OpenCores
URL https://opencores.org/ocsvn/or1k_soc_on_altera_embedded_dev_kit/or1k_soc_on_altera_embedded_dev_kit/trunk

Subversion Repositories or1k_soc_on_altera_embedded_dev_kit

[/] [or1k_soc_on_altera_embedded_dev_kit/] [trunk/] [linux-2.6/] [linux-2.6.24/] [net/] [ipv6/] [ip6_fib.c] - Blame information for rev 3

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 3 xianfeng
/*
2
 *      Linux INET6 implementation
3
 *      Forwarding Information Database
4
 *
5
 *      Authors:
6
 *      Pedro Roque             <roque@di.fc.ul.pt>
7
 *
8
 *      $Id: ip6_fib.c,v 1.25 2001/10/31 21:55:55 davem Exp $
9
 *
10
 *      This program is free software; you can redistribute it and/or
11
 *      modify it under the terms of the GNU General Public License
12
 *      as published by the Free Software Foundation; either version
13
 *      2 of the License, or (at your option) any later version.
14
 */
15
 
16
/*
17
 *      Changes:
18
 *      Yuji SEKIYA @USAGI:     Support default route on router node;
19
 *                              remove ip6_null_entry from the top of
20
 *                              routing table.
21
 *      Ville Nuorvala:         Fixed routing subtrees.
22
 */
23
#include <linux/errno.h>
24
#include <linux/types.h>
25
#include <linux/net.h>
26
#include <linux/route.h>
27
#include <linux/netdevice.h>
28
#include <linux/in6.h>
29
#include <linux/init.h>
30
#include <linux/list.h>
31
 
32
#ifdef  CONFIG_PROC_FS
33
#include <linux/proc_fs.h>
34
#endif
35
 
36
#include <net/ipv6.h>
37
#include <net/ndisc.h>
38
#include <net/addrconf.h>
39
 
40
#include <net/ip6_fib.h>
41
#include <net/ip6_route.h>
42
 
43
#define RT6_DEBUG 2
44
 
45
#if RT6_DEBUG >= 3
46
#define RT6_TRACE(x...) printk(KERN_DEBUG x)
47
#else
48
#define RT6_TRACE(x...) do { ; } while (0)
49
#endif
50
 
51
struct rt6_statistics   rt6_stats;
52
 
53
static struct kmem_cache * fib6_node_kmem __read_mostly;
54
 
55
enum fib_walk_state_t
56
{
57
#ifdef CONFIG_IPV6_SUBTREES
58
        FWS_S,
59
#endif
60
        FWS_L,
61
        FWS_R,
62
        FWS_C,
63
        FWS_U
64
};
65
 
66
struct fib6_cleaner_t
67
{
68
        struct fib6_walker_t w;
69
        int (*func)(struct rt6_info *, void *arg);
70
        void *arg;
71
};
72
 
73
static DEFINE_RWLOCK(fib6_walker_lock);
74
 
75
#ifdef CONFIG_IPV6_SUBTREES
76
#define FWS_INIT FWS_S
77
#else
78
#define FWS_INIT FWS_L
79
#endif
80
 
81
static void fib6_prune_clones(struct fib6_node *fn, struct rt6_info *rt);
82
static struct rt6_info * fib6_find_prefix(struct fib6_node *fn);
83
static struct fib6_node * fib6_repair_tree(struct fib6_node *fn);
84
static int fib6_walk(struct fib6_walker_t *w);
85
static int fib6_walk_continue(struct fib6_walker_t *w);
86
 
87
/*
88
 *      A routing update causes an increase of the serial number on the
89
 *      affected subtree. This allows for cached routes to be asynchronously
90
 *      tested when modifications are made to the destination cache as a
91
 *      result of redirects, path MTU changes, etc.
92
 */
93
 
94
static __u32 rt_sernum;
95
 
96
static DEFINE_TIMER(ip6_fib_timer, fib6_run_gc, 0, 0);
97
 
98
static struct fib6_walker_t fib6_walker_list = {
99
        .prev   = &fib6_walker_list,
100
        .next   = &fib6_walker_list,
101
};
102
 
103
#define FOR_WALKERS(w) for ((w)=fib6_walker_list.next; (w) != &fib6_walker_list; (w)=(w)->next)
104
 
105
static inline void fib6_walker_link(struct fib6_walker_t *w)
106
{
107
        write_lock_bh(&fib6_walker_lock);
108
        w->next = fib6_walker_list.next;
109
        w->prev = &fib6_walker_list;
110
        w->next->prev = w;
111
        w->prev->next = w;
112
        write_unlock_bh(&fib6_walker_lock);
113
}
114
 
115
static inline void fib6_walker_unlink(struct fib6_walker_t *w)
116
{
117
        write_lock_bh(&fib6_walker_lock);
118
        w->next->prev = w->prev;
119
        w->prev->next = w->next;
120
        w->prev = w->next = w;
121
        write_unlock_bh(&fib6_walker_lock);
122
}
123
static __inline__ u32 fib6_new_sernum(void)
124
{
125
        u32 n = ++rt_sernum;
126
        if ((__s32)n <= 0)
127
                rt_sernum = n = 1;
128
        return n;
129
}
130
 
131
/*
132
 *      Auxiliary address test functions for the radix tree.
133
 *
134
 *      These assume a 32bit processor (although it will work on
135
 *      64bit processors)
136
 */
137
 
138
/*
139
 *      test bit
140
 */
141
 
142
static __inline__ __be32 addr_bit_set(void *token, int fn_bit)
143
{
144
        __be32 *addr = token;
145
 
146
        return htonl(1 << ((~fn_bit)&0x1F)) & addr[fn_bit>>5];
147
}
148
 
149
static __inline__ struct fib6_node * node_alloc(void)
150
{
151
        struct fib6_node *fn;
152
 
153
        fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
154
 
155
        return fn;
156
}
157
 
158
static __inline__ void node_free(struct fib6_node * fn)
159
{
160
        kmem_cache_free(fib6_node_kmem, fn);
161
}
162
 
