *
62
 *   Interrupts are disabled during allocation and deallocation in order to
63
 *   make the slab allocator safe to use in the context of an irq. In addition
64
 *   interrupts are disabled to ensure that the processor does not change
65
 *   while handling per_cpu slabs, due to kernel preemption.
66
 *
67
 * SLUB assigns one slab for allocation to each processor.
68
 * Allocations only occur from these slabs called cpu slabs.
69
 *
70
 * Slabs with free elements are kept on a partial list and during regular
71
 * operations no list for full slabs is used. If an object in a full slab is
72
 * freed then the slab will show up again on the partial lists.
73
 * We track full slabs for debugging purposes though because otherwise we
74
 * cannot scan all objects.
75
 *
76
 * Slabs are freed when they become empty. Teardown and setup is
77
 * minimal so we rely on the page allocators per cpu caches for
78
 * fast frees and allocs.
79
 *
80
 * Overloading of page flags that are otherwise used for LRU management.
81
 *
82
 * PageActive           The slab is frozen and exempt from list processing.
83
 *                      This means that the slab is dedicated to a purpose
84
 *                      such as satisfying allocations for a specific
85
 *                      processor. Objects may be freed in the slab while
86
 *                      it is frozen but slab_free will then skip the usual
87
 *                      list operations. It is up to the processor holding
88
 *                      the slab to integrate the slab into the slab lists
89
 *                      when the slab is no longer needed.
90
 *
91
 *                      One use of this flag is to mark slabs that are
92
 *                      used for allocations. Then such a slab becomes a cpu
93
 *                      slab. The cpu slab may be equipped with an additional
94
 *                      freelist that allows lockless access to
95
 *                      free objects in addition to the regular freelist
96
 *                      that requires the slab lock.
97
 *
98
 * PageError            Slab requires special handling due to debug
99
 *                      options set. This moves slab handling out of
100
 *                      the fast path and disables lockless freelists.
101
 */
102
 
103
#define FROZEN (1 << PG_active)
104
 
105
#ifdef CONFIG_SLUB_DEBUG
106
#define SLABDEBUG (1 << PG_error)
107
#else
108
#define SLABDEBUG 0
109
#endif
110
 
111
static inline int SlabFrozen(struct page *page)
112
{
113
        return page->flags & FROZEN;
114
}
115
 
116
static inline void SetSlabFrozen(struct page *page)
117
{
118
        page->flags |= FROZEN;
119
}
120
 
121
static inline void ClearSlabFrozen(struct page *page)
122
{
123
        page->flags &= ~FROZEN;
124
}
125
 
126
static inline int SlabDebug(struct page *page)
127
{
128
        return page->flags & SLABDEBUG;
129
}
130
 
131
static inline void SetSlabDebug(struct page *page)
132
{
133
        page->flags |= SLABDEBUG;
134
}
135
 
136
static inline void ClearSlabDebug(struct page *page)
137
{
138
        page->flags &= ~SLABDEBUG;
139
}
140
 
141
/*
142
 * Issues still to be resolved:
143
 *
144
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
145
 *
146
 * - Variable sizing of the per node arrays
147
 */
148
 
149
/* Enable to test recovery from slab corruption on boot */
150
#undef SLUB_RESILIENCY_TEST
151
 
152
#if PAGE_SHIFT <= 12
153
 
154
/*
155
 * Small page size. Make sure that we do not fragment memory
156
 */
157
#define DEFAULT_MAX_ORDER 1
158
#define DEFAULT_MIN_OBJECTS 4
159
 
160
#else
161
 
162
/*
163
 * Large page machines are customarily able to handle larger
164
 * page orders.
165
 */
166
#define DEFAULT_MAX_ORDER 2
167
#define DEFAULT_MIN_OBJECTS 8
168
 
169
#endif
170
 
171
/*
172
 * Mininum number of partial slabs. These will be left on the partial
173
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
174
 */
175
#define MIN_PARTIAL 5
176
 
177
/*
178
 * Maximum number of desirable partial slabs.
179
 * The existence of more partial slabs makes kmem_cache_shrink
180
 * sort the partial list by the number of objects in the.
181
 */
182
#define MAX_PARTIAL 10
183
 
184
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
185
                                SLAB_POISON | SLAB_STORE_USER)
186
 
187
/*
188
 * Set of flags that will prevent slab merging
189
 */
190
#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
191
                SLAB_TRACE | SLAB_DESTROY_BY_RCU)
192
 
193
#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
194
                SLAB_CACHE_DMA)
195
 
196
#ifndef ARCH_KMALLOC_MINALIGN
197
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
198
#endif
199
 
200
#ifndef ARCH_SLAB_MINALIGN
201
#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
202
#endif
203
 
204
/* Internal SLUB flags */
205
#define __OBJECT_POISON         0x80000000 /* Poison object */
206
#define __SYSFS_ADD_DEFERRED    0x40000000 /* Not yet visible via sysfs */
207
 
208
/* Not all arches define cache_line_size */
209
#ifndef cache_line_size
210
#define cache_line_size()       L1_CACHE_BYTES
211
#endif
212
 
213
static int kmem_size = sizeof(struct kmem_cache);
214
 
215
#ifdef CONFIG_SMP
216
static struct notifier_block slab_notifier;
217
#endif
218
 
219
static enum {
220
        DOWN,           /* No slab functionality available */
221
        PARTIAL,        /* kmem_cache_open() works but kmalloc does not */
222
        UP,             /* Everything works but does not show up in sysfs */
223
        SYSFS           /* Sysfs up */
224
} slab_state = DOWN;
225
 
226
/* A list of all slab caches on the system */
227
static DECLARE_RWSEM(slub_lock);
228
static LIST_HEAD(slab_caches);
229
 
230
/*
231
 * Tracking user of a slab.
232
 */
233
struct track {
234
        void *addr;             /* Called from address */
235
        int cpu;                /* Was running on cpu */
236
        int pid;                /* Pid context */
237
        unsigned long when;     /* When did the operation occur */
238
};
239
 
240
enum track_item { TRACK_ALLOC, TRACK_FREE };
241
 
242
#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
243
static int sysfs_slab_add(struct kmem_cache *);
244
static int sysfs_slab_alias(struct kmem_cache *, const char *);
245
static void sysfs_slab_remove(struct kmem_cache *);
246
#else
247
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
248
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
249
                                                        { return 0; }
250
static inline void sysfs_slab_remove(struct kmem_cache *s) {}
251
#endif
252
 
253
/********************************************************************
254
 *                      Core slab cache functions
255
 *******************************************************************/
256
 
257
int slab_is_available(void)
258
{
259
        return slab_state >= UP;
260
}
261
 
262
static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
263
{
264
#ifdef CONFIG_NUMA
265
        return s->node[node];
266
#else
267
        return &s->local_node;
268
#endif
269
}
270
 
271
static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
272
{
273
#ifdef CONFIG_SMP
274
        return s->cpu_slab[cpu];
275
#else
276
        return &s->cpu_slab;
277
#endif
278
}
279
 
280
static inline int check_valid_pointer(struct kmem_cache *s,
281
                                struct page *page, const void *object)
282
{
283
        void *base;
284
 
285
        if (!object)
286
                return 1;
287
 
288
        base = page_address(page);
289
        if (object < base || object >= base + s->objects * s->size ||
290
                (object - base) % s->size) {
291
                return 0;
292
        }
293
 
294
        return 1;
295
}
296
 
297
/*
298
 * Slow version of get and set free pointer.
299
 *
300
 * This version requires touching the cache lines of kmem_cache which
301
 * we avoid to do in the fast alloc free paths. There we obtain the offset
302
 * from the page struct.
303
 */
304
static inline void *get_freepointer(struct kmem_cache *s, void *object)
305
{
306
        return *(void **)(object + s->offset);
307
}
308
 
309
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
310
{
311
        *(void **)(object + s->offset) = fp;
312
}
313
 
314
/* Loop over all objects in a slab */
315
#define for_each_object(__p, __s, __addr) \
316
        for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
317
                        __p += (__s)->size)
318
 
319
/* Scan freelist */
320
#define for_each_free_object(__p, __s, __free) \
321
        for (__p = (__free); __p; __p = get_freepointer((__s), __p))
322
 
323
/* Determine object index from a given position */
324
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
325
{
326
        return (p - addr) / s->size;
327
}
328
 
329
#ifdef CONFIG_SLUB_DEBUG
330
/*
331
 * Debug settings:
332
 */
333
#ifdef CONFIG_SLUB_DEBUG_ON
334
static int slub_debug = DEBUG_DEFAULT_FLAGS;
335
#else
336
static int slub_debug;
337
#endif
338
 
339
static char *slub_debug_slabs;
340
 
341
/*
342
 * Object debugging
343
 */
344
static void print_section(char *text, u8 *addr, unsigned int length)
345
{
346
        int i, offset;
347
        int newline = 1;
348
        char ascii[17];
349
 
350
        ascii[16] = 0;
351
 
352
        for (i = 0; i < length; i++) {
353
                if (newline) {
354
                        printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
355
                        newline = 0;
356
                }
357
                printk(" %02x", addr[i]);
358
                offset = i % 16;
359
                ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
360
                if (offset == 15) {
361
                        printk(" %s\n",ascii);
362
                        newline = 1;
363
                }
364
        }
365
        if (!newline) {
366
                i %= 16;
367
                while (i < 16) {
368
                        printk("   ");
369
                        ascii[i] = ' ';
370
                        i++;
371
                }
372
                printk(" %s\n", ascii);
373
        }
374
}
375
 
376
static struct track *get_track(struct kmem_cache *s, void *object,
377
        enum track_item alloc)
378
{
379
        struct track *p;
380
 
381
        if (s->offset)
382
                p = object + s->offset + sizeof(void *);
383
        else
384
                p = object + s->inuse;
385
 
386
        return p + alloc;
387
}
388
 
389
static void set_track(struct kmem_cache *s, void *object,
390
                                enum track_item alloc, void *addr)
391
{
392
        struct track *p;
393
 
394
        if (s->offset)
395
                p = object + s->offset + sizeof(void *);
396
        else
397
                p = object + s->inuse;
398
 
399
        p += alloc;
400
        if (addr) {
401
                p->addr = addr;
402
                p->cpu = smp_processor_id();
403
                p->pid = current ? current->pid : -1;
404
                p->when = jiffies;
405
        } else
406
                memset(p, 0, sizeof(struct track));
407
}
408
 
409
static void init_tracking(struct kmem_cache *s, void *object)
410
{
411
        if (!(s->flags & SLAB_STORE_USER))
412
                return;
413
 
414
        set_track(s, object, TRACK_FREE, NULL);
415
        set_track(s, object, TRACK_ALLOC, NULL);
416
}
417
 
418
static void print_track(const char *s, struct track *t)
419
{
420
        if (!t->addr)
421
                return;
422
 
423
        printk(KERN_ERR "INFO: %s in ", s);
424
        __print_symbol("%s", (unsigned long)t->addr);
425
        printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
426
}
427
 
428
static void print_tracking(struct kmem_cache *s, void *object)
429
{
430
        if (!(s->flags & SLAB_STORE_USER))
431
                return;
432
 
433
        print_track("Allocated", get_track(s, object, TRACK_ALLOC));
434
        print_track("Freed", get_track(s, object, TRACK_FREE));
435
}
436
 
437
static void print_page_info(struct page *page)
438
{
439
        printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
440
                page, page->inuse, page->freelist, page->flags);
441
 
442
}
443
 
444
static void slab_bug(struct kmem_cache *s, char *fmt, ...)
445
{
446
        va_list args;
447
        char buf[100];
448
 
449
        va_start(args, fmt);
450
        vsnprintf(buf, sizeof(buf), fmt, args);
451
        va_end(args);
452
        printk(KERN_ERR "========================================"
453
                        "=====================================\n");
454
        printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
455
        printk(KERN_ERR "----------------------------------------"
456
                        "-------------------------------------\n\n");
457
}
458
 
459
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
460
{
461
        va_list args;
462
        char buf[100];
463
 
464
        va_start(args, fmt);
465
        vsnprintf(buf, sizeof(buf), fmt, args);
466
        va_end(args);
467
        printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
468
}
469
 
470
static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
471
{
472
        unsigned int off;       /* Offset of last byte */
473
        u8 *addr = page_address(page);
474
 
475
        print_tracking(s, p);
476
 
477
        print_page_info(page);
478
 
479
        printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
480
                        p, p - addr, get_freepointer(s, p));
481
 
482
        if (p > addr + 16)
483
                print_section("Bytes b4", p - 16, 16);
484
 
485
        print_section("Object", p, min(s->objsize, 128));
486
 
487
        if (s->flags & SLAB_RED_ZONE)
488
                print_section("Redzone", p + s->objsize,
489
                        s->inuse - s->objsize);
490
 
491
        if (s->offset)
492
                off = s->offset + sizeof(void *);
493
        else
494
                off = s->inuse;
495
 
496
        if (s->flags & SLAB_STORE_USER)
497
                off += 2 * sizeof(struct track);
498
 
499
        if (off != s->size)
500
                /* Beginning of the filler is the free pointer */
501
                print_section("Padding", p + off, s->size - off);
502
 
503
        dump_stack();
504
}
505
 
506
static void object_err(struct kmem_cache *s, struct page *page,
507
                        u8 *object, char *reason)
508
{
509
        slab_bug(s, reason);
510
        print_trailer(s, page, object);
511
}
512
 
513
static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
514
{
515
        va_list args;
516
        char buf[100];
517
 
518
        va_start(args, fmt);
519
        vsnprintf(buf, sizeof(buf), fmt, args);
520
        va_end(args);
521
        slab_bug(s, fmt);
522
        print_page_info(page);
523
        dump_stack();
524
}
525
 
526
static void init_object(struct kmem_cache *s, void *object, int active)
527
{
528
        u8 *p = object;
529
 
530
        if (s->flags & __OBJECT_POISON) {
531
                memset(p, POISON_FREE, s->objsize - 1);
532
                p[s->objsize -1] = POISON_END;
533
        }
534
 
535
        if (s->flags & SLAB_RED_ZONE)
536
                memset(p + s->objsize,
537
                        active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
538
                        s->inuse - s->objsize);
539
}
540
 
541
static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
542
{
543
        while (bytes) {
544
                if (*start != (u8)value)
545
                        return start;
546
                start++;
547
                bytes--;
548
        }
549
        return NULL;
550
}
551
 
552
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
553
                                                void *from, void *to)
554
{
555
        slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
556
        memset(from, data, to - from);
557
}
558
 
559
static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
560
                        u8 *object, char *what,
561
                        u8* start, unsigned int value, unsigned int bytes)
562
{
563
        u8 *fault;
564
        u8 *end;
565
 
566
        fault = check_bytes(start, value, bytes);
567
        if (!fault)
568
                return 1;
569
 
570
        end = start + bytes;
571
        while (end > fault && end[-1] == value)
572
                end--;
573
 
574
        slab_bug(s, "%s overwritten", what);
575
        printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
576
                                        fault, end - 1, fault[0], value);
577
        print_trailer(s, page, object);
578
 
579
        restore_bytes(s, what, value, fault, end);
580
        return 0;
581
}
582
 
583
/*
584
 * Object layout:
585
 *
586
 * object address
587
 *      Bytes of the object to be managed.
588
 *      If the freepointer may overlay the object then the free
589
 *      pointer is the first word of the object.
590
 *
591
 *      Poisoning uses 0x6b (POISON_FREE) and the last byte is
592
 *      0xa5 (POISON_END)
593
 *
594
 * object + s->objsize
595
 *      Padding to reach word boundary. This is also used for Redzoning.
596
 *      Padding is extended by another word if Redzoning is enabled and
597
 *      objsize == inuse.
598
 *
599
 *      We fill with 0xbb (RED_INACTIVE) for inactive objects and with
600
 *      0xcc (RED_ACTIVE) for objects in use.
601
 *
602
 * object + s->inuse
603
 *      Meta data starts here.
604
 *
605
 *      A. Free pointer (if we cannot overwrite object on free)
606
 *      B. Tracking data for SLAB_STORE_USER
607
 *      C. Padding to reach required alignment boundary or at mininum
608
 *              one word if debuggin is on to be able to detect writes
609
 *              before the word boundary.
610
 *
611
 *      Padding is done using 0x5a (POISON_INUSE)
612
 *
613
 * object + s->size
614
 *      Nothing is used beyond s->size.
615
 *
616
 * If slabcaches are merged then the objsize and inuse boundaries are mostly
617
 * ignored. And therefore no slab options that rely on these boundaries
618
 * may be used with merged slabcaches.
619
 */
620
 