163
static __inline__ void rt6_release(struct rt6_info *rt)
164
{
165
        if (atomic_dec_and_test(&rt->rt6i_ref))
166
                dst_free(&rt->u.dst);
167
}
168
 
169
static struct fib6_table fib6_main_tbl = {
170
        .tb6_id         = RT6_TABLE_MAIN,
171
        .tb6_root       = {
172
                .leaf           = &ip6_null_entry,
173
                .fn_flags       = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO,
174
        },
175
};
176
 
177
#ifdef CONFIG_IPV6_MULTIPLE_TABLES
178
#define FIB_TABLE_HASHSZ 256
179
#else
180
#define FIB_TABLE_HASHSZ 1
181
#endif
182
static struct hlist_head fib_table_hash[FIB_TABLE_HASHSZ];
183
 
184
static void fib6_link_table(struct fib6_table *tb)
185
{
186
        unsigned int h;
187
 
188
        /*
189
         * Initialize table lock at a single place to give lockdep a key,
190
         * tables aren't visible prior to being linked to the list.
191
         */
192
        rwlock_init(&tb->tb6_lock);
193
 
194
        h = tb->tb6_id & (FIB_TABLE_HASHSZ - 1);
195
 
196
        /*
197
         * No protection necessary, this is the only list mutatation
198
         * operation, tables never disappear once they exist.
199
         */
200
        hlist_add_head_rcu(&tb->tb6_hlist, &fib_table_hash[h]);
201
}
202
 
203
#ifdef CONFIG_IPV6_MULTIPLE_TABLES
204
static struct fib6_table fib6_local_tbl = {
205
        .tb6_id         = RT6_TABLE_LOCAL,
206
        .tb6_root       = {
207
                .leaf           = &ip6_null_entry,
208
                .fn_flags       = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO,
209
        },
210
};
211
 
212
static struct fib6_table *fib6_alloc_table(u32 id)
213
{
214
        struct fib6_table *table;
215
 
216
        table = kzalloc(sizeof(*table), GFP_ATOMIC);
217
        if (table != NULL) {
218
                table->tb6_id = id;
219
                table->tb6_root.leaf = &ip6_null_entry;
220
                table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
221
        }
222
 
223
        return table;
224
}
225
 
226
struct fib6_table *fib6_new_table(u32 id)
227
{
228
        struct fib6_table *tb;
229
 
230
        if (id == 0)
231
                id = RT6_TABLE_MAIN;
232
        tb = fib6_get_table(id);
233
        if (tb)
234
                return tb;
235
 
236
        tb = fib6_alloc_table(id);
237
        if (tb != NULL)
238
                fib6_link_table(tb);
239
 
240
        return tb;
241
}
242
 
243
struct fib6_table *fib6_get_table(u32 id)
244
{
245
        struct fib6_table *tb;
246
        struct hlist_node *node;
247
        unsigned int h;
248
 
249
        if (id == 0)
250
                id = RT6_TABLE_MAIN;
251
        h = id & (FIB_TABLE_HASHSZ - 1);
252
        rcu_read_lock();
253
        hlist_for_each_entry_rcu(tb, node, &fib_table_hash[h], tb6_hlist) {
254
                if (tb->tb6_id == id) {
255
                        rcu_read_unlock();
256
                        return tb;
257
                }
258
        }
259
        rcu_read_unlock();
260
 
261
        return NULL;
262
}
263
 
264
static void __init fib6_tables_init(void)
265
{
266
        fib6_link_table(&fib6_main_tbl);
267
        fib6_link_table(&fib6_local_tbl);
268
}
269
 
270
#else
271
 
272
struct fib6_table *fib6_new_table(u32 id)
273
{
274
        return fib6_get_table(id);
275
}
276
 
277
struct fib6_table *fib6_get_table(u32 id)
278
{
279
        return &fib6_main_tbl;
280
}
281
 
282
struct dst_entry *fib6_rule_lookup(struct flowi *fl, int flags,
283
                                   pol_lookup_t lookup)
284
{
285
        return (struct dst_entry *) lookup(&fib6_main_tbl, fl, flags);
286
}
287
 
288
static void __init fib6_tables_init(void)
289
{
290
        fib6_link_table(&fib6_main_tbl);
291
}
292
 
293
#endif
294
 
295
static int fib6_dump_node(struct fib6_walker_t *w)
296
{
297
        int res;
298
        struct rt6_info *rt;
299
 
300
        for (rt = w->leaf; rt; rt = rt->u.dst.rt6_next) {
301
                res = rt6_dump_route(rt, w->args);
302
                if (res < 0) {
303
                        /* Frame is full, suspend walking */
304
                        w->leaf = rt;
305
                        return 1;
306
                }
307
                BUG_TRAP(res!=0);
308
        }
309
        w->leaf = NULL;
310
        return 0;
311
}
312
 
313
static void fib6_dump_end(struct netlink_callback *cb)
314
{
315
        struct fib6_walker_t *w = (void*)cb->args[2];
316
 
317
        if (w) {
318
                cb->args[2] = 0;
319
                kfree(w);
320
        }
321
        cb->done = (void*)cb->args[3];
322
        cb->args[1] = 3;
323
}
324
 
325
static int fib6_dump_done(struct netlink_callback *cb)
326
{
327
        fib6_dump_end(cb);
328
        return cb->done ? cb->done(cb) : 0;
329
}
330
 
331
static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
332
                           struct netlink_callback *cb)
333
{
334
        struct fib6_walker_t *w;
335
        int res;
336
 
337
        w = (void *)cb->args[2];
338
        w->root = &table->tb6_root;
339
 
340
        if (cb->args[4] == 0) {
341
                read_lock_bh(&table->tb6_lock);
342
                res = fib6_walk(w);
343
                read_unlock_bh(&table->tb6_lock);
344
                if (res > 0)
345
                        cb->args[4] = 1;
346
        } else {
347
                read_lock_bh(&table->tb6_lock);
348
                res = fib6_walk_continue(w);
349
                read_unlock_bh(&table->tb6_lock);
350
                if (res != 0) {
351
                        if (res < 0)
352
                                fib6_walker_unlink(w);
353
                        goto end;
354
                }
355
                fib6_walker_unlink(w);
356
                cb->args[4] = 0;
357
        }
358
end:
359
        return res;
360
}
361
 
362
static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
363
{
364
        unsigned int h, s_h;
365
        unsigned int e = 0, s_e;
366
        struct rt6_rtnl_dump_arg arg;
367
        struct fib6_walker_t *w;
368
        struct fib6_table *tb;
369
        struct hlist_node *node;
370
        int res = 0;
371
 
372
        s_h = cb->args[0];
373
        s_e = cb->args[1];
374
 
375
        w = (void *)cb->args[2];
376
        if (w == NULL) {
377
                /* New dump:
378
                 *
379
                 * 1. hook callback destructor.
380
                 */
381
                cb->args[3] = (long)cb->done;
382
                cb->done = fib6_dump_done;
383
 
384
                /*
385
                 * 2. allocate and initialize walker.
386
                 */
387
                w = kzalloc(sizeof(*w), GFP_ATOMIC);
388
                if (w == NULL)
389
                        return -ENOMEM;
390
                w->func = fib6_dump_node;
391
                cb->args[2] = (long)w;
392
        }
393
 
394
        arg.skb = skb;
395
        arg.cb = cb;
396
        w->args = &arg;
397
 
398
        for (h = s_h; h < FIB_TABLE_HASHSZ; h++, s_e = 0) {
399
                e = 0;
400
                hlist_for_each_entry(tb, node, &fib_table_hash[h], tb6_hlist) {
401
                        if (e < s_e)
402
                                goto next;
403
                        res = fib6_dump_table(tb, skb, cb);
404
                        if (res != 0)
405
                                goto out;
406
next:
407
                        e++;
408
                }
409
        }
410
out:
411
        cb->args[1] = e;
412
        cb->args[0] = h;
413
 
414
        res = res < 0 ? res : skb->len;
415
        if (res <= 0)
416
                fib6_dump_end(cb);
417
        return res;
418
}
419
 
420
/*
421
 *      Routing Table
422
 *
423
 *      return the appropriate node for a routing tree "add" operation
424
 *      by either creating and inserting or by returning an existing
425
 *      node.
426
 */
427
 
428
static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
429
                                     int addrlen, int plen,
430
                                     int offset)
431
{
432
        struct fib6_node *fn, *in, *ln;
433
        struct fib6_node *pn = NULL;
434
        struct rt6key *key;
435
        int     bit;
436
        __be32  dir = 0;
437
        __u32   sernum = fib6_new_sernum();
438
 
439
        RT6_TRACE("fib6_add_1\n");
440
 
441
        /* insert node in tree */
442
 
443
        fn = root;
444
 
445
        do {
446
                key = (struct rt6key *)((u8 *)fn->leaf + offset);
447
 
448
                /*
449
                 *      Prefix match
450
                 */
451
                if (plen < fn->fn_bit ||
452
                    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
453
                        goto insert_above;
454
 
455
                /*
456
                 *      Exact match ?
457
                 */
458
 
459
                if (plen == fn->fn_bit) {
460
                        /* clean up an intermediate node */
461
                        if ((fn->fn_flags & RTN_RTINFO) == 0) {
462
                                rt6_release(fn->leaf);
463
                                fn->leaf = NULL;
464
                        }
465
 
466
                        fn->fn_sernum = sernum;
467
 
468
                        return fn;
469
                }
470
 
471
                /*
472
                 *      We have more bits to go
473
                 */
474
 
475
                /* Try to walk down on tree. */
476
                fn->fn_sernum = sernum;
477
                dir = addr_bit_set(addr, fn->fn_bit);
478
                pn = fn;
479
                fn = dir ? fn->right: fn->left;
480
        } while (fn);
481
 
482
        /*
483
         *      We walked to the bottom of tree.
484
         *      Create new leaf node without children.
485
         */
486
 
487
        ln = node_alloc();
488
 
489
        if (ln == NULL)
490
                return NULL;
491
        ln->fn_bit = plen;
492
 
493
        ln->parent = pn;
494
        ln->fn_sernum = sernum;
495
 
496
        if (dir)
497
                pn->right = ln;
498
        else
499
                pn->left  = ln;
500
 
501
        return ln;
502
 
503
 
504
insert_above:
505
        /*
506
         * split since we don't have a common prefix anymore or
507
         * we have a less significant route.
508
         * we've to insert an intermediate node on the list
509
         * this new node will point to the one we need to create
510
         * and the current
511
         */
512
 
513
        pn = fn->parent;
514
 
515
        /* find 1st bit in difference between the 2 addrs.
516
 
517
           See comment in __ipv6_addr_diff: bit may be an invalid value,
518
           but if it is >= plen, the value is ignored in any case.
519
         */
520
 
521
        bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
522
 
523
        /*
524
         *              (intermediate)[in]
525
         *                /        \
526
         *      (new leaf node)[ln] (old node)[fn]
527
         */
528
        if (plen > bit) {
529
                in = node_alloc();
530
                ln = node_alloc();
531
 
532
                if (in == NULL || ln == NULL) {
533
                        if (in)
534
                                node_free(in);
535
                        if (ln)
536
                                node_free(ln);
537
                        return NULL;
538
                }
539
 
540
                /*
541
                 * new intermediate node.
542
                 * RTN_RTINFO will
543
                 * be off since that an address that chooses one of
544
                 * the branches would not match less specific routes
545
                 * in the other branch
546
                 */
547
 
548
                in->fn_bit = bit;
549
 
550
                in->parent = pn;
551
                in->leaf = fn->leaf;
552
                atomic_inc(&in->leaf->rt6i_ref);
553
 
554
                in->fn_sernum = sernum;
555
 
556
                /* update parent pointer */
557
                if (dir)
558
                        pn->right = in;
559
                else
560
                        pn->left  = in;
561
 
562
                ln->fn_bit = plen;
563
 
564
                ln->parent = in;
565
                fn->parent = in;
566
 
567
                ln->fn_sernum = sernum;
568
 
569
                if (addr_bit_set(addr, bit)) {
570
                        in->right = ln;
571
                        in->left  = fn;
572
                } else {
573
                        in->left  = ln;
574
                        in->right = fn;
575
                }
576
        } else { /* plen <= bit */
577
 