621
static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
622
{
623
        unsigned long off = s->inuse;   /* The end of info */
624
 
625
        if (s->offset)
626
                /* Freepointer is placed after the object. */
627
                off += sizeof(void *);
628
 
629
        if (s->flags & SLAB_STORE_USER)
630
                /* We also have user information there */
631
                off += 2 * sizeof(struct track);
632
 
633
        if (s->size == off)
634
                return 1;
635
 
636
        return check_bytes_and_report(s, page, p, "Object padding",
637
                                p + off, POISON_INUSE, s->size - off);
638
}
639
 
640
static int slab_pad_check(struct kmem_cache *s, struct page *page)
641
{
642
        u8 *start;
643
        u8 *fault;
644
        u8 *end;
645
        int length;
646
        int remainder;
647
 
648
        if (!(s->flags & SLAB_POISON))
649
                return 1;
650
 
651
        start = page_address(page);
652
        end = start + (PAGE_SIZE << s->order);
653
        length = s->objects * s->size;
654
        remainder = end - (start + length);
655
        if (!remainder)
656
                return 1;
657
 
658
        fault = check_bytes(start + length, POISON_INUSE, remainder);
659
        if (!fault)
660
                return 1;
661
        while (end > fault && end[-1] == POISON_INUSE)
662
                end--;
663
 
664
        slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
665
        print_section("Padding", start, length);
666
 
667
        restore_bytes(s, "slab padding", POISON_INUSE, start, end);
668
        return 0;
669
}
670
 
671
static int check_object(struct kmem_cache *s, struct page *page,
672
                                        void *object, int active)
673
{
674
        u8 *p = object;
675
        u8 *endobject = object + s->objsize;
676
 
677
        if (s->flags & SLAB_RED_ZONE) {
678
                unsigned int red =
679
                        active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
680
 
681
                if (!check_bytes_and_report(s, page, object, "Redzone",
682
                        endobject, red, s->inuse - s->objsize))
683
                        return 0;
684
        } else {
685
                if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
686
                        check_bytes_and_report(s, page, p, "Alignment padding", endobject,
687
                                POISON_INUSE, s->inuse - s->objsize);
688
        }
689
 
690
        if (s->flags & SLAB_POISON) {
691
                if (!active && (s->flags & __OBJECT_POISON) &&
692
                        (!check_bytes_and_report(s, page, p, "Poison", p,
693
                                        POISON_FREE, s->objsize - 1) ||
694
                         !check_bytes_and_report(s, page, p, "Poison",
695
                                p + s->objsize -1, POISON_END, 1)))
696
                        return 0;
697
                /*
698
                 * check_pad_bytes cleans up on its own.
699
                 */
700
                check_pad_bytes(s, page, p);
701
        }
702
 
703
        if (!s->offset && active)
704
                /*
705
                 * Object and freepointer overlap. Cannot check
706
                 * freepointer while object is allocated.
707
                 */
708
                return 1;
709
 
710
        /* Check free pointer validity */
711
        if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
712
                object_err(s, page, p, "Freepointer corrupt");
713
                /*
714
                 * No choice but to zap it and thus loose the remainder
715
                 * of the free objects in this slab. May cause
716
                 * another error because the object count is now wrong.
717
                 */
718
                set_freepointer(s, p, NULL);
719
                return 0;
720
        }
721
        return 1;
722
}
723
 
724
static int check_slab(struct kmem_cache *s, struct page *page)
725
{
726
        VM_BUG_ON(!irqs_disabled());
727
 
728
        if (!PageSlab(page)) {
729
                slab_err(s, page, "Not a valid slab page");
730
                return 0;
731
        }
732
        if (page->inuse > s->objects) {
733
                slab_err(s, page, "inuse %u > max %u",
734
                        s->name, page->inuse, s->objects);
735
                return 0;
736
        }
737
        /* Slab_pad_check fixes things up after itself */
738
        slab_pad_check(s, page);
739
        return 1;
740
}
741
 
742
/*
743
 * Determine if a certain object on a page is on the freelist. Must hold the
744
 * slab lock to guarantee that the chains are in a consistent state.
745
 */
746
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
747
{
748
        int nr = 0;
749
        void *fp = page->freelist;
750
        void *object = NULL;
751
 
752
        while (fp && nr <= s->objects) {
753
                if (fp == search)
754
                        return 1;
755
                if (!check_valid_pointer(s, page, fp)) {
756
                        if (object) {
757
                                object_err(s, page, object,
758
                                        "Freechain corrupt");
759
                                set_freepointer(s, object, NULL);
760
                                break;
761
                        } else {
762
                                slab_err(s, page, "Freepointer corrupt");
763
                                page->freelist = NULL;
764
                                page->inuse = s->objects;
765
                                slab_fix(s, "Freelist cleared");
766
                                return 0;
767
                        }
768
                        break;
769
                }
770
                object = fp;
771
                fp = get_freepointer(s, object);
772
                nr++;
773
        }
774
 
775
        if (page->inuse != s->objects - nr) {
776
                slab_err(s, page, "Wrong object count. Counter is %d but "
777
                        "counted were %d", page->inuse, s->objects - nr);
778
                page->inuse = s->objects - nr;
779
                slab_fix(s, "Object count adjusted.");
780
        }
781
        return search == NULL;
782
}
783
 
784
static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
785
{
786
        if (s->flags & SLAB_TRACE) {
787
                printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
788
                        s->name,
789
                        alloc ? "alloc" : "free",
790
                        object, page->inuse,
791
                        page->freelist);
792
 
793
                if (!alloc)
794
                        print_section("Object", (void *)object, s->objsize);
795
 
796
                dump_stack();
797
        }
798
}
799
 
800
/*
801
 * Tracking of fully allocated slabs for debugging purposes.
802
 */
803
static void add_full(struct kmem_cache_node *n, struct page *page)
804
{
805
        spin_lock(&n->list_lock);
806
        list_add(&page->lru, &n->full);
807
        spin_unlock(&n->list_lock);
808
}
809
 
810
static void remove_full(struct kmem_cache *s, struct page *page)
811
{
812
        struct kmem_cache_node *n;
813
 
814
        if (!(s->flags & SLAB_STORE_USER))
815
                return;
816
 
817
        n = get_node(s, page_to_nid(page));
818
 
819
        spin_lock(&n->list_lock);
820
        list_del(&page->lru);
821
        spin_unlock(&n->list_lock);
822
}
823
 
824
static void setup_object_debug(struct kmem_cache *s, struct page *page,
825
                                                                void *object)
826
{
827
        if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
828
                return;
829
 
830
        init_object(s, object, 0);
831
        init_tracking(s, object);
832
}
833
 
834
static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
835
                                                void *object, void *addr)
836
{
837
        if (!check_slab(s, page))
838
                goto bad;
839
 
840
        if (object && !on_freelist(s, page, object)) {
841
                object_err(s, page, object, "Object already allocated");
842
                goto bad;
843
        }
844
 
845
        if (!check_valid_pointer(s, page, object)) {
846
                object_err(s, page, object, "Freelist Pointer check fails");
847
                goto bad;
848
        }
849
 
850
        if (object && !check_object(s, page, object, 0))
851
                goto bad;
852
 
853
        /* Success perform special debug activities for allocs */
854
        if (s->flags & SLAB_STORE_USER)
855
                set_track(s, object, TRACK_ALLOC, addr);
856
        trace(s, page, object, 1);
857
        init_object(s, object, 1);
858
        return 1;
859
 
860
bad:
861
        if (PageSlab(page)) {
862
                /*
863
                 * If this is a slab page then lets do the best we can
864
                 * to avoid issues in the future. Marking all objects
865
                 * as used avoids touching the remaining objects.
866
                 */
867
                slab_fix(s, "Marking all objects used");
868
                page->inuse = s->objects;
869
                page->freelist = NULL;
870
        }
871
        return 0;
872
}
873
 
874
static int free_debug_processing(struct kmem_cache *s, struct page *page,
875
                                                void *object, void *addr)
876
{
877
        if (!check_slab(s, page))
878
                goto fail;
879
 
880
        if (!check_valid_pointer(s, page, object)) {
881
                slab_err(s, page, "Invalid object pointer 0x%p", object);
882
                goto fail;
883
        }
884
 
885
        if (on_freelist(s, page, object)) {
886
                object_err(s, page, object, "Object already free");
887
                goto fail;
888
        }
889
 
890
        if (!check_object(s, page, object, 1))
891
                return 0;
892
 
893
        if (unlikely(s != page->slab)) {
894
                if (!PageSlab(page))
895
                        slab_err(s, page, "Attempt to free object(0x%p) "
896
                                "outside of slab", object);
897
                else
898
                if (!page->slab) {
899
                        printk(KERN_ERR
900
                                "SLUB <none>: no slab for object 0x%p.\n",
901
                                                object);
902
                        dump_stack();
903
                }
904
                else
905
                        object_err(s, page, object,
906
                                        "page slab pointer corrupt.");
907
                goto fail;
908
        }
909
 
910
        /* Special debug activities for freeing objects */
911
        if (!SlabFrozen(page) && !page->freelist)
912
                remove_full(s, page);
913
        if (s->flags & SLAB_STORE_USER)
914
                set_track(s, object, TRACK_FREE, addr);
915
        trace(s, page, object, 0);
916
        init_object(s, object, 0);
917
        return 1;
918
 
919
fail:
920
        slab_fix(s, "Object at 0x%p not freed", object);
921
        return 0;
922
}
923
 
924
static int __init setup_slub_debug(char *str)
925
{
926
        slub_debug = DEBUG_DEFAULT_FLAGS;
927
        if (*str++ != '=' || !*str)
928
                /*
929
                 * No options specified. Switch on full debugging.
930
                 */
931
                goto out;
932
 
933
        if (*str == ',')
934
                /*
935
                 * No options but restriction on slabs. This means full
936
                 * debugging for slabs matching a pattern.
937
                 */
938
                goto check_slabs;
939
 
940
        slub_debug = 0;
941
        if (*str == '-')
942
                /*
943
                 * Switch off all debugging measures.
944
                 */
945
                goto out;
946
 
947
        /*
948
         * Determine which debug features should be switched on
949
         */
950
        for ( ;*str && *str != ','; str++) {
951
                switch (tolower(*str)) {
952
                case 'f':
953
                        slub_debug |= SLAB_DEBUG_FREE;
954
                        break;
955
                case 'z':
956
                        slub_debug |= SLAB_RED_ZONE;
957
                        break;
958
                case 'p':
959
                        slub_debug |= SLAB_POISON;
960
                        break;
961
                case 'u':
962
                        slub_debug |= SLAB_STORE_USER;
963
                        break;
964
                case 't':
965
                        slub_debug |= SLAB_TRACE;
966
                        break;
967
                default:
968
                        printk(KERN_ERR "slub_debug option '%c' "
969
                                "unknown. skipped\n",*str);
970
                }
971
        }
972
 
973
check_slabs:
974
        if (*str == ',')
975
                slub_debug_slabs = str + 1;
976
out:
977
        return 1;
978
}
979
 
980
__setup("slub_debug", setup_slub_debug);
981
 
982
static unsigned long kmem_cache_flags(unsigned long objsize,
983
        unsigned long flags, const char *name,
984
        void (*ctor)(struct kmem_cache *, void *))
985
{
986
        /*
987
         * The page->offset field is only 16 bit wide. This is an offset
988
         * in units of words from the beginning of an object. If the slab
989
         * size is bigger then we cannot move the free pointer behind the
990
         * object anymore.
991
         *
992
         * On 32 bit platforms the limit is 256k. On 64bit platforms
993
         * the limit is 512k.
994
         *
995
         * Debugging or ctor may create a need to move the free
996
         * pointer. Fail if this happens.
997
         */
998
        if (objsize >= 65535 * sizeof(void *)) {
999
                BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
1000
                                SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
1001
                BUG_ON(ctor);
1002
        } else {
1003
                /*
1004
                 * Enable debugging if selected on the kernel commandline.
1005
                 */
1006
                if (slub_debug && (!slub_debug_slabs ||
1007
                    strncmp(slub_debug_slabs, name,
1008
                        strlen(slub_debug_slabs)) == 0))
1009
                                flags |= slub_debug;
1010
        }
1011
 
1012
        return flags;
1013
}
1014
#else
1015
static inline void setup_object_debug(struct kmem_cache *s,
1016
                        struct page *page, void *object) {}
1017
 
1018
static inline int alloc_debug_processing(struct kmem_cache *s,
1019
        struct page *page, void *object, void *addr) { return 0; }
1020
 
1021
static inline int free_debug_processing(struct kmem_cache *s,
1022
        struct page *page, void *object, void *addr) { return 0; }
1023
 
1024
static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1025
                        { return 1; }
1026
static inline int check_object(struct kmem_cache *s, struct page *page,
1027
                        void *object, int active) { return 1; }
1028
static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1029
static inline unsigned long kmem_cache_flags(unsigned long objsize,
1030
        unsigned long flags, const char *name,
1031
        void (*ctor)(struct kmem_cache *, void *))
1032
{
1033
        return flags;
1034
}
1035
#define slub_debug 0
1036
#endif
1037
/*
1038
 * Slab allocation and freeing
1039
 */
1040
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1041
{
1042
        struct page * page;
1043
        int pages = 1 << s->order;
1044
 
1045
        if (s->order)
1046
                flags |= __GFP_COMP;
1047
 
1048
        if (s->flags & SLAB_CACHE_DMA)
1049
                flags |= SLUB_DMA;
1050
 
1051
        if (s->flags & SLAB_RECLAIM_ACCOUNT)
1052
                flags |= __GFP_RECLAIMABLE;
1053
 
1054
        if (node == -1)
1055
                page = alloc_pages(flags, s->order);
1056
        else
1057
                page = alloc_pages_node(node, flags, s->order);
1058
 
1059
        if (!page)
1060
                return NULL;
1061
 
1062
        mod_zone_page_state(page_zone(page),
1063
                (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1064
                NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1065
                pages);
1066
 
1067
        return page;
1068
}
1069
 
1070
static void setup_object(struct kmem_cache *s, struct page *page,
1071
                                void *object)
1072
{
1073
        setup_object_debug(s, page, object);
1074
        if (unlikely(s->ctor))
1075
                s->ctor(s, object);
1076
}
1077
 
1078
static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1079
{
1080
        struct page *page;
1081
        struct kmem_cache_node *n;
1082
        void *start;
1083
        void *last;
1084
        void *p;
1085
 
1086
        BUG_ON(flags & GFP_SLAB_BUG_MASK);
1087
 
1088
        page = allocate_slab(s,
1089
                flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1090
        if (!page)
1091
                goto out;
1092
 
1093
        n = get_node(s, page_to_nid(page));
1094
        if (n)
1095
                atomic_long_inc(&n->nr_slabs);
1096
        page->slab = s;
1097
        page->flags |= 1 << PG_slab;
1098
        if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1099
                        SLAB_STORE_USER | SLAB_TRACE))
1100
                SetSlabDebug(page);
1101
 
1102
        start = page_address(page);
1103
 
1104
        if (unlikely(s->flags & SLAB_POISON))
1105
                memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1106
 
1107
        last = start;
1108
        for_each_object(p, s, start) {
1109
                setup_object(s, page, last);
1110
                set_freepointer(s, last, p);
1111
                last = p;
1112
        }
1113
        setup_object(s, page, last);
1114
        set_freepointer(s, last, NULL);
1115
 
1116
        page->freelist = start;
1117
        page->inuse = 0;
1118
out:
1119
        return page;
1120
}
1121
 
1122
static void __free_slab(struct kmem_cache *s, struct page *page)
1123
{
1124
        int pages = 1 << s->order;
1125
 
1126
        if (unlikely(SlabDebug(page))) {
1127
                void *p;
1128
 
1129
                slab_pad_check(s, page);
1130
                for_each_object(p, s, page_address(page))
1131
                        check_object(s, page, p, 0);
1132
                ClearSlabDebug(page);
1133
        }
1134
 
1135
        mod_zone_page_state(page_zone(page),
1136
                (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1137
                NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1138
                - pages);
1139
 
1140
        __free_pages(page, s->order);
1141
}
1142
 
1143
static void rcu_free_slab(struct rcu_head *h)
1144
{
1145
        struct page *page;
1146
 