578
                /*
579
                 *              (new leaf node)[ln]
580
                 *                /        \
581
                 *           (old node)[fn] NULL
582
                 */
583
 
584
                ln = node_alloc();
585
 
586
                if (ln == NULL)
587
                        return NULL;
588
 
589
                ln->fn_bit = plen;
590
 
591
                ln->parent = pn;
592
 
593
                ln->fn_sernum = sernum;
594
 
595
                if (dir)
596
                        pn->right = ln;
597
                else
598
                        pn->left  = ln;
599
 
600
                if (addr_bit_set(&key->addr, plen))
601
                        ln->right = fn;
602
                else
603
                        ln->left  = fn;
604
 
605
                fn->parent = ln;
606
        }
607
        return ln;
608
}
609
 
610
/*
611
 *      Insert routing information in a node.
612
 */
613
 
614
static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
615
                            struct nl_info *info)
616
{
617
        struct rt6_info *iter = NULL;
618
        struct rt6_info **ins;
619
 
620
        ins = &fn->leaf;
621
 
622
        for (iter = fn->leaf; iter; iter=iter->u.dst.rt6_next) {
623
                /*
624
                 *      Search for duplicates
625
                 */
626
 
627
                if (iter->rt6i_metric == rt->rt6i_metric) {
628
                        /*
629
                         *      Same priority level
630
                         */
631
 
632
                        if (iter->rt6i_dev == rt->rt6i_dev &&
633
                            iter->rt6i_idev == rt->rt6i_idev &&
634
                            ipv6_addr_equal(&iter->rt6i_gateway,
635
                                            &rt->rt6i_gateway)) {
636
                                if (!(iter->rt6i_flags&RTF_EXPIRES))
637
                                        return -EEXIST;
638
                                iter->rt6i_expires = rt->rt6i_expires;
639
                                if (!(rt->rt6i_flags&RTF_EXPIRES)) {
640
                                        iter->rt6i_flags &= ~RTF_EXPIRES;
641
                                        iter->rt6i_expires = 0;
642
                                }
643
                                return -EEXIST;
644
                        }
645
                }
646
 
647
                if (iter->rt6i_metric > rt->rt6i_metric)
648
                        break;
649
 
650
                ins = &iter->u.dst.rt6_next;
651
        }
652
 
653
        /* Reset round-robin state, if necessary */
654
        if (ins == &fn->leaf)
655
                fn->rr_ptr = NULL;
656
 
657
        /*
658
         *      insert node
659
         */
660
 
661
        rt->u.dst.rt6_next = iter;
662
        *ins = rt;
663
        rt->rt6i_node = fn;
664
        atomic_inc(&rt->rt6i_ref);
665
        inet6_rt_notify(RTM_NEWROUTE, rt, info);
666
        rt6_stats.fib_rt_entries++;
667
 
668
        if ((fn->fn_flags & RTN_RTINFO) == 0) {
669
                rt6_stats.fib_route_nodes++;
670
                fn->fn_flags |= RTN_RTINFO;
671
        }
672
 
673
        return 0;
674
}
675
 
676
static __inline__ void fib6_start_gc(struct rt6_info *rt)
677
{
678
        if (ip6_fib_timer.expires == 0 &&
679
            (rt->rt6i_flags & (RTF_EXPIRES|RTF_CACHE)))
680
                mod_timer(&ip6_fib_timer, jiffies + ip6_rt_gc_interval);
681
}
682
 
683
void fib6_force_start_gc(void)
684
{
685
        if (ip6_fib_timer.expires == 0)
686
                mod_timer(&ip6_fib_timer, jiffies + ip6_rt_gc_interval);
687
}
688
 
689
/*
690
 *      Add routing information to the routing tree.
691
 *      <destination addr>/<source addr>
692
 *      with source addr info in sub-trees
693
 */
694
 
695
int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info)
696
{
697
        struct fib6_node *fn, *pn = NULL;
698
        int err = -ENOMEM;
699
 
700
        fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
701
                        rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst));
702
 
703
        if (fn == NULL)
704
                goto out;
705
 
706
        pn = fn;
707
 
708
#ifdef CONFIG_IPV6_SUBTREES
709
        if (rt->rt6i_src.plen) {
710
                struct fib6_node *sn;
711
 
712
                if (fn->subtree == NULL) {
713
                        struct fib6_node *sfn;
714
 
715
                        /*
716
                         * Create subtree.
717
                         *
718
                         *              fn[main tree]
719
                         *              |
720
                         *              sfn[subtree root]
721
                         *                 \
722
                         *                  sn[new leaf node]
723
                         */
724
 
725
                        /* Create subtree root node */
726
                        sfn = node_alloc();
727
                        if (sfn == NULL)
728
                                goto st_failure;
729
 
730
                        sfn->leaf = &ip6_null_entry;
731
                        atomic_inc(&ip6_null_entry.rt6i_ref);
732
                        sfn->fn_flags = RTN_ROOT;
733
                        sfn->fn_sernum = fib6_new_sernum();
734
 
735
                        /* Now add the first leaf node to new subtree */
736
 
737
                        sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
738
                                        sizeof(struct in6_addr), rt->rt6i_src.plen,
739
                                        offsetof(struct rt6_info, rt6i_src));
740
 
741
                        if (sn == NULL) {
742
                                /* If it is failed, discard just allocated
743
                                   root, and then (in st_failure) stale node
744
                                   in main tree.
745
                                 */
746
                                node_free(sfn);
747
                                goto st_failure;
748
                        }
749
 
750
                        /* Now link new subtree to main tree */
751
                        sfn->parent = fn;
752
                        fn->subtree = sfn;
753
                } else {
754
                        sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
755
                                        sizeof(struct in6_addr), rt->rt6i_src.plen,
756
                                        offsetof(struct rt6_info, rt6i_src));
757
 
758
                        if (sn == NULL)
759
                                goto st_failure;
760
                }
761
 
762
                if (fn->leaf == NULL) {
763
                        fn->leaf = rt;
764
                        atomic_inc(&rt->rt6i_ref);
765
                }
766
                fn = sn;
767
        }
768
#endif
769
 
770
        err = fib6_add_rt2node(fn, rt, info);
771
 
772
        if (err == 0) {
773
                fib6_start_gc(rt);
774
                if (!(rt->rt6i_flags&RTF_CACHE))
775
                        fib6_prune_clones(pn, rt);
776
        }
777
 
778
out:
779
        if (err) {
780
#ifdef CONFIG_IPV6_SUBTREES
781
                /*
782
                 * If fib6_add_1 has cleared the old leaf pointer in the
783
                 * super-tree leaf node we have to find a new one for it.
784
                 */
785
                if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
786
                        pn->leaf = fib6_find_prefix(pn);
787
#if RT6_DEBUG >= 2
788
                        if (!pn->leaf) {
789
                                BUG_TRAP(pn->leaf != NULL);
790
                                pn->leaf = &ip6_null_entry;
791
                        }
792
#endif
793
                        atomic_inc(&pn->leaf->rt6i_ref);
794
                }
795
#endif
796
                dst_free(&rt->u.dst);
797
        }
798
        return err;
799
 
800
#ifdef CONFIG_IPV6_SUBTREES
801
        /* Subtree creation failed, probably main tree node
802
           is orphan. If it is, shoot it.
803
         */
804
st_failure:
805
        if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
806
                fib6_repair_tree(fn);
807
        dst_free(&rt->u.dst);
808
        return err;
809
#endif
810
}
811
 
812
/*
813
 *      Routing tree lookup
814
 *
815
 */
816
 
817
struct lookup_args {
818
        int             offset;         /* key offset on rt6_info       */
819
        struct in6_addr *addr;          /* search key                   */
820
};
821
 
822
static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
823
                                        struct lookup_args *args)
824
{
825
        struct fib6_node *fn;
826
        __be32 dir;
827
 
828
        if (unlikely(args->offset == 0))
829
                return NULL;
830
 
831
        /*
832
         *      Descend on a tree
833
         */
834
 
835
        fn = root;
836
 
837
        for (;;) {
838
                struct fib6_node *next;
839
 
840
                dir = addr_bit_set(args->addr, fn->fn_bit);
841
 
842
                next = dir ? fn->right : fn->left;
843
 
844
                if (next) {
845
                        fn = next;
846
                        continue;
847
                }
848
 
849
                break;
850
        }
851
 
852
        while(fn) {
853
                if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
854
                        struct rt6key *key;
855
 
856
                        key = (struct rt6key *) ((u8 *) fn->leaf +
857
                                                 args->offset);
858
 
859
                        if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
860
#ifdef CONFIG_IPV6_SUBTREES
861
                                if (fn->subtree)
862
                                        fn = fib6_lookup_1(fn->subtree, args + 1);
863
#endif
864
                                if (!fn || fn->fn_flags & RTN_RTINFO)
865
                                        return fn;
866
                        }
867
                }
868
 
869
                if (fn->fn_flags & RTN_ROOT)
870
                        break;
871
 
872
                fn = fn->parent;
873
        }
874
 
875
        return NULL;
876
}
877
 
878
struct fib6_node * fib6_lookup(struct fib6_node *root, struct in6_addr *daddr,
879
                               struct in6_addr *saddr)
880
{
881
        struct fib6_node *fn;
882
        struct lookup_args args[] = {
883
                {
884
                        .offset = offsetof(struct rt6_info, rt6i_dst),
885
                        .addr = daddr,
886
                },
887
#ifdef CONFIG_IPV6_SUBTREES
888
                {
889
                        .offset = offsetof(struct rt6_info, rt6i_src),
890
                        .addr = saddr,
891
                },
892
#endif
893
                {
894
                        .offset = 0,     /* sentinel */
895
                }
896
        };
897
 
898
        fn = fib6_lookup_1(root, daddr ? args : args + 1);
899
 
900
        if (fn == NULL || fn->fn_flags & RTN_TL_ROOT)
901
                fn = root;
902
 
903
        return fn;
904
}
905
 
906
/*
907
 *      Get node with specified destination prefix (and source prefix,
908
 *      if subtrees are used)
909
 */
910
 
911
 
912
static struct fib6_node * fib6_locate_1(struct fib6_node *root,
913
                                        struct in6_addr *addr,
914
                                        int plen, int offset)
915
{
916
        struct fib6_node *fn;
917
 
918
        for (fn = root; fn ; ) {
919
                struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
920
 
921
                /*
922
                 *      Prefix match
923
                 */
924
                if (plen < fn->fn_bit ||
925
                    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
926
                        return NULL;
927
 
928
                if (plen == fn->fn_bit)
929
                        return fn;
930
 
931
                /*
932
                 *      We have more bits to go
933
                 */
934
                if (addr_bit_set(addr, fn->fn_bit))
935
                        fn = fn->right;
936
                else
937
                        fn = fn->left;
938
        }
939
        return NULL;
940
}
941
 
942
struct fib6_node * fib6_locate(struct fib6_node *root,
943
                               struct in6_addr *daddr, int dst_len,
944
                               struct in6_addr *saddr, int src_len)
945
{
946
        struct fib6_node *fn;
947
 
948
        fn = fib6_locate_1(root, daddr, dst_len,
949
                           offsetof(struct rt6_info, rt6i_dst));
950
 
951
#ifdef CONFIG_IPV6_SUBTREES
952
        if (src_len) {
953
                BUG_TRAP(saddr!=NULL);
954
                if (fn && fn->subtree)
955
                        fn = fib6_locate_1(fn->subtree, saddr, src_len,
956
                                           offsetof(struct rt6_info, rt6i_src));
957
        }
958
#endif
959
 
960
        if (fn && fn->fn_flags&RTN_RTINFO)
961
                return fn;
962
 
963
        return NULL;
964
}
965
 
966
 
967
/*
968
 *      Deletion
969
 *
970
 */
971
 
972
static struct rt6_info * fib6_find_prefix(struct fib6_node *fn)
973
{
974
        if (fn->fn_flags&RTN_ROOT)
975
                return &ip6_null_entry;
976
 