1147
        page = container_of((struct list_head *)h, struct page, lru);
1148
        __free_slab(page->slab, page);
1149
}
1150
 
1151
static void free_slab(struct kmem_cache *s, struct page *page)
1152
{
1153
        if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1154
                /*
1155
                 * RCU free overloads the RCU head over the LRU
1156
                 */
1157
                struct rcu_head *head = (void *)&page->lru;
1158
 
1159
                call_rcu(head, rcu_free_slab);
1160
        } else
1161
                __free_slab(s, page);
1162
}
1163
 
1164
static void discard_slab(struct kmem_cache *s, struct page *page)
1165
{
1166
        struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1167
 
1168
        atomic_long_dec(&n->nr_slabs);
1169
        reset_page_mapcount(page);
1170
        __ClearPageSlab(page);
1171
        free_slab(s, page);
1172
}
1173
 
1174
/*
1175
 * Per slab locking using the pagelock
1176
 */
1177
static __always_inline void slab_lock(struct page *page)
1178
{
1179
        bit_spin_lock(PG_locked, &page->flags);
1180
}
1181
 
1182
static __always_inline void slab_unlock(struct page *page)
1183
{
1184
        bit_spin_unlock(PG_locked, &page->flags);
1185
}
1186
 
1187
static __always_inline int slab_trylock(struct page *page)
1188
{
1189
        int rc = 1;
1190
 
1191
        rc = bit_spin_trylock(PG_locked, &page->flags);
1192
        return rc;
1193
}
1194
 
1195
/*
1196
 * Management of partially allocated slabs
1197
 */
1198
static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
1199
{
1200
        spin_lock(&n->list_lock);
1201
        n->nr_partial++;
1202
        list_add_tail(&page->lru, &n->partial);
1203
        spin_unlock(&n->list_lock);
1204
}
1205
 
1206
static void add_partial(struct kmem_cache_node *n, struct page *page)
1207
{
1208
        spin_lock(&n->list_lock);
1209
        n->nr_partial++;
1210
        list_add(&page->lru, &n->partial);
1211
        spin_unlock(&n->list_lock);
1212
}
1213
 
1214
static void remove_partial(struct kmem_cache *s,
1215
                                                struct page *page)
1216
{
1217
        struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1218
 
1219
        spin_lock(&n->list_lock);
1220
        list_del(&page->lru);
1221
        n->nr_partial--;
1222
        spin_unlock(&n->list_lock);
1223
}
1224
 
1225
/*
1226
 * Lock slab and remove from the partial list.
1227
 *
1228
 * Must hold list_lock.
1229
 */
1230
static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
1231
{
1232
        if (slab_trylock(page)) {
1233
                list_del(&page->lru);
1234
                n->nr_partial--;
1235
                SetSlabFrozen(page);
1236
                return 1;
1237
        }
1238
        return 0;
1239
}
1240
 
1241
/*
1242
 * Try to allocate a partial slab from a specific node.
1243
 */
1244
static struct page *get_partial_node(struct kmem_cache_node *n)
1245
{
1246
        struct page *page;
1247
 
1248
        /*
1249
         * Racy check. If we mistakenly see no partial slabs then we
1250
         * just allocate an empty slab. If we mistakenly try to get a
1251
         * partial slab and there is none available then get_partials()
1252
         * will return NULL.
1253
         */
1254
        if (!n || !n->nr_partial)
1255
                return NULL;
1256
 
1257
        spin_lock(&n->list_lock);
1258
        list_for_each_entry(page, &n->partial, lru)
1259
                if (lock_and_freeze_slab(n, page))
1260
                        goto out;
1261
        page = NULL;
1262
out:
1263
        spin_unlock(&n->list_lock);
1264
        return page;
1265
}
1266
 
1267
/*
1268
 * Get a page from somewhere. Search in increasing NUMA distances.
1269
 */
1270
static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1271
{
1272
#ifdef CONFIG_NUMA
1273
        struct zonelist *zonelist;
1274
        struct zone **z;
1275
        struct page *page;
1276
 
1277
        /*
1278
         * The defrag ratio allows a configuration of the tradeoffs between
1279
         * inter node defragmentation and node local allocations. A lower
1280
         * defrag_ratio increases the tendency to do local allocations
1281
         * instead of attempting to obtain partial slabs from other nodes.
1282
         *
1283
         * If the defrag_ratio is set to 0 then kmalloc() always
1284
         * returns node local objects. If the ratio is higher then kmalloc()
1285
         * may return off node objects because partial slabs are obtained
1286
         * from other nodes and filled up.
1287
         *
1288
         * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1289
         * defrag_ratio = 1000) then every (well almost) allocation will
1290
         * first attempt to defrag slab caches on other nodes. This means
1291
         * scanning over all nodes to look for partial slabs which may be
1292
         * expensive if we do it every time we are trying to find a slab
1293
         * with available objects.
1294
         */
1295
        if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
1296
                return NULL;
1297
 
1298
        zonelist = &NODE_DATA(slab_node(current->mempolicy))
1299
                                        ->node_zonelists[gfp_zone(flags)];
1300
        for (z = zonelist->zones; *z; z++) {
1301
                struct kmem_cache_node *n;
1302
 
1303
                n = get_node(s, zone_to_nid(*z));
1304
 
1305
                if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1306
                                n->nr_partial > MIN_PARTIAL) {
1307
                        page = get_partial_node(n);
1308
                        if (page)
1309
                                return page;
1310
                }
1311
        }
1312
#endif
1313
        return NULL;
1314
}
1315
 
1316
/*
1317
 * Get a partial page, lock it and return it.
1318
 */
1319
static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1320
{
1321
        struct page *page;
1322
        int searchnode = (node == -1) ? numa_node_id() : node;
1323
 
1324
        page = get_partial_node(get_node(s, searchnode));
1325
        if (page || (flags & __GFP_THISNODE))
1326
                return page;
1327
 
1328
        return get_any_partial(s, flags);
1329
}
1330
 
1331
/*
1332
 * Move a page back to the lists.
1333
 *
1334
 * Must be called with the slab lock held.
1335
 *
1336
 * On exit the slab lock will have been dropped.
1337
 */
1338
static void unfreeze_slab(struct kmem_cache *s, struct page *page)
1339
{
1340
        struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1341
 
1342
        ClearSlabFrozen(page);
1343
        if (page->inuse) {
1344
 
1345
                if (page->freelist)
1346
                        add_partial(n, page);
1347
                else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1348
                        add_full(n, page);
1349
                slab_unlock(page);
1350
 
1351
        } else {
1352
                if (n->nr_partial < MIN_PARTIAL) {
1353
                        /*
1354
                         * Adding an empty slab to the partial slabs in order
1355
                         * to avoid page allocator overhead. This slab needs
1356
                         * to come after the other slabs with objects in
1357
                         * order to fill them up. That way the size of the
1358
                         * partial list stays small. kmem_cache_shrink can
1359
                         * reclaim empty slabs from the partial list.
1360
                         */
1361
                        add_partial_tail(n, page);
1362
                        slab_unlock(page);
1363
                } else {
1364
                        slab_unlock(page);
1365
                        discard_slab(s, page);
1366
                }
1367
        }
1368
}
1369
 
1370
/*
1371
 * Remove the cpu slab
1372
 */
1373
static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1374
{
1375
        struct page *page = c->page;
1376
        /*
1377
         * Merge cpu freelist into freelist. Typically we get here
1378
         * because both freelists are empty. So this is unlikely
1379
         * to occur.
1380
         */
1381
        while (unlikely(c->freelist)) {
1382
                void **object;
1383
 
1384
                /* Retrieve object from cpu_freelist */
1385
                object = c->freelist;
1386
                c->freelist = c->freelist[c->offset];
1387
 
1388
                /* And put onto the regular freelist */
1389
                object[c->offset] = page->freelist;
1390
                page->freelist = object;
1391
                page->inuse--;
1392
        }
1393
        c->page = NULL;
1394
        unfreeze_slab(s, page);
1395
}
1396
 
1397
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1398
{
1399
        slab_lock(c->page);
1400
        deactivate_slab(s, c);
1401
}
1402
 
1403
/*
1404
 * Flush cpu slab.
1405
 * Called from IPI handler with interrupts disabled.
1406
 */
1407
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1408
{
1409
        struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1410
 
1411
        if (likely(c && c->page))
1412
                flush_slab(s, c);
1413
}
1414
 
1415
static void flush_cpu_slab(void *d)
1416
{
1417
        struct kmem_cache *s = d;
1418
 
1419
        __flush_cpu_slab(s, smp_processor_id());
1420
}
1421
 
1422
static void flush_all(struct kmem_cache *s)
1423
{
1424
#ifdef CONFIG_SMP
1425
        on_each_cpu(flush_cpu_slab, s, 1, 1);
1426
#else
1427
        unsigned long flags;
1428
 
1429
        local_irq_save(flags);
1430
        flush_cpu_slab(s);
1431
        local_irq_restore(flags);
1432
#endif
1433
}
1434
 
1435
/*
1436
 * Check if the objects in a per cpu structure fit numa
1437
 * locality expectations.
1438
 */
1439
static inline int node_match(struct kmem_cache_cpu *c, int node)
1440
{
1441
#ifdef CONFIG_NUMA
1442
        if (node != -1 && c->node != node)
1443
                return 0;
1444
#endif
1445
        return 1;
1446
}
1447
 
1448
/*
1449
 * Slow path. The lockless freelist is empty or we need to perform
1450
 * debugging duties.
1451
 *
1452
 * Interrupts are disabled.
1453
 *
1454
 * Processing is still very fast if new objects have been freed to the
1455
 * regular freelist. In that case we simply take over the regular freelist
1456
 * as the lockless freelist and zap the regular freelist.
1457
 *
1458
 * If that is not working then we fall back to the partial lists. We take the
1459
 * first element of the freelist as the object to allocate now and move the
1460
 * rest of the freelist to the lockless freelist.
1461
 *
1462
 * And if we were unable to get a new slab from the partial slab lists then
1463
 * we need to allocate a new slab. This is slowest path since we may sleep.
1464
 */
1465
static void *__slab_alloc(struct kmem_cache *s,
1466
                gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1467
{
1468
        void **object;
1469
        struct page *new;
1470
 
1471
        if (!c->page)
1472
                goto new_slab;
1473
 
1474
        slab_lock(c->page);
1475
        if (unlikely(!node_match(c, node)))
1476
                goto another_slab;
1477
load_freelist:
1478
        object = c->page->freelist;
1479
        if (unlikely(!object))
1480
                goto another_slab;
1481
        if (unlikely(SlabDebug(c->page)))
1482
                goto debug;
1483
 
1484
        object = c->page->freelist;
1485
        c->freelist = object[c->offset];
1486
        c->page->inuse = s->objects;
1487
        c->page->freelist = NULL;
1488
        c->node = page_to_nid(c->page);
1489
        slab_unlock(c->page);
1490
        return object;
1491
 
1492
another_slab:
1493
        deactivate_slab(s, c);
1494
 
1495
new_slab:
1496
        new = get_partial(s, gfpflags, node);
1497
        if (new) {
1498
                c->page = new;
1499
                goto load_freelist;
1500
        }
1501
 
1502
        if (gfpflags & __GFP_WAIT)
1503
                local_irq_enable();
1504
 
1505
        new = new_slab(s, gfpflags, node);
1506
 
1507
        if (gfpflags & __GFP_WAIT)
1508
                local_irq_disable();
1509
 
1510
        if (new) {
1511
                c = get_cpu_slab(s, smp_processor_id());
1512
                if (c->page)
1513
                        flush_slab(s, c);
1514
                slab_lock(new);
1515
                SetSlabFrozen(new);
1516
                c->page = new;
1517
                goto load_freelist;
1518
        }
1519
        return NULL;
1520
debug:
1521
        object = c->page->freelist;
1522
        if (!alloc_debug_processing(s, c->page, object, addr))
1523
                goto another_slab;
1524
 
1525
        c->page->inuse++;
1526
        c->page->freelist = object[c->offset];
1527
        c->node = -1;
1528
        slab_unlock(c->page);
1529
        return object;
1530
}
1531
 
1532
/*
1533
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1534
 * have the fastpath folded into their functions. So no function call
1535
 * overhead for requests that can be satisfied on the fastpath.
1536
 *
1537
 * The fastpath works by first checking if the lockless freelist can be used.
1538
 * If not then __slab_alloc is called for slow processing.
1539
 *
1540
 * Otherwise we can simply pick the next object from the lockless free list.
1541
 */
1542
static void __always_inline *slab_alloc(struct kmem_cache *s,
1543
                gfp_t gfpflags, int node, void *addr)
1544
{
1545
        void **object;
1546
        unsigned long flags;
1547
        struct kmem_cache_cpu *c;
1548
 
1549
        local_irq_save(flags);
1550
        c = get_cpu_slab(s, smp_processor_id());
1551
        if (unlikely(!c->freelist || !node_match(c, node)))
1552
 
1553
                object = __slab_alloc(s, gfpflags, node, addr, c);
1554
 
1555
        else {
1556
                object = c->freelist;
1557
                c->freelist = object[c->offset];
1558
        }
1559
        local_irq_restore(flags);
1560
 
1561
        if (unlikely((gfpflags & __GFP_ZERO) && object))
1562
                memset(object, 0, c->objsize);
1563
 
1564
        return object;
1565
}
1566
 
1567
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1568
{
1569
        return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1570
}
1571
EXPORT_SYMBOL(kmem_cache_alloc);
1572
 
1573
#ifdef CONFIG_NUMA
1574
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1575
{
1576
        return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1577
}
1578
EXPORT_SYMBOL(kmem_cache_alloc_node);
1579
#endif
1580
 
1581
/*
1582
 * Slow patch handling. This may still be called frequently since objects
1583
 * have a longer lifetime than the cpu slabs in most processing loads.
1584
 *
1585
 * So we still attempt to reduce cache line usage. Just take the slab
1586
 * lock and free the item. If there is no additional partial page
1587
 * handling required then we can return immediately.
1588
 */
1589
static void __slab_free(struct kmem_cache *s, struct page *page,
1590
                                void *x, void *addr, unsigned int offset)
1591
{
1592
        void *prior;
1593
        void **object = (void *)x;
1594
 
1595
        slab_lock(page);
1596
 
1597
        if (unlikely(SlabDebug(page)))
1598
                goto debug;
1599
checks_ok:
1600
        prior = object[offset] = page->freelist;
1601
        page->freelist = object;
1602
        page->inuse--;
1603
 
1604
        if (unlikely(SlabFrozen(page)))
1605
                goto out_unlock;
1606
 
1607
        if (unlikely(!page->inuse))
1608
                goto slab_empty;
1609
 
1610
        /*
1611
         * Objects left in the slab. If it
1612
         * was not on the partial list before
1613
         * then add it.
1614
         */
1615
        if (unlikely(!prior))
1616
                add_partial_tail(get_node(s, page_to_nid(page)), page);
1617
 
1618
out_unlock:
1619
        slab_unlock(page);
1620
        return;
1621
 
1622
slab_empty:
1623
        if (prior)
1624
                /*
1625
                 * Slab still on the partial list.
1626
                 */
1627
                remove_partial(s, page);
1628
 
1629
        slab_unlock(page);
1630
        discard_slab(s, page);
1631
        return;
1632
 
1633
debug:
1634
        if (!free_debug_processing(s, page, x, addr))
1635
                goto out_unlock;
1636
        goto checks_ok;
1637
}
1638
 
1639
/*
1640
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1641
 * can perform fastpath freeing without additional function calls.
1642
 *
1643
 * The fastpath is only possible if we are freeing to the current cpu slab
1644
 * of this processor. This typically the case if we have just allocated
1645
 * the item before.
1646
 *
1647
 * If fastpath is not possible then fall back to __slab_free where we deal
1648
 * with all sorts of special processing.
1649
 */
1650
static void __always_inline slab_free(struct kmem_cache *s,
1651
                        struct page *page, void *x, void *addr)
1652
{
1653
        void **object = (void *)x;
1654
        unsigned long flags;
1655
        struct kmem_cache_cpu *c;
1656
 
1657
        local_irq_save(flags);
1658
        debug_check_no_locks_freed(object, s->objsize);
1659
        c = get_cpu_slab(s, smp_processor_id());
1660
        if (likely(page == c->page && c->node >= 0)) {
1661
                object[c->offset] = c->freelist;
1662
                c->freelist = object;
1663
        } else
1664
                __slab_free(s, page, x, addr, c->offset);
1665
 