977
        while(fn) {
978
                if(fn->left)
979
                        return fn->left->leaf;
980
 
981
                if(fn->right)
982
                        return fn->right->leaf;
983
 
984
                fn = FIB6_SUBTREE(fn);
985
        }
986
        return NULL;
987
}
988
 
989
/*
990
 *      Called to trim the tree of intermediate nodes when possible. "fn"
991
 *      is the node we want to try and remove.
992
 */
993
 
994
static struct fib6_node * fib6_repair_tree(struct fib6_node *fn)
995
{
996
        int children;
997
        int nstate;
998
        struct fib6_node *child, *pn;
999
        struct fib6_walker_t *w;
1000
        int iter = 0;
1001
 
1002
        for (;;) {
1003
                RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1004
                iter++;
1005
 
1006
                BUG_TRAP(!(fn->fn_flags&RTN_RTINFO));
1007
                BUG_TRAP(!(fn->fn_flags&RTN_TL_ROOT));
1008
                BUG_TRAP(fn->leaf==NULL);
1009
 
1010
                children = 0;
1011
                child = NULL;
1012
                if (fn->right) child = fn->right, children |= 1;
1013
                if (fn->left) child = fn->left, children |= 2;
1014
 
1015
                if (children == 3 || FIB6_SUBTREE(fn)
1016
#ifdef CONFIG_IPV6_SUBTREES
1017
                    /* Subtree root (i.e. fn) may have one child */
1018
                    || (children && fn->fn_flags&RTN_ROOT)
1019
#endif
1020
                    ) {
1021
                        fn->leaf = fib6_find_prefix(fn);
1022
#if RT6_DEBUG >= 2
1023
                        if (fn->leaf==NULL) {
1024
                                BUG_TRAP(fn->leaf);
1025
                                fn->leaf = &ip6_null_entry;
1026
                        }
1027
#endif
1028
                        atomic_inc(&fn->leaf->rt6i_ref);
1029
                        return fn->parent;
1030
                }
1031
 
1032
                pn = fn->parent;
1033
#ifdef CONFIG_IPV6_SUBTREES
1034
                if (FIB6_SUBTREE(pn) == fn) {
1035
                        BUG_TRAP(fn->fn_flags&RTN_ROOT);
1036
                        FIB6_SUBTREE(pn) = NULL;
1037
                        nstate = FWS_L;
1038
                } else {
1039
                        BUG_TRAP(!(fn->fn_flags&RTN_ROOT));
1040
#endif
1041
                        if (pn->right == fn) pn->right = child;
1042
                        else if (pn->left == fn) pn->left = child;
1043
#if RT6_DEBUG >= 2
1044
                        else BUG_TRAP(0);
1045
#endif
1046
                        if (child)
1047
                                child->parent = pn;
1048
                        nstate = FWS_R;
1049
#ifdef CONFIG_IPV6_SUBTREES
1050
                }
1051
#endif
1052
 
1053
                read_lock(&fib6_walker_lock);
1054
                FOR_WALKERS(w) {
1055
                        if (child == NULL) {
1056
                                if (w->root == fn) {
1057
                                        w->root = w->node = NULL;
1058
                                        RT6_TRACE("W %p adjusted by delroot 1\n", w);
1059
                                } else if (w->node == fn) {
1060
                                        RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1061
                                        w->node = pn;
1062
                                        w->state = nstate;
1063
                                }
1064
                        } else {
1065
                                if (w->root == fn) {
1066
                                        w->root = child;
1067
                                        RT6_TRACE("W %p adjusted by delroot 2\n", w);
1068
                                }
1069
                                if (w->node == fn) {
1070
                                        w->node = child;
1071
                                        if (children&2) {
1072
                                                RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1073
                                                w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
1074
                                        } else {
1075
                                                RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1076
                                                w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
1077
                                        }
1078
                                }
1079
                        }
1080
                }
1081
                read_unlock(&fib6_walker_lock);
1082
 
1083
                node_free(fn);
1084
                if (pn->fn_flags&RTN_RTINFO || FIB6_SUBTREE(pn))
1085
                        return pn;
1086
 
1087
                rt6_release(pn->leaf);
1088
                pn->leaf = NULL;
1089
                fn = pn;
1090
        }
1091
}
1092
 
1093
static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1094
                           struct nl_info *info)
1095
{
1096
        struct fib6_walker_t *w;
1097
        struct rt6_info *rt = *rtp;
1098
 
1099
        RT6_TRACE("fib6_del_route\n");
1100
 
1101
        /* Unlink it */
1102
        *rtp = rt->u.dst.rt6_next;
1103
        rt->rt6i_node = NULL;
1104
        rt6_stats.fib_rt_entries--;
1105
        rt6_stats.fib_discarded_routes++;
1106
 
1107
        /* Reset round-robin state, if necessary */
1108
        if (fn->rr_ptr == rt)
1109
                fn->rr_ptr = NULL;
1110
 
1111
        /* Adjust walkers */
1112
        read_lock(&fib6_walker_lock);
1113
        FOR_WALKERS(w) {
1114
                if (w->state == FWS_C && w->leaf == rt) {
1115
                        RT6_TRACE("walker %p adjusted by delroute\n", w);
1116
                        w->leaf = rt->u.dst.rt6_next;
1117
                        if (w->leaf == NULL)
1118
                                w->state = FWS_U;
1119
                }
1120
        }
1121
        read_unlock(&fib6_walker_lock);
1122
 
1123
        rt->u.dst.rt6_next = NULL;
1124
 
1125
        if (fn->leaf == NULL && fn->fn_flags&RTN_TL_ROOT)
1126
                fn->leaf = &ip6_null_entry;
1127
 
1128
        /* If it was last route, expunge its radix tree node */
1129
        if (fn->leaf == NULL) {
1130
                fn->fn_flags &= ~RTN_RTINFO;
1131
                rt6_stats.fib_route_nodes--;
1132
                fn = fib6_repair_tree(fn);
1133
        }
1134
 