1666
        local_irq_restore(flags);
1667
}
1668
 
1669
void kmem_cache_free(struct kmem_cache *s, void *x)
1670
{
1671
        struct page *page;
1672
 
1673
        page = virt_to_head_page(x);
1674
 
1675
        slab_free(s, page, x, __builtin_return_address(0));
1676
}
1677
EXPORT_SYMBOL(kmem_cache_free);
1678
 
1679
/* Figure out on which slab object the object resides */
1680
static struct page *get_object_page(const void *x)
1681
{
1682
        struct page *page = virt_to_head_page(x);
1683
 
1684
        if (!PageSlab(page))
1685
                return NULL;
1686
 
1687
        return page;
1688
}
1689
 
1690
/*
1691
 * Object placement in a slab is made very easy because we always start at
1692
 * offset 0. If we tune the size of the object to the alignment then we can
1693
 * get the required alignment by putting one properly sized object after
1694
 * another.
1695
 *
1696
 * Notice that the allocation order determines the sizes of the per cpu
1697
 * caches. Each processor has always one slab available for allocations.
1698
 * Increasing the allocation order reduces the number of times that slabs
1699
 * must be moved on and off the partial lists and is therefore a factor in
1700
 * locking overhead.
1701
 */
1702
 
1703
/*
1704
 * Mininum / Maximum order of slab pages. This influences locking overhead
1705
 * and slab fragmentation. A higher order reduces the number of partial slabs
1706
 * and increases the number of allocations possible without having to
1707
 * take the list_lock.
1708
 */
1709
static int slub_min_order;
1710
static int slub_max_order = DEFAULT_MAX_ORDER;
1711
static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1712
 
1713
/*
1714
 * Merge control. If this is set then no merging of slab caches will occur.
1715
 * (Could be removed. This was introduced to pacify the merge skeptics.)
1716
 */
1717
static int slub_nomerge;
1718
 
1719
/*
1720
 * Calculate the order of allocation given an slab object size.
1721
 *
1722
 * The order of allocation has significant impact on performance and other
1723
 * system components. Generally order 0 allocations should be preferred since
1724
 * order 0 does not cause fragmentation in the page allocator. Larger objects
1725
 * be problematic to put into order 0 slabs because there may be too much
1726
 * unused space left. We go to a higher order if more than 1/8th of the slab
1727
 * would be wasted.
1728
 *
1729
 * In order to reach satisfactory performance we must ensure that a minimum
1730
 * number of objects is in one slab. Otherwise we may generate too much
1731
 * activity on the partial lists which requires taking the list_lock. This is
1732
 * less a concern for large slabs though which are rarely used.
1733
 *
1734
 * slub_max_order specifies the order where we begin to stop considering the
1735
 * number of objects in a slab as critical. If we reach slub_max_order then
1736
 * we try to keep the page order as low as possible. So we accept more waste
1737
 * of space in favor of a small page order.
1738
 *
1739
 * Higher order allocations also allow the placement of more objects in a
1740
 * slab and thereby reduce object handling overhead. If the user has
1741
 * requested a higher mininum order then we start with that one instead of
1742
 * the smallest order which will fit the object.
1743
 */
1744
static inline int slab_order(int size, int min_objects,
1745
                                int max_order, int fract_leftover)
1746
{
1747
        int order;
1748
        int rem;
1749
        int min_order = slub_min_order;
1750
 
1751
        for (order = max(min_order,
1752
                                fls(min_objects * size - 1) - PAGE_SHIFT);
1753
                        order <= max_order; order++) {
1754
 
1755
                unsigned long slab_size = PAGE_SIZE << order;
1756
 
1757
                if (slab_size < min_objects * size)
1758
                        continue;
1759
 
1760
                rem = slab_size % size;
1761
 
1762
                if (rem <= slab_size / fract_leftover)
1763
                        break;
1764
 
1765
        }
1766
 
1767
        return order;
1768
}
1769
 
1770
static inline int calculate_order(int size)
1771
{
1772
        int order;
1773
        int min_objects;
1774
        int fraction;
1775
 
1776
        /*
1777
         * Attempt to find best configuration for a slab. This
1778
         * works by first attempting to generate a layout with
1779
         * the best configuration and backing off gradually.
1780
         *
1781
         * First we reduce the acceptable waste in a slab. Then
1782
         * we reduce the minimum objects required in a slab.
1783
         */
1784
        min_objects = slub_min_objects;
1785
        while (min_objects > 1) {
1786
                fraction = 8;
1787
                while (fraction >= 4) {
1788
                        order = slab_order(size, min_objects,
1789
                                                slub_max_order, fraction);
1790
                        if (order <= slub_max_order)
1791
                                return order;
1792
                        fraction /= 2;
1793
                }
1794
                min_objects /= 2;
1795
        }
1796
 
1797
        /*
1798
         * We were unable to place multiple objects in a slab. Now
1799
         * lets see if we can place a single object there.
1800
         */
1801
        order = slab_order(size, 1, slub_max_order, 1);
1802
        if (order <= slub_max_order)
1803
                return order;
1804
 
1805
        /*
1806
         * Doh this slab cannot be placed using slub_max_order.
1807
         */
1808
        order = slab_order(size, 1, MAX_ORDER, 1);
1809
        if (order <= MAX_ORDER)
1810
                return order;
1811
        return -ENOSYS;
1812
}
1813
 
1814
/*
1815
 * Figure out what the alignment of the objects will be.
1816
 */
1817
static unsigned long calculate_alignment(unsigned long flags,
1818
                unsigned long align, unsigned long size)
1819
{
1820
        /*
1821
         * If the user wants hardware cache aligned objects then
1822
         * follow that suggestion if the object is sufficiently
1823
         * large.
1824
         *
1825
         * The hardware cache alignment cannot override the
1826
         * specified alignment though. If that is greater
1827
         * then use it.
1828
         */
1829
        if ((flags & SLAB_HWCACHE_ALIGN) &&
1830
                        size > cache_line_size() / 2)
1831
                return max_t(unsigned long, align, cache_line_size());
1832
 
1833
        if (align < ARCH_SLAB_MINALIGN)
1834
                return ARCH_SLAB_MINALIGN;
1835
 
1836
        return ALIGN(align, sizeof(void *));
1837
}
1838
 
1839
static void init_kmem_cache_cpu(struct kmem_cache *s,
1840
                        struct kmem_cache_cpu *c)
1841
{
1842
        c->page = NULL;
1843
        c->freelist = NULL;
1844
        c->node = 0;
1845
        c->offset = s->offset / sizeof(void *);
1846
        c->objsize = s->objsize;
1847
}
1848
 
1849
static void init_kmem_cache_node(struct kmem_cache_node *n)
1850
{
1851
        n->nr_partial = 0;
1852
        atomic_long_set(&n->nr_slabs, 0);
1853
        spin_lock_init(&n->list_lock);
1854
        INIT_LIST_HEAD(&n->partial);
1855
#ifdef CONFIG_SLUB_DEBUG
1856
        INIT_LIST_HEAD(&n->full);
1857
#endif
1858
}
1859
 
1860
#ifdef CONFIG_SMP
1861
/*
1862
 * Per cpu array for per cpu structures.
1863
 *
1864
 * The per cpu array places all kmem_cache_cpu structures from one processor
1865
 * close together meaning that it becomes possible that multiple per cpu
1866
 * structures are contained in one cacheline. This may be particularly
1867
 * beneficial for the kmalloc caches.
1868
 *
1869
 * A desktop system typically has around 60-80 slabs. With 100 here we are
1870
 * likely able to get per cpu structures for all caches from the array defined
1871
 * here. We must be able to cover all kmalloc caches during bootstrap.
1872
 *
1873
 * If the per cpu array is exhausted then fall back to kmalloc
1874
 * of individual cachelines. No sharing is possible then.
1875
 */
1876
#define NR_KMEM_CACHE_CPU 100
1877
 
1878
static DEFINE_PER_CPU(struct kmem_cache_cpu,
1879
                                kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1880
 
1881
static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1882
static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1883
 
1884
static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1885
                                                        int cpu, gfp_t flags)
1886
{
1887
        struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1888
 
1889
        if (c)
1890
                per_cpu(kmem_cache_cpu_free, cpu) =
1891
                                (void *)c->freelist;
1892
        else {
1893
                /* Table overflow: So allocate ourselves */
1894
                c = kmalloc_node(
1895
                        ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1896
                        flags, cpu_to_node(cpu));
1897
                if (!c)
1898
                        return NULL;
1899
        }
1900
 
1901
        init_kmem_cache_cpu(s, c);
1902
        return c;
1903
}
1904
 
1905
static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1906
{
1907
        if (c < per_cpu(kmem_cache_cpu, cpu) ||
1908
                        c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
1909
                kfree(c);
1910
                return;
1911
        }
1912
        c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
1913
        per_cpu(kmem_cache_cpu_free, cpu) = c;
1914
}
1915
 
1916
static void free_kmem_cache_cpus(struct kmem_cache *s)
1917
{
1918
        int cpu;
1919
 
1920
        for_each_online_cpu(cpu) {
1921
                struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1922
 
1923
                if (c) {
1924
                        s->cpu_slab[cpu] = NULL;
1925
                        free_kmem_cache_cpu(c, cpu);
1926
                }
1927
        }
1928
}
1929
 
1930
static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
1931
{
1932
        int cpu;
1933
 
1934
        for_each_online_cpu(cpu) {
1935
                struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1936
 
1937
                if (c)
1938
                        continue;
1939
 
1940
                c = alloc_kmem_cache_cpu(s, cpu, flags);
1941
                if (!c) {
1942
                        free_kmem_cache_cpus(s);
1943
                        return 0;
1944
                }
1945
                s->cpu_slab[cpu] = c;
1946
        }
1947
        return 1;
1948
}
1949
 
1950
/*
1951
 * Initialize the per cpu array.
1952
 */
1953
static void init_alloc_cpu_cpu(int cpu)
1954
{
1955
        int i;
1956
 
1957
        if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
1958
                return;
1959
 
1960
        for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
1961
                free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
1962
 
1963
        cpu_set(cpu, kmem_cach_cpu_free_init_once);
1964
}
1965
 
1966
static void __init init_alloc_cpu(void)
1967
{
1968
        int cpu;
1969
 
1970
        for_each_online_cpu(cpu)
1971
                init_alloc_cpu_cpu(cpu);
1972
  }
1973
 
1974
#else
1975
static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
1976
static inline void init_alloc_cpu(void) {}
1977
 
1978
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
1979
{
1980
        init_kmem_cache_cpu(s, &s->cpu_slab);
1981
        return 1;
1982
}
1983
#endif
1984
 
1985
#ifdef CONFIG_NUMA
1986
/*
1987
 * No kmalloc_node yet so do it by hand. We know that this is the first
1988
 * slab on the node for this slabcache. There are no concurrent accesses
1989
 * possible.
1990
 *
1991
 * Note that this function only works on the kmalloc_node_cache
1992
 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
1993
 * memory on a fresh node that has no slab structures yet.
1994
 */
1995
static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
1996
                                                           int node)
1997
{
1998
        struct page *page;
1999
        struct kmem_cache_node *n;
2000
 
2001
        BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2002
 
2003
        page = new_slab(kmalloc_caches, gfpflags, node);
2004
 
2005
        BUG_ON(!page);
2006
        if (page_to_nid(page) != node) {
2007
                printk(KERN_ERR "SLUB: Unable to allocate memory from "
2008
                                "node %d\n", node);
2009
                printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2010
                                "in order to be able to continue\n");
2011
        }
2012
 
2013
        n = page->freelist;
2014
        BUG_ON(!n);
2015
        page->freelist = get_freepointer(kmalloc_caches, n);
2016
        page->inuse++;
2017
        kmalloc_caches->node[node] = n;
2018
#ifdef CONFIG_SLUB_DEBUG
2019
        init_object(kmalloc_caches, n, 1);
2020
        init_tracking(kmalloc_caches, n);
2021
#endif
2022
        init_kmem_cache_node(n);
2023
        atomic_long_inc(&n->nr_slabs);
2024
        add_partial(n, page);
2025
        return n;
2026
}
2027
 
2028
static void free_kmem_cache_nodes(struct kmem_cache *s)
2029
{
2030
        int node;
2031
 
2032
        for_each_node_state(node, N_NORMAL_MEMORY) {
2033
                struct kmem_cache_node *n = s->node[node];
2034
                if (n && n != &s->local_node)
2035
                        kmem_cache_free(kmalloc_caches, n);
2036
                s->node[node] = NULL;
2037
        }
2038
}
2039
 
2040
static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2041
{
2042
        int node;
2043
        int local_node;
2044
 
2045
        if (slab_state >= UP)
2046
                local_node = page_to_nid(virt_to_page(s));
2047
        else
2048
                local_node = 0;
2049
 
2050
        for_each_node_state(node, N_NORMAL_MEMORY) {
2051
                struct kmem_cache_node *n;
2052
 
2053
                if (local_node == node)
2054
                        n = &s->local_node;
2055
                else {
2056
                        if (slab_state == DOWN) {
2057
                                n = early_kmem_cache_node_alloc(gfpflags,
2058
                                                                node);
2059
                                continue;
2060
                        }
2061
                        n = kmem_cache_alloc_node(kmalloc_caches,
2062
                                                        gfpflags, node);
2063
 
2064
                        if (!n) {
2065
                                free_kmem_cache_nodes(s);
2066
                                return 0;
2067
                        }
2068
 
2069
                }
2070
                s->node[node] = n;
2071
                init_kmem_cache_node(n);
2072
        }
2073
        return 1;
2074
}
2075
#else
2076
static void free_kmem_cache_nodes(struct kmem_cache *s)
2077
{
2078
}
2079
 
2080
static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2081
{
2082
        init_kmem_cache_node(&s->local_node);
2083
        return 1;
2084
}
2085
#endif
2086
 
2087
/*
2088
 * calculate_sizes() determines the order and the distribution of data within
2089
 * a slab object.
2090
 */
2091
static int calculate_sizes(struct kmem_cache *s)
2092
{
2093
        unsigned long flags = s->flags;
2094
        unsigned long size = s->objsize;
2095
        unsigned long align = s->align;
2096
 
2097
        /*
2098
         * Determine if we can poison the object itself. If the user of
2099
         * the slab may touch the object after free or before allocation
2100
         * then we should never poison the object itself.
2101
         */
2102
        if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2103
                        !s->ctor)
2104
                s->flags |= __OBJECT_POISON;
2105
        else
2106
                s->flags &= ~__OBJECT_POISON;
2107
 
2108
        /*
2109
         * Round up object size to the next word boundary. We can only
2110
         * place the free pointer at word boundaries and this determines
2111
         * the possible location of the free pointer.
2112
         */
2113
        size = ALIGN(size, sizeof(void *));
2114
 
2115
#ifdef CONFIG_SLUB_DEBUG
2116
        /*
2117
         * If we are Redzoning then check if there is some space between the
2118
         * end of the object and the free pointer. If not then add an
2119
         * additional word to have some bytes to store Redzone information.
2120
         */
2121
        if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2122
                size += sizeof(void *);
2123
#endif
2124
 
2125
        /*
2126
         * With that we have determined the number of bytes in actual use
2127
         * by the object. This is the potential offset to the free pointer.
2128
         */
2129
        s->inuse = size;
2130
 
2131
        if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2132
                s->ctor)) {
2133
                /*
2134
                 * Relocate free pointer after the object if it is not
2135
                 * permitted to overwrite the first word of the object on
2136
                 * kmem_cache_free.
2137
                 *
2138
                 * This is the case if we do RCU, have a constructor or
2139
                 * destructor or are poisoning the objects.
2140
                 */
2141
                s->offset = size;
2142
                size += sizeof(void *);
2143
        }
2144
 
2145
#ifdef CONFIG_SLUB_DEBUG
2146
        if (flags & SLAB_STORE_USER)
2147
                /*
2148
                 * Need to store information about allocs and frees after
2149
                 * the object.
2150
                 */
2151
                size += 2 * sizeof(struct track);
2152
 
2153
        if (flags & SLAB_RED_ZONE)
2154
                /*
2155
                 * Add some empty padding so that we can catch
2156
                 * overwrites from earlier objects rather than let
2157
                 * tracking information or the free pointer be
2158
                 * corrupted if an user writes before the start
2159
                 * of the object.
2160
                 */
2161
                size += sizeof(void *);
2162
#endif
2163
 
2164
        /*
2165
         * Determine the alignment based on various parameters that the
2166
         * user specified and the dynamic determination of cache line size
2167
         * on bootup.
2168
         */
2169
        align = calculate_alignment(flags, align, s->objsize);
2170
 
2171
        /*
2172
         * SLUB stores one object immediately after another beginning from
2173
         * offset 0. In order to align the objects we have to simply size
2174
         * each object to conform to the alignment.
2175
         */
2176
        size = ALIGN(size, align);
2177
        s->size = size;
2178
 
2179
        s->order = calculate_order(size);
2180
        if (s->order < 0)
2181
                return 0;
2182
 
2183
        /*
2184
         * Determine the number of objects per slab
2185
         */
2186
        s->objects = (PAGE_SIZE << s->order) / size;
2187
 
2188
        return !!s->objects;
2189
 
2190
}
2191
 
2192
static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2193
                const char *name, size_t size,
2194
                size_t align, unsigned long flags,
2195
                void (*ctor)(struct kmem_cache *, void *))
2196
{
2197
        memset(s, 0, kmem_size);
2198
        s->name = name;
2199
        s->ctor = ctor;
2200
        s->objsize = size;
2201
        s->align = align;
2202
        s->flags = kmem_cache_flags(size, flags, name, ctor);
2203
 
2204
        if (!calculate_sizes(s))
2205
                goto error;
2206
 
2207
        s->refcount = 1;
2208
#ifdef CONFIG_NUMA
2209
        s->defrag_ratio = 100;
2210
#endif
2211
        if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2212
                goto error;
2213
 
2214
        if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2215
                return 1;
2216
        free_kmem_cache_nodes(s);
2217
error:
2218
        if (flags & SLAB_PANIC)
2219
                panic("Cannot create slab %s size=%lu realsize=%u "
2220
                        "order=%u offset=%u flags=%lx\n",
2221
                        s->name, (unsigned long)size, s->size, s->order,
2222
                        s->offset, flags);
2223
        return 0;
2224
}
2225
 
2226
/*
2227
 * Check if a given pointer is valid
2228
 */
2229
int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2230
{
2231
        struct page * page;
2232
 
2233
        page = get_object_page(object);
2234
 
2235
        if (!page || s != page->slab)
2236
                /* No slab or wrong slab */
2237
                return 0;
2238
 
2239
        if (!check_valid_pointer(s, page, object))
2240
                return 0;
2241
 
2242
        /*
2243
         * We could also check if the object is on the slabs freelist.
2244
         * But this would be too expensive and it seems that the main
2245
         * purpose of kmem_ptr_valid is to check if the object belongs
2246
         * to a certain slab.
2247
         */
2248
        return 1;
2249
}
2250
EXPORT_SYMBOL(kmem_ptr_validate);
2251
 
2252
/*
2253
 * Determine the size of a slab object
2254
 */
2255
unsigned int kmem_cache_size(struct kmem_cache *s)
2256
{
2257
        return s->objsize;
2258
}
2259
EXPORT_SYMBOL(kmem_cache_size);
2260
 
2261
const char *kmem_cache_name(struct kmem_cache *s)
2262
{
2263
        return s->name;
2264
}
2265
EXPORT_SYMBOL(kmem_cache_name);
2266
 
2267
/*
2268
 * Attempt to free all slabs on a node. Return the number of slabs we
2269
 * were unable to free.
2270
 */
2271
static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2272
                        struct list_head *list)
2273
{
2274
        int slabs_inuse = 0;
2275
        unsigned long flags;
2276
        struct page *page, *h;
2277
 
2278
        spin_lock_irqsave(&n->list_lock, flags);
2279
        list_for_each_entry_safe(page, h, list, lru)
2280
                if (!page->inuse) {
2281
                        list_del(&page->lru);
2282
                        discard_slab(s, page);
2283
                } else
2284
                        slabs_inuse++;
2285
        spin_unlock_irqrestore(&n->list_lock, flags);
2286
        return slabs_inuse;
2287
}
2288
 
2289
/*
2290
 * Release all resources used by a slab cache.
2291
 */
2292
static inline int kmem_cache_close(struct kmem_cache *s)
2293
{
2294
        int node;
2295
 
2296
        flush_all(s);
2297
 
2298
        /* Attempt to free all objects */
2299
        free_kmem_cache_cpus(s);
2300
        for_each_node_state(node, N_NORMAL_MEMORY) {
2301
                struct kmem_cache_node *n = get_node(s, node);
2302
 
2303
                n->nr_partial -= free_list(s, n, &n->partial);
2304
                if (atomic_long_read(&n->nr_slabs))
2305
                        return 1;
2306
        }
2307
        free_kmem_cache_nodes(s);
2308
        return 0;
2309
}
2310
 
2311
/*
2312
 * Close a cache and release the kmem_cache structure
2313
 * (must be used for caches created using kmem_cache_create)
2314
 */
2315
void kmem_cache_destroy(struct kmem_cache *s)
2316
{
2317
        down_write(&slub_lock);
2318
        s->refcount--;
2319
        if (!s->refcount) {
2320
                list_del(&s->list);
2321
                up_write(&slub_lock);
2322
                if (kmem_cache_close(s))
2323
                        WARN_ON(1);
2324
                sysfs_slab_remove(s);
2325
                kfree(s);
2326
        } else
2327
                up_write(&slub_lock);
2328
}
2329
EXPORT_SYMBOL(kmem_cache_destroy);
2330
 
2331
/********************************************************************
2332
 *              Kmalloc subsystem
2333
 *******************************************************************/
2334
 
2335
struct kmem_cache kmalloc_caches[PAGE_SHIFT] __cacheline_aligned;
2336
EXPORT_SYMBOL(kmalloc_caches);
2337
 
2338
#ifdef CONFIG_ZONE_DMA
2339
static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT];
2340
#endif
2341
 
2342
static int __init setup_slub_min_order(char *str)
2343
{
2344
        get_option (&str, &slub_min_order);
2345
 
2346
        return 1;
2347
}
2348
 
2349
__setup("slub_min_order=", setup_slub_min_order);
2350
 
2351
static int __init setup_slub_max_order(char *str)
2352
{
2353
        get_option (&str, &slub_max_order);
2354
 
2355
        return 1;
2356
}
2357
 
2358
__setup("slub_max_order=", setup_slub_max_order);
2359
 
2360
static int __init setup_slub_min_objects(char *str)
2361
{
2362
        get_option (&str, &slub_min_objects);
2363
 
2364
        return 1;
2365
}
2366
 
2367
__setup("slub_min_objects=", setup_slub_min_objects);
2368
 
2369
static int __init setup_slub_nomerge(char *str)
2370
{
2371
        slub_nomerge = 1;
2372
        return 1;
2373
}
2374
 
2375
__setup("slub_nomerge", setup_slub_nomerge);
2376
 
2377
static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2378
                const char *name, int size, gfp_t gfp_flags)
2379
{
2380
        unsigned int flags = 0;
2381
 
2382
        if (gfp_flags & SLUB_DMA)
2383
                flags = SLAB_CACHE_DMA;
2384
 
2385
        down_write(&slub_lock);
2386
        if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2387
                        flags, NULL))
2388
                goto panic;
2389
 
2390
        list_add(&s->list, &slab_caches);
2391
        up_write(&slub_lock);
2392
        if (sysfs_slab_add(s))
2393
                goto panic;
2394
        return s;
2395
 
2396
panic:
2397
        panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2398
}
2399
 
2400
#ifdef CONFIG_ZONE_DMA
2401
 
2402
static void sysfs_add_func(struct work_struct *w)
2403
{
2404
        struct kmem_cache *s;
2405
 
2406
        down_write(&slub_lock);
2407
        list_for_each_entry(s, &slab_caches, list) {
2408
                if (s->flags & __SYSFS_ADD_DEFERRED) {
2409
                        s->flags &= ~__SYSFS_ADD_DEFERRED;
2410
                        sysfs_slab_add(s);
2411
                }
2412
        }
2413
        up_write(&slub_lock);
2414
}
2415
 
2416
static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2417
 
2418
static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2419
{
2420
        struct kmem_cache *s;
2421
        char *text;
2422
        size_t realsize;
2423
 
2424
        s = kmalloc_caches_dma[index];
2425
        if (s)
2426
                return s;
2427
 
2428
        /* Dynamically create dma cache */
2429
        if (flags & __GFP_WAIT)
2430
                down_write(&slub_lock);
2431
        else {
2432
                if (!down_write_trylock(&slub_lock))
2433
                        goto out;
2434
        }
2435
 
2436
        if (kmalloc_caches_dma[index])
2437
                goto unlock_out;
2438
 
2439
        realsize = kmalloc_caches[index].objsize;
2440
        text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", (unsigned int)realsize),
2441
        s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2442
 
2443
        if (!s || !text || !kmem_cache_open(s, flags, text,
2444
                        realsize, ARCH_KMALLOC_MINALIGN,
2445
                        SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2446
                kfree(s);
2447
                kfree(text);
2448
                goto unlock_out;
2449
        }
2450
 
2451
        list_add(&s->list, &slab_caches);
2452
        kmalloc_caches_dma[index] = s;
2453
 
2454
        schedule_work(&sysfs_add_work);
2455
 
2456
unlock_out:
2457
        up_write(&slub_lock);
2458
out:
2459
        return kmalloc_caches_dma[index];
2460
}
2461
#endif
2462
 
2463
/*
2464
 * Conversion table for small slabs sizes / 8 to the index in the
2465
 * kmalloc array. This is necessary for slabs < 192 since we have non power
2466
 * of two cache sizes there. The size of larger slabs can be determined using
2467
 * fls.
2468
 */
2469
static s8 size_index[24] = {
2470
        3,      /* 8 */
2471
        4,      /* 16 */
2472
        5,      /* 24 */
2473
        5,      /* 32 */
2474
        6,      /* 40 */
2475
        6,      /* 48 */
2476
        6,      /* 56 */
2477
        6,      /* 64 */
2478
        1,      /* 72 */
2479
        1,      /* 80 */
2480
        1,      /* 88 */
2481
        1,      /* 96 */
2482
        7,      /* 104 */
2483
        7,      /* 112 */
2484
        7,      /* 120 */
2485
        7,      /* 128 */
2486
        2,      /* 136 */
2487
        2,      /* 144 */
2488
        2,      /* 152 */
2489
        2,      /* 160 */
2490
        2,      /* 168 */
2491
        2,      /* 176 */
2492
        2,      /* 184 */
2493
        2       /* 192 */
2494
};
2495
 
2496
static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2497
{
2498
        int index;
2499
 
2500
        if (size <= 192) {
2501
                if (!size)
2502
                        return ZERO_SIZE_PTR;
2503
 
2504
                index = size_index[(size - 1) / 8];
2505
        } else
2506
                index = fls(size - 1);
2507
 
2508
#ifdef CONFIG_ZONE_DMA
2509
        if (unlikely((flags & SLUB_DMA)))
2510
                return dma_kmalloc_cache(index, flags);
2511
 
2512
#endif
2513
        return &kmalloc_caches[index];
2514
}
2515
 
2516
void *__kmalloc(size_t size, gfp_t flags)
2517
{
2518
        struct kmem_cache *s;
2519
 
2520
        if (unlikely(size > PAGE_SIZE / 2))
2521
                return (void *)__get_free_pages(flags | __GFP_COMP,
2522
                                                        get_order(size));
2523
 
2524
        s = get_slab(size, flags);
2525
 
2526
        if (unlikely(ZERO_OR_NULL_PTR(s)))
2527
                return s;
2528
 
2529
        return slab_alloc(s, flags, -1, __builtin_return_address(0));
2530
}
2531
EXPORT_SYMBOL(__kmalloc);
2532
 
2533
#ifdef CONFIG_NUMA
2534
void *__kmalloc_node(size_t size, gfp_t flags, int node)
2535
{
2536
        struct kmem_cache *s;
2537
 
2538
        if (unlikely(size > PAGE_SIZE / 2))
2539
                return (void *)__get_free_pages(flags | __GFP_COMP,
2540
                                                        get_order(size));
2541
 
2542
        s = get_slab(size, flags);
2543
 
2544
        if (unlikely(ZERO_OR_NULL_PTR(s)))
2545
                return s;
2546
 
2547
        return slab_alloc(s, flags, node, __builtin_return_address(0));
2548
}
2549
EXPORT_SYMBOL(__kmalloc_node);
2550
#endif
2551
 
2552
size_t ksize(const void *object)
2553
{
2554
        struct page *page;
2555
        struct kmem_cache *s;
2556
 
2557
        BUG_ON(!object);
2558
        if (unlikely(object == ZERO_SIZE_PTR))
2559
                return 0;
2560
 
2561
        page = virt_to_head_page(object);
2562
        BUG_ON(!page);
2563
 
2564
        if (unlikely(!PageSlab(page)))
2565
                return PAGE_SIZE << compound_order(page);
2566
 
2567
        s = page->slab;
2568
        BUG_ON(!s);
2569
 
2570
        /*
2571
         * Debugging requires use of the padding between object
2572
         * and whatever may come after it.
2573
         */
2574
        if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2575
                return s->objsize;
2576
 
2577
        /*
2578
         * If we have the need to store the freelist pointer
2579
         * back there or track user information then we can
2580
         * only use the space before that information.
2581
         */
2582
        if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2583
                return s->inuse;
2584
 
2585
        /*
2586
         * Else we can use all the padding etc for the allocation
2587
         */
2588
        return s->size;
2589
}
2590
EXPORT_SYMBOL(ksize);
2591
 
2592
void kfree(const void *x)
2593
{
2594
        struct page *page;
2595
 
2596
        if (unlikely(ZERO_OR_NULL_PTR(x)))
2597
                return;
2598
 
2599
        page = virt_to_head_page(x);
2600
        if (unlikely(!PageSlab(page))) {
2601
                put_page(page);
2602
                return;
2603
        }
2604
        slab_free(page->slab, page, (void *)x, __builtin_return_address(0));
2605
}
2606
EXPORT_SYMBOL(kfree);
2607
 
2608
/*
2609
 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2610
 * the remaining slabs by the number of items in use. The slabs with the
2611
 * most items in use come first. New allocations will then fill those up
2612
 * and thus they can be removed from the partial lists.
2613
 *
2614
 * The slabs with the least items are placed last. This results in them
2615
 * being allocated from last increasing the chance that the last objects
2616
 * are freed in them.
2617
 */
2618
int kmem_cache_shrink(struct kmem_cache *s)
2619
{
2620
        int node;
2621
        int i;
2622
        struct kmem_cache_node *n;
2623
        struct page *page;
2624
        struct page *t;
2625
        struct list_head *slabs_by_inuse =
2626
                kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2627
        unsigned long flags;
2628
 
2629
        if (!slabs_by_inuse)
2630
                return -ENOMEM;
2631
 
2632
        flush_all(s);
2633
        for_each_node_state(node, N_NORMAL_MEMORY) {
2634
                n = get_node(s, node);
2635
 
2636
                if (!n->nr_partial)
2637
                        continue;
2638
 
2639
                for (i = 0; i < s->objects; i++)
2640
                        INIT_LIST_HEAD(slabs_by_inuse + i);
2641
 
2642
                spin_lock_irqsave(&n->list_lock, flags);
2643
 
2644
                /*
2645
                 * Build lists indexed by the items in use in each slab.
2646
                 *
2647
                 * Note that concurrent frees may occur while we hold the
2648
                 * list_lock. page->inuse here is the upper limit.
2649
                 */
2650
                list_for_each_entry_safe(page, t, &n->partial, lru) {
2651
                        if (!page->inuse && slab_trylock(page)) {
2652
                                /*
2653
                                 * Must hold slab lock here because slab_free
2654
                                 * may have freed the last object and be
2655
                                 * waiting to release the slab.
2656
                                 */
2657
                                list_del(&page->lru);
2658
                                n->nr_partial--;
2659
                                slab_unlock(page);
2660
                                discard_slab(s, page);
2661
                        } else {
2662
                                list_move(&page->lru,
2663
                                slabs_by_inuse + page->inuse);
2664
                        }
2665
                }
2666
 
2667
                /*
2668
                 * Rebuild the partial list with the slabs filled up most
2669
                 * first and the least used slabs at the end.
2670
                 */
2671
                for (i = s->objects - 1; i >= 0; i--)
2672
                        list_splice(slabs_by_inuse + i, n->partial.prev);
2673
 