1135
        if (atomic_read(&rt->rt6i_ref) != 1) {
1136
                /* This route is used as dummy address holder in some split
1137
                 * nodes. It is not leaked, but it still holds other resources,
1138
                 * which must be released in time. So, scan ascendant nodes
1139
                 * and replace dummy references to this route with references
1140
                 * to still alive ones.
1141
                 */
1142
                while (fn) {
1143
                        if (!(fn->fn_flags&RTN_RTINFO) && fn->leaf == rt) {
1144
                                fn->leaf = fib6_find_prefix(fn);
1145
                                atomic_inc(&fn->leaf->rt6i_ref);
1146
                                rt6_release(rt);
1147
                        }
1148
                        fn = fn->parent;
1149
                }
1150
                /* No more references are possible at this point. */
1151
                if (atomic_read(&rt->rt6i_ref) != 1) BUG();
1152
        }
1153
 
1154
        inet6_rt_notify(RTM_DELROUTE, rt, info);
1155
        rt6_release(rt);
1156
}
1157
 
1158
int fib6_del(struct rt6_info *rt, struct nl_info *info)
1159
{
1160
        struct fib6_node *fn = rt->rt6i_node;
1161
        struct rt6_info **rtp;
1162
 
1163
#if RT6_DEBUG >= 2
1164
        if (rt->u.dst.obsolete>0) {
1165
                BUG_TRAP(fn==NULL);
1166
                return -ENOENT;
1167
        }
1168
#endif
1169
        if (fn == NULL || rt == &ip6_null_entry)
1170
                return -ENOENT;
1171
 
1172
        BUG_TRAP(fn->fn_flags&RTN_RTINFO);
1173
 
1174
        if (!(rt->rt6i_flags&RTF_CACHE)) {
1175
                struct fib6_node *pn = fn;
1176
#ifdef CONFIG_IPV6_SUBTREES
1177
                /* clones of this route might be in another subtree */
1178
                if (rt->rt6i_src.plen) {
1179
                        while (!(pn->fn_flags&RTN_ROOT))
1180
                                pn = pn->parent;
1181
                        pn = pn->parent;
1182
                }
1183
#endif
1184
                fib6_prune_clones(pn, rt);
1185
        }
1186
 
1187
        /*
1188
         *      Walk the leaf entries looking for ourself
1189
         */
1190
 
1191
        for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->u.dst.rt6_next) {
1192
                if (*rtp == rt) {
1193
                        fib6_del_route(fn, rtp, info);
1194
                        return 0;
1195
                }
1196
        }
1197
        return -ENOENT;
1198
}
1199
 
1200
/*
1201
 *      Tree traversal function.
1202
 *
1203
 *      Certainly, it is not interrupt safe.
1204
 *      However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1205
 *      It means, that we can modify tree during walking
1206
 *      and use this function for garbage collection, clone pruning,
1207
 *      cleaning tree when a device goes down etc. etc.
1208
 *
1209
 *      It guarantees that every node will be traversed,
1210
 *      and that it will be traversed only once.
1211
 *
1212
 *      Callback function w->func may return:
1213
 *      0 -> continue walking.
1214
 *      positive value -> walking is suspended (used by tree dumps,
1215
 *      and probably by gc, if it will be split to several slices)
1216
 *      negative value -> terminate walking.
1217
 *
1218
 *      The function itself returns:
1219
 *      0   -> walk is complete.
1220
 *      >0  -> walk is incomplete (i.e. suspended)
1221
 *      <0  -> walk is terminated by an error.
1222
 */
1223
 
1224
static int fib6_walk_continue(struct fib6_walker_t *w)
1225
{
1226
        struct fib6_node *fn, *pn;
1227
 
1228
        for (;;) {
1229
                fn = w->node;
1230
                if (fn == NULL)
1231
                        return 0;
1232
 
1233
                if (w->prune && fn != w->root &&
1234
                    fn->fn_flags&RTN_RTINFO && w->state < FWS_C) {
1235
                        w->state = FWS_C;
1236
                        w->leaf = fn->leaf;
1237
                }
1238
                switch (w->state) {
1239
#ifdef CONFIG_IPV6_SUBTREES
1240
                case FWS_S:
1241
                        if (FIB6_SUBTREE(fn)) {
1242
                                w->node = FIB6_SUBTREE(fn);
1243
                                continue;
1244
                        }
1245
                        w->state = FWS_L;
1246
#endif
1247
                case FWS_L:
1248
                        if (fn->left) {
1249
                                w->node = fn->left;
1250
                                w->state = FWS_INIT;
1251
                                continue;
1252
                        }
1253
                        w->state = FWS_R;
1254
                case FWS_R:
1255
                        if (fn->right) {
1256
                                w->node = fn->right;
1257
                                w->state = FWS_INIT;
1258
                                continue;
1259
                        }
1260
                        w->state = FWS_C;
1261
                        w->leaf = fn->leaf;
1262
                case FWS_C:
1263
                        if (w->leaf && fn->fn_flags&RTN_RTINFO) {
1264
                                int err = w->func(w);
1265
                                if (err)
1266
                                        return err;
1267
                                continue;
1268
                        }
1269
                        w->state = FWS_U;
1270
                case FWS_U:
1271
                        if (fn == w->root)
1272
                                return 0;
1273
                        pn = fn->parent;
1274
                        w->node = pn;
1275
#ifdef CONFIG_IPV6_SUBTREES
1276
                        if (FIB6_SUBTREE(pn) == fn) {
1277
                                BUG_TRAP(fn->fn_flags&RTN_ROOT);
1278
                                w->state = FWS_L;
1279
                                continue;
1280
                        }
1281
#endif
1282
                        if (pn->left == fn) {
1283
                                w->state = FWS_R;
1284
                                continue;
1285
                        }
1286
                        if (pn->right == fn) {
1287
                                w->state = FWS_C;
1288
                                w->leaf = w->node->leaf;
1289
                                continue;
1290
                        }
1291
#if RT6_DEBUG >= 2
1292
                        BUG_TRAP(0);
1293
#endif
1294
                }
1295
        }
1296
}
1297
 
1298
static int fib6_walk(struct fib6_walker_t *w)
1299
{
1300
        int res;
1301
 