2674
                spin_unlock_irqrestore(&n->list_lock, flags);
2675
        }
2676
 
2677
        kfree(slabs_by_inuse);
2678
        return 0;
2679
}
2680
EXPORT_SYMBOL(kmem_cache_shrink);
2681
 
2682
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2683
static int slab_mem_going_offline_callback(void *arg)
2684
{
2685
        struct kmem_cache *s;
2686
 
2687
        down_read(&slub_lock);
2688
        list_for_each_entry(s, &slab_caches, list)
2689
                kmem_cache_shrink(s);
2690
        up_read(&slub_lock);
2691
 
2692
        return 0;
2693
}
2694
 
2695
static void slab_mem_offline_callback(void *arg)
2696
{
2697
        struct kmem_cache_node *n;
2698
        struct kmem_cache *s;
2699
        struct memory_notify *marg = arg;
2700
        int offline_node;
2701
 
2702
        offline_node = marg->status_change_nid;
2703
 
2704
        /*
2705
         * If the node still has available memory. we need kmem_cache_node
2706
         * for it yet.
2707
         */
2708
        if (offline_node < 0)
2709
                return;
2710
 
2711
        down_read(&slub_lock);
2712
        list_for_each_entry(s, &slab_caches, list) {
2713
                n = get_node(s, offline_node);
2714
                if (n) {
2715
                        /*
2716
                         * if n->nr_slabs > 0, slabs still exist on the node
2717
                         * that is going down. We were unable to free them,
2718
                         * and offline_pages() function shoudn't call this
2719
                         * callback. So, we must fail.
2720
                         */
2721
                        BUG_ON(atomic_long_read(&n->nr_slabs));
2722
 
2723
                        s->node[offline_node] = NULL;
2724
                        kmem_cache_free(kmalloc_caches, n);
2725
                }
2726
        }
2727
        up_read(&slub_lock);
2728
}
2729
 
2730
static int slab_mem_going_online_callback(void *arg)
2731
{
2732
        struct kmem_cache_node *n;
2733
        struct kmem_cache *s;
2734
        struct memory_notify *marg = arg;
2735
        int nid = marg->status_change_nid;
2736
        int ret = 0;
2737
 
2738
        /*
2739
         * If the node's memory is already available, then kmem_cache_node is
2740
         * already created. Nothing to do.
2741
         */
2742
        if (nid < 0)
2743
                return 0;
2744
 
2745
        /*
2746
         * We are bringing a node online. No memory is availabe yet. We must
2747
         * allocate a kmem_cache_node structure in order to bring the node
2748
         * online.
2749
         */
2750
        down_read(&slub_lock);
2751
        list_for_each_entry(s, &slab_caches, list) {
2752
                /*
2753
                 * XXX: kmem_cache_alloc_node will fallback to other nodes
2754
                 *      since memory is not yet available from the node that
2755
                 *      is brought up.
2756
                 */
2757
                n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2758
                if (!n) {
2759
                        ret = -ENOMEM;
2760
                        goto out;
2761
                }
2762
                init_kmem_cache_node(n);
2763
                s->node[nid] = n;
2764
        }
2765
out:
2766
        up_read(&slub_lock);
2767
        return ret;
2768
}
2769
 
2770
static int slab_memory_callback(struct notifier_block *self,
2771
                                unsigned long action, void *arg)
2772
{
2773
        int ret = 0;
2774
 
2775
        switch (action) {
2776
        case MEM_GOING_ONLINE:
2777
                ret = slab_mem_going_online_callback(arg);
2778
                break;
2779
        case MEM_GOING_OFFLINE:
2780
                ret = slab_mem_going_offline_callback(arg);
2781
                break;
2782
        case MEM_OFFLINE:
2783
        case MEM_CANCEL_ONLINE:
2784
                slab_mem_offline_callback(arg);
2785
                break;
2786
        case MEM_ONLINE:
2787
        case MEM_CANCEL_OFFLINE:
2788
                break;
2789
        }
2790
 
2791
        ret = notifier_from_errno(ret);
2792
        return ret;
2793
}
2794
 
2795
#endif /* CONFIG_MEMORY_HOTPLUG */
2796
 
2797
/********************************************************************
2798
 *                      Basic setup of slabs
2799
 *******************************************************************/
2800
 
2801
void __init kmem_cache_init(void)
2802
{
2803
        int i;
2804
        int caches = 0;
2805
 
2806
        init_alloc_cpu();
2807
 
2808
#ifdef CONFIG_NUMA
2809
        /*
2810
         * Must first have the slab cache available for the allocations of the
2811
         * struct kmem_cache_node's. There is special bootstrap code in
2812
         * kmem_cache_open for slab_state == DOWN.
2813
         */
2814
        create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2815
                sizeof(struct kmem_cache_node), GFP_KERNEL);
2816
        kmalloc_caches[0].refcount = -1;
2817
        caches++;
2818
 
2819
        hotplug_memory_notifier(slab_memory_callback, 1);
2820
#endif
2821
 
2822
        /* Able to allocate the per node structures */
2823
        slab_state = PARTIAL;
2824
 
2825
        /* Caches that are not of the two-to-the-power-of size */
2826
        if (KMALLOC_MIN_SIZE <= 64) {
2827
                create_kmalloc_cache(&kmalloc_caches[1],
2828
                                "kmalloc-96", 96, GFP_KERNEL);
2829
                caches++;
2830
        }
2831
        if (KMALLOC_MIN_SIZE <= 128) {
2832
                create_kmalloc_cache(&kmalloc_caches[2],
2833
                                "kmalloc-192", 192, GFP_KERNEL);
2834
                caches++;
2835
        }
2836
 
2837
        for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) {
2838
                create_kmalloc_cache(&kmalloc_caches[i],
2839
                        "kmalloc", 1 << i, GFP_KERNEL);
2840
                caches++;
2841
        }
2842
 
2843
 
2844
        /*
2845
         * Patch up the size_index table if we have strange large alignment
2846
         * requirements for the kmalloc array. This is only the case for
2847
         * mips it seems. The standard arches will not generate any code here.
2848
         *
2849
         * Largest permitted alignment is 256 bytes due to the way we
2850
         * handle the index determination for the smaller caches.
2851
         *
2852
         * Make sure that nothing crazy happens if someone starts tinkering
2853
         * around with ARCH_KMALLOC_MINALIGN
2854
         */
2855
        BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2856
                (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2857
 
2858
        for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
2859
                size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
2860
 
2861
        slab_state = UP;
2862
 
2863
        /* Provide the correct kmalloc names now that the caches are up */
2864
        for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++)
2865
                kmalloc_caches[i]. name =
2866
                        kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2867
 
2868
#ifdef CONFIG_SMP
2869
        register_cpu_notifier(&slab_notifier);
2870
        kmem_size = offsetof(struct kmem_cache, cpu_slab) +
2871
                                nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
2872
#else
2873
        kmem_size = sizeof(struct kmem_cache);
2874
#endif
2875
 
2876
 
2877
        printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2878
                " CPUs=%d, Nodes=%d\n",
2879
                caches, cache_line_size(),
2880
                slub_min_order, slub_max_order, slub_min_objects,
2881
                nr_cpu_ids, nr_node_ids);
2882
}
2883
 
2884
/*
2885
 * Find a mergeable slab cache
2886
 */
2887
static int slab_unmergeable(struct kmem_cache *s)
2888
{
2889
        if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2890
                return 1;
2891
 
2892
        if (s->ctor)
2893
                return 1;
2894
 
2895
        /*
2896
         * We may have set a slab to be unmergeable during bootstrap.
2897
         */
2898
        if (s->refcount < 0)
2899
                return 1;
2900
 
2901
        return 0;
2902
}
2903
 
2904
static struct kmem_cache *find_mergeable(size_t size,
2905
                size_t align, unsigned long flags, const char *name,
2906
                void (*ctor)(struct kmem_cache *, void *))
2907
{
2908
        struct kmem_cache *s;
2909
 
2910
        if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2911
                return NULL;
2912
 
2913
        if (ctor)
2914
                return NULL;
2915
 
2916
        size = ALIGN(size, sizeof(void *));
2917
        align = calculate_alignment(flags, align, size);
2918
        size = ALIGN(size, align);
2919
        flags = kmem_cache_flags(size, flags, name, NULL);
2920
 
2921
        list_for_each_entry(s, &slab_caches, list) {
2922
                if (slab_unmergeable(s))
2923
                        continue;
2924
 
2925
                if (size > s->size)
2926
                        continue;
2927
 
2928
                if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
2929
                                continue;
2930
                /*
2931
                 * Check if alignment is compatible.
2932
                 * Courtesy of Adrian Drzewiecki
2933
                 */
2934
                if ((s->size & ~(align -1)) != s->size)
2935
                        continue;
2936
 
2937
                if (s->size - size >= sizeof(void *))
2938
                        continue;
2939
 
2940
                return s;
2941
        }
2942
        return NULL;
2943
}
2944
 
2945
struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2946
                size_t align, unsigned long flags,
2947
                void (*ctor)(struct kmem_cache *, void *))
2948
{
2949
        struct kmem_cache *s;
2950
 
2951
        down_write(&slub_lock);
2952
        s = find_mergeable(size, align, flags, name, ctor);
2953
        if (s) {
2954
                int cpu;
2955
 
2956
                s->refcount++;
2957
                /*
2958
                 * Adjust the object sizes so that we clear
2959
                 * the complete object on kzalloc.
2960
                 */
2961
                s->objsize = max(s->objsize, (int)size);
2962
 
2963
                /*
2964
                 * And then we need to update the object size in the
2965
                 * per cpu structures
2966
                 */
2967
                for_each_online_cpu(cpu)
2968
                        get_cpu_slab(s, cpu)->objsize = s->objsize;
2969
                s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2970
                up_write(&slub_lock);
2971
                if (sysfs_slab_alias(s, name))
2972
                        goto err;
2973
                return s;
2974
        }
2975
        s = kmalloc(kmem_size, GFP_KERNEL);
2976
        if (s) {
2977
                if (kmem_cache_open(s, GFP_KERNEL, name,
2978
                                size, align, flags, ctor)) {
2979
                        list_add(&s->list, &slab_caches);
2980
                        up_write(&slub_lock);
2981
                        if (sysfs_slab_add(s))
2982
                                goto err;
2983
                        return s;
2984
                }
2985
                kfree(s);
2986
        }
2987
        up_write(&slub_lock);
2988
 
2989
err:
2990
        if (flags & SLAB_PANIC)
2991
                panic("Cannot create slabcache %s\n", name);
2992
        else
2993
                s = NULL;
2994
        return s;
2995
}
2996
EXPORT_SYMBOL(kmem_cache_create);
2997
 
2998
#ifdef CONFIG_SMP
2999
/*
3000
 * Use the cpu notifier to insure that the cpu slabs are flushed when
3001
 * necessary.
3002
 */
3003
static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3004
                unsigned long action, void *hcpu)
3005
{
3006
        long cpu = (long)hcpu;
3007
        struct kmem_cache *s;
3008
        unsigned long flags;
3009
 
3010
        switch (action) {
3011
        case CPU_UP_PREPARE:
3012
        case CPU_UP_PREPARE_FROZEN:
3013
                init_alloc_cpu_cpu(cpu);
3014
                down_read(&slub_lock);
3015
                list_for_each_entry(s, &slab_caches, list)
3016
                        s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3017
                                                        GFP_KERNEL);
3018
                up_read(&slub_lock);
3019
                break;
3020
 
3021
        case CPU_UP_CANCELED:
3022
        case CPU_UP_CANCELED_FROZEN:
3023
        case CPU_DEAD:
3024
        case CPU_DEAD_FROZEN:
3025
                down_read(&slub_lock);
3026
                list_for_each_entry(s, &slab_caches, list) {
3027
                        struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3028
 
3029
                        local_irq_save(flags);
3030
                        __flush_cpu_slab(s, cpu);
3031
                        local_irq_restore(flags);
3032
                        free_kmem_cache_cpu(c, cpu);
3033
                        s->cpu_slab[cpu] = NULL;
3034
                }
3035
                up_read(&slub_lock);
3036
                break;
3037
        default:
3038
                break;
3039
        }
3040
        return NOTIFY_OK;
3041
}
3042
 
3043
static struct notifier_block __cpuinitdata slab_notifier =
3044
        { &slab_cpuup_callback, NULL, 0 };
3045
 
3046
#endif
3047
 
3048
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3049
{
3050
        struct kmem_cache *s;
3051
 
3052
        if (unlikely(size > PAGE_SIZE / 2))
3053
                return (void *)__get_free_pages(gfpflags | __GFP_COMP,
3054
                                                        get_order(size));
3055
        s = get_slab(size, gfpflags);
3056
 
3057
        if (unlikely(ZERO_OR_NULL_PTR(s)))
3058
                return s;
3059
 
3060
        return slab_alloc(s, gfpflags, -1, caller);
3061
}
3062
 
3063
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3064
                                        int node, void *caller)
3065
{
3066
        struct kmem_cache *s;
3067
 
3068
        if (unlikely(size > PAGE_SIZE / 2))
3069
                return (void *)__get_free_pages(gfpflags | __GFP_COMP,
3070
                                                        get_order(size));
3071
        s = get_slab(size, gfpflags);
3072
 
3073
        if (unlikely(ZERO_OR_NULL_PTR(s)))
3074
                return s;
3075
 
3076
        return slab_alloc(s, gfpflags, node, caller);
3077
}
3078
 
3079
static unsigned long count_partial(struct kmem_cache_node *n)
3080
{
3081
        unsigned long flags;
3082
        unsigned long x = 0;
3083
        struct page *page;
3084
 
3085
        spin_lock_irqsave(&n->list_lock, flags);
3086
        list_for_each_entry(page, &n->partial, lru)
3087
                x += page->inuse;
3088
        spin_unlock_irqrestore(&n->list_lock, flags);
3089
        return x;
3090
}
3091
 
3092
#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
3093
static int validate_slab(struct kmem_cache *s, struct page *page,
3094
                                                unsigned long *map)
3095
{
3096
        void *p;
3097
        void *addr = page_address(page);
3098
 
3099
        if (!check_slab(s, page) ||
3100
                        !on_freelist(s, page, NULL))
3101
                return 0;
3102
 
3103
        /* Now we know that a valid freelist exists */
3104
        bitmap_zero(map, s->objects);
3105
 
3106
        for_each_free_object(p, s, page->freelist) {
3107
                set_bit(slab_index(p, s, addr), map);
3108
                if (!check_object(s, page, p, 0))
3109
                        return 0;
3110
        }
3111
 
3112
        for_each_object(p, s, addr)
3113
                if (!test_bit(slab_index(p, s, addr), map))
3114
                        if (!check_object(s, page, p, 1))
3115
                                return 0;
3116
        return 1;
3117
}
3118
 
3119
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3120
                                                unsigned long *map)
3121
{
3122
        if (slab_trylock(page)) {
3123
                validate_slab(s, page, map);
3124
                slab_unlock(page);
3125
        } else
3126
                printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3127
                        s->name, page);
3128
 
3129
        if (s->flags & DEBUG_DEFAULT_FLAGS) {
3130
                if (!SlabDebug(page))
3131
                        printk(KERN_ERR "SLUB %s: SlabDebug not set "
3132
                                "on slab 0x%p\n", s->name, page);
3133
        } else {
3134
                if (SlabDebug(page))
3135
                        printk(KERN_ERR "SLUB %s: SlabDebug set on "
3136
                                "slab 0x%p\n", s->name, page);
3137
        }
3138
}
3139
 
3140
static int validate_slab_node(struct kmem_cache *s,
3141
                struct kmem_cache_node *n, unsigned long *map)
3142
{
3143
        unsigned long count = 0;
3144
        struct page *page;
3145
        unsigned long flags;
3146
 
3147
        spin_lock_irqsave(&n->list_lock, flags);
3148
 
3149
        list_for_each_entry(page, &n->partial, lru) {
3150
                validate_slab_slab(s, page, map);
3151
                count++;
3152
        }
3153
        if (count != n->nr_partial)
3154
                printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3155
                        "counter=%ld\n", s->name, count, n->nr_partial);
3156
 
3157
        if (!(s->flags & SLAB_STORE_USER))
3158
                goto out;
3159
 
3160
        list_for_each_entry(page, &n->full, lru) {
3161
                validate_slab_slab(s, page, map);
3162
                count++;
3163
        }
3164
        if (count != atomic_long_read(&n->nr_slabs))
3165
                printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3166
                        "counter=%ld\n", s->name, count,
3167
                        atomic_long_read(&n->nr_slabs));
3168
 
3169
out:
3170
        spin_unlock_irqrestore(&n->list_lock, flags);
3171
        return count;
3172
}
3173
 
3174
static long validate_slab_cache(struct kmem_cache *s)
3175
{
3176
        int node;
3177
        unsigned long count = 0;
3178
        unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
3179
                                sizeof(unsigned long), GFP_KERNEL);
3180
 
3181
        if (!map)
3182
                return -ENOMEM;
3183
 
3184
        flush_all(s);
3185
        for_each_node_state(node, N_NORMAL_MEMORY) {
3186
                struct kmem_cache_node *n = get_node(s, node);
3187
 
3188
                count += validate_slab_node(s, n, map);
3189
        }
3190
        kfree(map);
3191
        return count;
3192
}
3193
 
3194
#ifdef SLUB_RESILIENCY_TEST
3195
static void resiliency_test(void)
3196
{
3197
        u8 *p;
3198
 
3199
        printk(KERN_ERR "SLUB resiliency testing\n");
3200
        printk(KERN_ERR "-----------------------\n");
3201
        printk(KERN_ERR "A. Corruption after allocation\n");
3202
 
3203
        p = kzalloc(16, GFP_KERNEL);
3204
        p[16] = 0x12;
3205
        printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3206
                        " 0x12->0x%p\n\n", p + 16);
3207
 
3208
        validate_slab_cache(kmalloc_caches + 4);
3209
 
3210
        /* Hmmm... The next two are dangerous */
3211
        p = kzalloc(32, GFP_KERNEL);
3212
        p[32 + sizeof(void *)] = 0x34;
3213
        printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3214
                        " 0x34 -> -0x%p\n", p);
3215
        printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
3216
 
3217
        validate_slab_cache(kmalloc_caches + 5);
3218
        p = kzalloc(64, GFP_KERNEL);
3219
        p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3220
        *p = 0x56;
3221
        printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3222
                                                                        p);
3223
        printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
3224
        validate_slab_cache(kmalloc_caches + 6);
3225
 
3226
        printk(KERN_ERR "\nB. Corruption after free\n");
3227
        p = kzalloc(128, GFP_KERNEL);
3228
        kfree(p);
3229
        *p = 0x78;
3230
        printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3231
        validate_slab_cache(kmalloc_caches + 7);
3232
 
3233
        p = kzalloc(256, GFP_KERNEL);
3234
        kfree(p);
3235
        p[50] = 0x9a;
3236
        printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
3237
        validate_slab_cache(kmalloc_caches + 8);
3238
 
3239
        p = kzalloc(512, GFP_KERNEL);
3240
        kfree(p);
3241
        p[512] = 0xab;
3242
        printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3243
        validate_slab_cache(kmalloc_caches + 9);
3244
}
3245
#else
3246
static void resiliency_test(void) {};
3247
#endif
3248
 
3249
/*
3250
 * Generate lists of code addresses where slabcache objects are allocated
3251
 * and freed.
3252
 */
3253
 
3254
struct location {
3255
        unsigned long count;
3256
        void *addr;
3257
        long long sum_time;
3258
        long min_time;
3259
        long max_time;
3260
        long min_pid;
3261
        long max_pid;
3262
        cpumask_t cpus;
3263
        nodemask_t nodes;
3264
};
3265
 
3266
struct loc_track {
3267
        unsigned long max;
3268
        unsigned long count;
3269
        struct location *loc;
3270
};
3271
 
3272
static void free_loc_track(struct loc_track *t)
3273
{
3274
        if (t->max)
3275
                free_pages((unsigned long)t->loc,
3276
                        get_order(sizeof(struct location) * t->max));
3277
}
3278
 
3279
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3280
{
3281
        struct location *l;
3282
        int order;
3283
 
3284
        order = get_order(sizeof(struct location) * max);
3285
 
3286
        l = (void *)__get_free_pages(flags, order);
3287
        if (!l)
3288
                return 0;
3289
 
3290
        if (t->count) {
3291
                memcpy(l, t->loc, sizeof(struct location) * t->count);
3292
                free_loc_track(t);
3293
        }
3294
        t->max = max;
3295
        t->loc = l;
3296
        return 1;
3297
}
3298
 
3299
static int add_location(struct loc_track *t, struct kmem_cache *s,
3300
                                const struct track *track)
3301
{
3302
        long start, end, pos;
3303
        struct location *l;
3304
        void *caddr;
3305
        unsigned long age = jiffies - track->when;
3306
 
3307
        start = -1;
3308
        end = t->count;
3309
 
3310
        for ( ; ; ) {
3311
                pos = start + (end - start + 1) / 2;
3312
 
3313
                /*
3314
                 * There is nothing at "end". If we end up there
3315
                 * we need to add something to before end.
3316
                 */
3317
                if (pos == end)
3318
                        break;
3319
 
3320
                caddr = t->loc[pos].addr;
3321
                if (track->addr == caddr) {
3322
 
3323
                        l = &t->loc[pos];
3324
                        l->count++;
3325
                        if (track->when) {
3326
                                l->sum_time += age;
3327
                                if (age < l->min_time)
3328
                                        l->min_time = age;
3329
                                if (age > l->max_time)
3330
                                        l->max_time = age;
3331
 
3332
                                if (track->pid < l->min_pid)
3333
                                        l->min_pid = track->pid;
3334
                                if (track->pid > l->max_pid)
3335
                                        l->max_pid = track->pid;
3336
 
3337
                                cpu_set(track->cpu, l->cpus);
3338
                        }
3339
                        node_set(page_to_nid(virt_to_page(track)), l->nodes);
3340
                        return 1;
3341
                }
3342
 
3343
                if (track->addr < caddr)
3344
                        end = pos;
3345
                else
3346
                        start = pos;
3347
        }
3348
 
3349
        /*
3350
         * Not found. Insert new tracking element.
3351
         */
3352
        if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3353
                return 0;
3354
 
3355
        l = t->loc + pos;
3356
        if (pos < t->count)
3357
                memmove(l + 1, l,
3358
                        (t->count - pos) * sizeof(struct location));
3359
        t->count++;
3360
        l->count = 1;
3361
        l->addr = track->addr;
3362
        l->sum_time = age;
3363
        l->min_time = age;
3364
        l->max_time = age;
3365
        l->min_pid = track->pid;
3366
        l->max_pid = track->pid;
3367
        cpus_clear(l->cpus);
3368
        cpu_set(track->cpu, l->cpus);
3369
        nodes_clear(l->nodes);
3370
        node_set(page_to_nid(virt_to_page(track)), l->nodes);
3371
        return 1;
3372
}
3373
 
3374
static void process_slab(struct loc_track *t, struct kmem_cache *s,
3375
                struct page *page, enum track_item alloc)
3376
{
3377
        void *addr = page_address(page);
3378
        DECLARE_BITMAP(map, s->objects);
3379
        void *p;
3380
 
3381
        bitmap_zero(map, s->objects);
3382
        for_each_free_object(p, s, page->freelist)
3383
                set_bit(slab_index(p, s, addr), map);
3384
 
3385
        for_each_object(p, s, addr)
3386
                if (!test_bit(slab_index(p, s, addr), map))
3387
                        add_location(t, s, get_track(s, p, alloc));
3388
}
3389
 
3390
static int list_locations(struct kmem_cache *s, char *buf,
3391
                                        enum track_item alloc)
3392
{
3393
        int n = 0;
3394
        unsigned long i;
3395
        struct loc_track t = { 0, 0, NULL };
3396
        int node;
3397
 
3398
        if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3399
                        GFP_TEMPORARY))
3400
                return sprintf(buf, "Out of memory\n");
3401
 
3402
        /* Push back cpu slabs */
3403
        flush_all(s);
3404
 
3405
        for_each_node_state(node, N_NORMAL_MEMORY) {
3406
                struct kmem_cache_node *n = get_node(s, node);
3407
                unsigned long flags;
3408
                struct page *page;
3409
 
3410
                if (!atomic_long_read(&n->nr_slabs))
3411
                        continue;
3412
 
3413
                spin_lock_irqsave(&n->list_lock, flags);
3414
                list_for_each_entry(page, &n->partial, lru)
3415
                        process_slab(&t, s, page, alloc);
3416
                list_for_each_entry(page, &n->full, lru)
3417
                        process_slab(&t, s, page, alloc);
3418
                spin_unlock_irqrestore(&n->list_lock, flags);
3419
        }
3420
 
3421
        for (i = 0; i < t.count; i++) {
3422
                struct location *l = &t.loc[i];
3423
 
3424
                if (n > PAGE_SIZE - 100)
3425
                        break;
3426
                n += sprintf(buf + n, "%7ld ", l->count);
3427
 
3428
                if (l->addr)
3429
                        n += sprint_symbol(buf + n, (unsigned long)l->addr);
3430
                else
3431
                        n += sprintf(buf + n, "<not-available>");
3432
 
3433
                if (l->sum_time != l->min_time) {
3434
                        unsigned long remainder;
3435
 
3436
                        n += sprintf(buf + n, " age=%ld/%ld/%ld",
3437
                        l->min_time,
3438
                        div_long_long_rem(l->sum_time, l->count, &remainder),
3439
                        l->max_time);
3440
                } else
3441
                        n += sprintf(buf + n, " age=%ld",
3442
                                l->min_time);
3443
 
3444
                if (l->min_pid != l->max_pid)
3445
                        n += sprintf(buf + n, " pid=%ld-%ld",
3446
                                l->min_pid, l->max_pid);
3447
                else
3448
                        n += sprintf(buf + n, " pid=%ld",
3449
                                l->min_pid);
3450
 
3451
                if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3452
                                n < PAGE_SIZE - 60) {
3453
                        n += sprintf(buf + n, " cpus=");
3454
                        n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3455
                                        l->cpus);
3456
                }
3457
 
3458
                if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3459
                                n < PAGE_SIZE - 60) {
3460
                        n += sprintf(buf + n, " nodes=");
3461
                        n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3462
                                        l->nodes);
3463
                }
3464
 
3465
                n += sprintf(buf + n, "\n");
3466
        }
3467
 
3468
        free_loc_track(&t);
3469
        if (!t.count)
3470
                n += sprintf(buf, "No data\n");
3471
        return n;
3472
}
3473
 
3474
enum slab_stat_type {
3475
        SL_FULL,
3476
        SL_PARTIAL,
3477
        SL_CPU,
3478
        SL_OBJECTS
3479
};
3480
 
3481
#define SO_FULL         (1 << SL_FULL)
3482
#define SO_PARTIAL      (1 << SL_PARTIAL)
3483
#define SO_CPU          (1 << SL_CPU)
3484
#define SO_OBJECTS      (1 << SL_OBJECTS)
3485
 
3486
static unsigned long slab_objects(struct kmem_cache *s,
3487
                        char *buf, unsigned long flags)
3488
{
3489
        unsigned long total = 0;
3490
        int cpu;
3491
        int node;
3492
        int x;
3493
        unsigned long *nodes;
3494
        unsigned long *per_cpu;
3495
 
3496
        nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3497
        per_cpu = nodes + nr_node_ids;
3498
 
3499
        for_each_possible_cpu(cpu) {
3500
                struct page *page;
3501
                int node;
3502
                struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3503
 
3504
                if (!c)
3505
                        continue;
3506
 
3507
                page = c->page;
3508
                node = c->node;
3509
                if (node < 0)
3510
                        continue;
3511
                if (page) {
3512
                        if (flags & SO_CPU) {
3513
                                int x = 0;
3514
 
3515
                                if (flags & SO_OBJECTS)
3516
                                        x = page->inuse;
3517
                                else
3518
                                        x = 1;
3519
                                total += x;
3520
                                nodes[node] += x;
3521
                        }
3522
                        per_cpu[node]++;
3523
                }
3524
        }
3525
 
3526
        for_each_node_state(node, N_NORMAL_MEMORY) {
3527
                struct kmem_cache_node *n = get_node(s, node);
3528
 
3529
                if (flags & SO_PARTIAL) {
3530
                        if (flags & SO_OBJECTS)
3531
                                x = count_partial(n);
3532
                        else
3533
                                x = n->nr_partial;
3534
                        total += x;
3535
                        nodes[node] += x;
3536
                }
3537
 
3538
                if (flags & SO_FULL) {
3539
                        int full_slabs = atomic_long_read(&n->nr_slabs)
3540
                                        - per_cpu[node]
3541
                                        - n->nr_partial;
3542
 
3543
                        if (flags & SO_OBJECTS)
3544
                                x = full_slabs * s->objects;
3545
                        else
3546
                                x = full_slabs;
3547
                        total += x;
3548
                        nodes[node] += x;
3549
                }
3550
        }
3551
 
3552
        x = sprintf(buf, "%lu", total);
3553
#ifdef CONFIG_NUMA
3554
        for_each_node_state(node, N_NORMAL_MEMORY)
3555
                if (nodes[node])
3556
                        x += sprintf(buf + x, " N%d=%lu",
3557
                                        node, nodes[node]);
3558
#endif
3559
        kfree(nodes);
3560
        return x + sprintf(buf + x, "\n");
3561
}
3562
 
3563
static int any_slab_objects(struct kmem_cache *s)
3564
{
3565
        int node;
3566
        int cpu;
3567
 
3568
        for_each_possible_cpu(cpu) {
3569
                struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3570
 
3571
                if (c && c->page)
3572
                        return 1;
3573
        }
3574
 
3575
        for_each_online_node(node) {
3576
                struct kmem_cache_node *n = get_node(s, node);
3577
 
3578
                if (!n)
3579
                        continue;
3580
 
3581
                if (n->nr_partial || atomic_long_read(&n->nr_slabs))
3582
                        return 1;
3583
        }
3584
        return 0;
3585
}
3586
 
3587
#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3588
#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3589
 
3590
struct slab_attribute {
3591
        struct attribute attr;
3592
        ssize_t (*show)(struct kmem_cache *s, char *buf);
3593
        ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3594
};
3595
 
3596
#define SLAB_ATTR_RO(_name) \
3597
        static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3598
 
3599
#define SLAB_ATTR(_name) \
3600
        static struct slab_attribute _name##_attr =  \
3601
        __ATTR(_name, 0644, _name##_show, _name##_store)
3602
 
3603
static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3604
{
3605
        return sprintf(buf, "%d\n", s->size);
3606
}
3607
SLAB_ATTR_RO(slab_size);
3608
 
3609
static ssize_t align_show(struct kmem_cache *s, char *buf)
3610
{
3611
        return sprintf(buf, "%d\n", s->align);
3612
}
3613
SLAB_ATTR_RO(align);
3614
 
3615
static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3616
{
3617
        return sprintf(buf, "%d\n", s->objsize);
3618
}
3619
SLAB_ATTR_RO(object_size);
3620
 
3621
static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3622
{
3623
        return sprintf(buf, "%d\n", s->objects);
3624
}
3625
SLAB_ATTR_RO(objs_per_slab);
3626
 
3627
static ssize_t order_show(struct kmem_cache *s, char *buf)
3628
{
3629
        return sprintf(buf, "%d\n", s->order);
3630
}
3631
SLAB_ATTR_RO(order);
3632
 
3633
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3634
{
3635
        if (s->ctor) {
3636
                int n = sprint_symbol(buf, (unsigned long)s->ctor);
3637
 
3638
                return n + sprintf(buf + n, "\n");
3639
        }
3640
        return 0;
3641
}
3642
SLAB_ATTR_RO(ctor);
3643
 
3644
static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3645
{
3646
        return sprintf(buf, "%d\n", s->refcount - 1);
3647
}
3648
SLAB_ATTR_RO(aliases);
3649
 
3650
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3651
{
3652
        return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3653
}
3654
SLAB_ATTR_RO(slabs);
3655
 
3656
static ssize_t partial_show(struct kmem_cache *s, char *buf)
3657
{
3658
        return slab_objects(s, buf, SO_PARTIAL);
3659
}
3660
SLAB_ATTR_RO(partial);
3661
 
3662
static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3663
{
3664
        return slab_objects(s, buf, SO_CPU);
3665
}
3666
SLAB_ATTR_RO(cpu_slabs);
3667
 
3668
static ssize_t objects_show(struct kmem_cache *s, char *buf)
3669
{
3670
        return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3671
}
3672
SLAB_ATTR_RO(objects);
3673
 
3674
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3675
{
3676
        return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3677
}
3678
 
3679
static ssize_t sanity_checks_store(struct kmem_cache *s,
3680
                                const char *buf, size_t length)
3681
{
3682
        s->flags &= ~SLAB_DEBUG_FREE;
3683
        if (buf[0] == '1')
3684
                s->flags |= SLAB_DEBUG_FREE;
3685
        return length;
3686
}
3687
SLAB_ATTR(sanity_checks);
3688
 
3689
static ssize_t trace_show(struct kmem_cache *s, char *buf)
3690
{
3691
        return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3692
}
3693
 
3694
static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3695
                                                        size_t length)
3696
{
3697
        s->flags &= ~SLAB_TRACE;
3698
        if (buf[0] == '1')
3699
                s->flags |= SLAB_TRACE;
3700
        return length;
3701
}
3702
SLAB_ATTR(trace);
3703
 
3704
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3705
{
3706
        return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3707
}
3708
 
3709
static ssize_t reclaim_account_store(struct kmem_cache *s,
3710
                                const char *buf, size_t length)
3711
{
3712
        s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3713
        if (buf[0] == '1')
3714
                s->flags |= SLAB_RECLAIM_ACCOUNT;
3715
        return length;
3716
}
3717
SLAB_ATTR(reclaim_account);
3718
 
3719
static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3720
{
3721
        return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3722
}
3723
SLAB_ATTR_RO(hwcache_align);
3724
 
3725
#ifdef CONFIG_ZONE_DMA
3726
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3727
{
3728
        return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3729
}
3730
SLAB_ATTR_RO(cache_dma);
3731
#endif
3732
 
3733
static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3734
{
3735
        return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3736
}
3737
SLAB_ATTR_RO(destroy_by_rcu);
3738
 
3739
static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3740
{
3741
        return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3742
}
3743
 
3744
static ssize_t red_zone_store(struct kmem_cache *s,
3745
                                const char *buf, size_t length)
3746
{
3747
        if (any_slab_objects(s))
3748
                return -EBUSY;
3749
 
3750
        s->flags &= ~SLAB_RED_ZONE;
3751
        if (buf[0] == '1')
3752
                s->flags |= SLAB_RED_ZONE;
3753
        calculate_sizes(s);
3754
        return length;
3755
}
3756
SLAB_ATTR(red_zone);
3757
 
3758
static ssize_t poison_show(struct kmem_cache *s, char *buf)
3759
{
3760
        return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3761
}
3762
 
3763
static ssize_t poison_store(struct kmem_cache *s,
3764
                                const char *buf, size_t length)
3765
{
3766
        if (any_slab_objects(s))
3767
                return -EBUSY;
3768
 
3769
        s->flags &= ~SLAB_POISON;
3770
        if (buf[0] == '1')
3771
                s->flags |= SLAB_POISON;
3772
        calculate_sizes(s);
3773
        return length;
3774
}
3775
SLAB_ATTR(poison);
3776
 
3777
static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3778
{
3779
        return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3780
}
3781
 
3782
static ssize_t store_user_store(struct kmem_cache *s,
3783
                                const char *buf, size_t length)
3784
{
3785
        if (any_slab_objects(s))
3786
                return -EBUSY;
3787
 
3788
        s->flags &= ~SLAB_STORE_USER;
3789
        if (buf[0] == '1')
3790
                s->flags |= SLAB_STORE_USER;
3791
        calculate_sizes(s);
3792
        return length;
3793
}
3794
SLAB_ATTR(store_user);
3795
 
3796
static ssize_t validate_show(struct kmem_cache *s, char *buf)
3797
{
3798
        return 0;
3799
}
3800
 
3801
static ssize_t validate_store(struct kmem_cache *s,
3802
                        const char *buf, size_t length)
3803
{
3804
        int ret = -EINVAL;
3805
 
3806
        if (buf[0] == '1') {
3807
                ret = validate_slab_cache(s);
3808
                if (ret >= 0)
3809
                        ret = length;
3810
        }
3811
        return ret;
3812
}
3813
SLAB_ATTR(validate);
3814
 
3815
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3816
{
3817
        return 0;
3818
}
3819
 
3820
static ssize_t shrink_store(struct kmem_cache *s,
3821
                        const char *buf, size_t length)
3822
{
3823
        if (buf[0] == '1') {
3824
                int rc = kmem_cache_shrink(s);
3825
 
3826
                if (rc)
3827
                        return rc;
3828
        } else
3829
                return -EINVAL;
3830
        return length;
3831
}
3832
SLAB_ATTR(shrink);
3833
 
3834
static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3835
{
3836
        if (!(s->flags & SLAB_STORE_USER))
3837
                return -ENOSYS;
3838
        return list_locations(s, buf, TRACK_ALLOC);
3839
}
3840
SLAB_ATTR_RO(alloc_calls);
3841
 
3842
static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3843
{
3844
        if (!(s->flags & SLAB_STORE_USER))
3845
                return -ENOSYS;
3846
        return list_locations(s, buf, TRACK_FREE);
3847
}
3848
SLAB_ATTR_RO(free_calls);
3849
 
3850
#ifdef CONFIG_NUMA
3851
static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
3852
{
3853
        return sprintf(buf, "%d\n", s->defrag_ratio / 10);
3854
}
3855
 
3856
static ssize_t defrag_ratio_store(struct kmem_cache *s,
3857
                                const char *buf, size_t length)
3858
{
3859
        int n = simple_strtoul(buf, NULL, 10);
3860
 
3861
        if (n < 100)
3862
                s->defrag_ratio = n * 10;
3863
        return length;
3864
}
3865
SLAB_ATTR(defrag_ratio);
3866
#endif
3867
 
3868
static struct attribute * slab_attrs[] = {
3869
        &slab_size_attr.attr,
3870
        &object_size_attr.attr,
3871
        &objs_per_slab_attr.attr,
3872
        &order_attr.attr,
3873
        &objects_attr.attr,
3874
        &slabs_attr.attr,
3875
        &partial_attr.attr,
3876
        &cpu_slabs_attr.attr,
3877
        &ctor_attr.attr,
3878
        &aliases_attr.attr,
3879
        &align_attr.attr,
3880
        &sanity_checks_attr.attr,
3881
        &trace_attr.attr,
3882
        &hwcache_align_attr.attr,
3883
        &reclaim_account_attr.attr,
3884
        &destroy_by_rcu_attr.attr,
3885
        &red_zone_attr.attr,
3886
        &poison_attr.attr,
3887
        &store_user_attr.attr,
3888
        &validate_attr.attr,
3889
        &shrink_attr.attr,
3890
        &alloc_calls_attr.attr,
3891
        &free_calls_attr.attr,
3892
#ifdef CONFIG_ZONE_DMA
3893
        &cache_dma_attr.attr,
3894
#endif
3895
#ifdef CONFIG_NUMA
3896
        &defrag_ratio_attr.attr,
3897
#endif
3898
        NULL
3899
};
3900
 
3901
static struct attribute_group slab_attr_group = {
3902
        .attrs = slab_attrs,
3903
};
3904
 
3905
static ssize_t slab_attr_show(struct kobject *kobj,
3906
                                struct attribute *attr,
3907
                                char *buf)
3908
{
3909
        struct slab_attribute *attribute;
3910
        struct kmem_cache *s;
3911
        int err;
3912
 
3913
        attribute = to_slab_attr(attr);
3914
        s = to_slab(kobj);
3915
 
3916
        if (!attribute->show)
3917
                return -EIO;
3918
 
3919
        err = attribute->show(s, buf);
3920
 
3921
        return err;
3922
}
3923
 
3924
static ssize_t slab_attr_store(struct kobject *kobj,
3925
                                struct attribute *attr,
3926
                                const char *buf, size_t len)
3927
{
3928
        struct slab_attribute *attribute;
3929
        struct kmem_cache *s;
3930
        int err;
3931
 
3932
        attribute = to_slab_attr(attr);
3933
        s = to_slab(kobj);
3934
 
3935
        if (!attribute->store)
3936
                return -EIO;
3937
 
3938
        err = attribute->store(s, buf, len);
3939
 
3940
        return err;
3941
}
3942
 
3943
static struct sysfs_ops slab_sysfs_ops = {
3944
        .show = slab_attr_show,
3945
        .store = slab_attr_store,
3946
};
3947
 
3948
static struct kobj_type slab_ktype = {
3949
        .sysfs_ops = &slab_sysfs_ops,
3950
};
3951
 
3952
static int uevent_filter(struct kset *kset, struct kobject *kobj)
3953
{
3954
        struct kobj_type *ktype = get_ktype(kobj);
3955
 
3956
        if (ktype == &slab_ktype)
3957
                return 1;
3958
        return 0;
3959
}
3960
 
3961
static struct kset_uevent_ops slab_uevent_ops = {
3962
        .filter = uevent_filter,
3963
};
3964
 
3965
static decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
3966
 
3967
#define ID_STR_LENGTH 64
3968
 
3969
/* Create a unique string id for a slab cache:
3970
 * format
3971
 * :[flags-]size:[memory address of kmemcache]
3972
 */
3973
static char *create_unique_id(struct kmem_cache *s)
3974
{
3975
        char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3976
        char *p = name;
3977
 
3978
        BUG_ON(!name);
3979
 
3980
        *p++ = ':';
3981
        /*
3982
         * First flags affecting slabcache operations. We will only
3983
         * get here for aliasable slabs so we do not need to support
3984
         * too many flags. The flags here must cover all flags that
3985
         * are matched during merging to guarantee that the id is
3986
         * unique.
3987
         */
3988
        if (s->flags & SLAB_CACHE_DMA)
3989
                *p++ = 'd';
3990
        if (s->flags & SLAB_RECLAIM_ACCOUNT)
3991
                *p++ = 'a';
3992
        if (s->flags & SLAB_DEBUG_FREE)
3993
                *p++ = 'F';
3994
        if (p != name + 1)
3995
                *p++ = '-';
3996
        p += sprintf(p, "%07d", s->size);
3997
        BUG_ON(p > name + ID_STR_LENGTH - 1);
3998
        return name;
3999
}
4000
 
4001
static int sysfs_slab_add(struct kmem_cache *s)
4002
{
4003
        int err;
4004
        const char *name;
4005
        int unmergeable;
4006
 
4007
        if (slab_state < SYSFS)
4008
                /* Defer until later */
4009
                return 0;
4010
 
4011
        unmergeable = slab_unmergeable(s);
4012
        if (unmergeable) {
4013
                /*
4014
                 * Slabcache can never be merged so we can use the name proper.
4015
                 * This is typically the case for debug situations. In that
4016
                 * case we can catch duplicate names easily.
4017
                 */
4018
                sysfs_remove_link(&slab_subsys.kobj, s->name);
4019
                name = s->name;
4020
        } else {
4021
                /*
4022
                 * Create a unique name for the slab as a target
4023
                 * for the symlinks.
4024
                 */
4025
                name = create_unique_id(s);
4026
        }
4027
 
4028
        kobj_set_kset_s(s, slab_subsys);
4029
        kobject_set_name(&s->kobj, name);
4030
        kobject_init(&s->kobj);
4031
        err = kobject_add(&s->kobj);
4032
        if (err)
4033
                return err;
4034
 
4035
        err = sysfs_create_group(&s->kobj, &slab_attr_group);
4036
        if (err)
4037
                return err;
4038
        kobject_uevent(&s->kobj, KOBJ_ADD);
4039
        if (!unmergeable) {
4040
                /* Setup first alias */
4041
                sysfs_slab_alias(s, s->name);
4042
                kfree(name);
4043
        }
4044
        return 0;
4045
}
4046
 
4047
static void sysfs_slab_remove(struct kmem_cache *s)
4048
{
4049
        kobject_uevent(&s->kobj, KOBJ_REMOVE);
4050
        kobject_del(&s->kobj);
4051
}
4052
 
4053
/*
4054
 * Need to buffer aliases during bootup until sysfs becomes
4055
 * available lest we loose that information.
4056
 */
4057
struct saved_alias {
4058
        struct kmem_cache *s;
4059
        const char *name;
4060
        struct saved_alias *next;
4061
};
4062
 
4063
static struct saved_alias *alias_list;
4064
 
4065
static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4066
{
4067
        struct saved_alias *al;
4068
 
4069
        if (slab_state == SYSFS) {
4070
                /*
4071
                 * If we have a leftover link then remove it.
4072
                 */
4073
                sysfs_remove_link(&slab_subsys.kobj, name);
4074
                return sysfs_create_link(&slab_subsys.kobj,
4075
                                                &s->kobj, name);
4076
        }
4077
 
4078
        al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4079
        if (!al)
4080
                return -ENOMEM;
4081
 
4082
        al->s = s;
4083
        al->name = name;
4084
        al->next = alias_list;
4085
        alias_list = al;
4086
        return 0;
4087
}
4088
 
4089
static int __init slab_sysfs_init(void)
4090
{
4091
        struct kmem_cache *s;
4092
        int err;
4093
 
4094
        err = subsystem_register(&slab_subsys);
4095
        if (err) {
4096
                printk(KERN_ERR "Cannot register slab subsystem.\n");
4097
                return -ENOSYS;
4098
        }
4099
 
4100
        slab_state = SYSFS;
4101
 
4102
        list_for_each_entry(s, &slab_caches, list) {
4103
                err = sysfs_slab_add(s);
4104
                if (err)
4105
                        printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4106
                                                " to sysfs\n", s->name);
4107
        }
4108
 
4109
        while (alias_list) {
4110
                struct saved_alias *al = alias_list;
4111
 
4112
                alias_list = alias_list->next;
4113
                err = sysfs_slab_alias(al->s, al->name);
4114
                if (err)
4115
                        printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4116
                                        " %s to sysfs\n", s->name);
4117
                kfree(al);
4118
        }
4119
 
4120
        resiliency_test();
4121
        return 0;
4122
}
4123
 
4124
__initcall(slab_sysfs_init);
4125
#endif
4126
 
4127
/*
4128
 * The /proc/slabinfo ABI
4129
 */
4130
#ifdef CONFIG_SLABINFO
4131
 
4132
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4133
                       size_t count, loff_t *ppos)
4134
{
4135
        return -EINVAL;
4136
}
4137
 
4138
 
4139
static void print_slabinfo_header(struct seq_file *m)
4140
{
4141
        seq_puts(m, "slabinfo - version: 2.1\n");
4142
        seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4143
                 "<objperslab> <pagesperslab>");
4144
        seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4145
        seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4146
        seq_putc(m, '\n');
4147
}
4148
 
4149
static void *s_start(struct seq_file *m, loff_t *pos)
4150
{
4151
        loff_t n = *pos;
4152
 
4153
        down_read(&slub_lock);
4154
        if (!n)
4155
                print_slabinfo_header(m);
4156
 
4157
        return seq_list_start(&slab_caches, *pos);
4158
}
4159
 
4160
static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4161
{
4162
        return seq_list_next(p, &slab_caches, pos);
4163
}
4164
 
4165
static void s_stop(struct seq_file *m, void *p)
4166
{
4167
        up_read(&slub_lock);
4168
}
4169
 
4170
static int s_show(struct seq_file *m, void *p)
4171
{
4172
        unsigned long nr_partials = 0;
4173
        unsigned long nr_slabs = 0;
4174
        unsigned long nr_inuse = 0;
4175
        unsigned long nr_objs;
4176
        struct kmem_cache *s;
4177
        int node;
4178
 
4179
        s = list_entry(p, struct kmem_cache, list);
4180
 
4181
        for_each_online_node(node) {
4182
                struct kmem_cache_node *n = get_node(s, node);
4183
 
4184
                if (!n)
4185
                        continue;
4186
 
4187
                nr_partials += n->nr_partial;
4188
                nr_slabs += atomic_long_read(&n->nr_slabs);
4189
                nr_inuse += count_partial(n);
4190
        }
4191
 
4192
        nr_objs = nr_slabs * s->objects;
4193
        nr_inuse += (nr_slabs - nr_partials) * s->objects;
4194
 
4195
        seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4196
                   nr_objs, s->size, s->objects, (1 << s->order));
4197
        seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4198
        seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4199
                   0UL);
4200
        seq_putc(m, '\n');
4201
        return 0;
4202
}
4203
 
4204
const struct seq_operations slabinfo_op = {
4205
        .start = s_start,
4206
        .next = s_next,
4207
        .stop = s_stop,
4208
        .show = s_show,
4209
};
4210
 
4211
#endif /* CONFIG_SLABINFO */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.