1302
        w->state = FWS_INIT;
1303
        w->node = w->root;
1304
 
1305
        fib6_walker_link(w);
1306
        res = fib6_walk_continue(w);
1307
        if (res <= 0)
1308
                fib6_walker_unlink(w);
1309
        return res;
1310
}
1311
 
1312
static int fib6_clean_node(struct fib6_walker_t *w)
1313
{
1314
        int res;
1315
        struct rt6_info *rt;
1316
        struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
1317
 
1318
        for (rt = w->leaf; rt; rt = rt->u.dst.rt6_next) {
1319
                res = c->func(rt, c->arg);
1320
                if (res < 0) {
1321
                        w->leaf = rt;
1322
                        res = fib6_del(rt, NULL);
1323
                        if (res) {
1324
#if RT6_DEBUG >= 2
1325
                                printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res);
1326
#endif
1327
                                continue;
1328
                        }
1329
                        return 0;
1330
                }
1331
                BUG_TRAP(res==0);
1332
        }
1333
        w->leaf = rt;
1334
        return 0;
1335
}
1336
 
1337
/*
1338
 *      Convenient frontend to tree walker.
1339
 *
1340
 *      func is called on each route.
1341
 *              It may return -1 -> delete this route.
1342
 *                            0  -> continue walking
1343
 *
1344
 *      prune==1 -> only immediate children of node (certainly,
1345
 *      ignoring pure split nodes) will be scanned.
1346
 */
1347
 
1348
static void fib6_clean_tree(struct fib6_node *root,
1349
                            int (*func)(struct rt6_info *, void *arg),
1350
                            int prune, void *arg)
1351
{
1352
        struct fib6_cleaner_t c;
1353
 
1354
        c.w.root = root;
1355
        c.w.func = fib6_clean_node;
1356
        c.w.prune = prune;
1357
        c.func = func;
1358
        c.arg = arg;
1359
 
1360
        fib6_walk(&c.w);
1361
}
1362
 
1363
void fib6_clean_all(int (*func)(struct rt6_info *, void *arg),
1364
                    int prune, void *arg)
1365
{
1366
        struct fib6_table *table;
1367
        struct hlist_node *node;
1368
        unsigned int h;
1369
 
1370
        rcu_read_lock();
1371
        for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
1372
                hlist_for_each_entry_rcu(table, node, &fib_table_hash[h],
1373
                                         tb6_hlist) {
1374
                        write_lock_bh(&table->tb6_lock);
1375
                        fib6_clean_tree(&table->tb6_root, func, prune, arg);
1376
                        write_unlock_bh(&table->tb6_lock);
1377
                }
1378
        }
1379
        rcu_read_unlock();
1380
}
1381
 
1382
static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1383
{
1384
        if (rt->rt6i_flags & RTF_CACHE) {
1385
                RT6_TRACE("pruning clone %p\n", rt);
1386
                return -1;
1387
        }
1388
 
1389
        return 0;
1390
}
1391
 
1392
static void fib6_prune_clones(struct fib6_node *fn, struct rt6_info *rt)
1393
{
1394
        fib6_clean_tree(fn, fib6_prune_clone, 1, rt);
1395
}
1396
 
1397
/*
1398
 *      Garbage collection
1399
 */
1400
 
1401
static struct fib6_gc_args
1402
{
1403
        int                     timeout;
1404
        int                     more;
1405
} gc_args;
1406
 
1407
static int fib6_age(struct rt6_info *rt, void *arg)
1408
{
1409
        unsigned long now = jiffies;
1410
 
1411
        /*
1412
         *      check addrconf expiration here.
1413
         *      Routes are expired even if they are in use.
1414
         *
1415
         *      Also age clones. Note, that clones are aged out
1416
         *      only if they are not in use now.
1417
         */
1418
 
1419
        if (rt->rt6i_flags&RTF_EXPIRES && rt->rt6i_expires) {
1420
                if (time_after(now, rt->rt6i_expires)) {
1421
                        RT6_TRACE("expiring %p\n", rt);
1422
                        return -1;
1423
                }
1424
                gc_args.more++;
1425
        } else if (rt->rt6i_flags & RTF_CACHE) {
1426
                if (atomic_read(&rt->u.dst.__refcnt) == 0 &&
1427
                    time_after_eq(now, rt->u.dst.lastuse + gc_args.timeout)) {
1428
                        RT6_TRACE("aging clone %p\n", rt);
1429
                        return -1;
1430
                } else if ((rt->rt6i_flags & RTF_GATEWAY) &&
1431
                           (!(rt->rt6i_nexthop->flags & NTF_ROUTER))) {
1432
                        RT6_TRACE("purging route %p via non-router but gateway\n",
1433
                                  rt);
1434
                        return -1;
1435
                }
1436
                gc_args.more++;
1437
        }
1438
 
1439
        return 0;
1440
}
1441
 
1442
static DEFINE_SPINLOCK(fib6_gc_lock);
1443
 
1444
void fib6_run_gc(unsigned long dummy)
1445
{
1446
        if (dummy != ~0UL) {
1447
                spin_lock_bh(&fib6_gc_lock);
1448
                gc_args.timeout = dummy ? (int)dummy : ip6_rt_gc_interval;
1449
        } else {
1450
                local_bh_disable();
1451
                if (!spin_trylock(&fib6_gc_lock)) {
1452
                        mod_timer(&ip6_fib_timer, jiffies + HZ);
1453
                        local_bh_enable();
1454
                        return;
1455
                }
1456
                gc_args.timeout = ip6_rt_gc_interval;
1457
        }
1458
        gc_args.more = 0;
1459
 
1460
        ndisc_dst_gc(&gc_args.more);
1461
        fib6_clean_all(fib6_age, 0, NULL);
1462
 
1463
        if (gc_args.more)
1464
                mod_timer(&ip6_fib_timer, jiffies + ip6_rt_gc_interval);
1465
        else {
1466
                del_timer(&ip6_fib_timer);
1467
                ip6_fib_timer.expires = 0;
1468
        }
1469
        spin_unlock_bh(&fib6_gc_lock);
1470
}
1471
 
1472
void __init fib6_init(void)
1473
{
1474
        fib6_node_kmem = kmem_cache_create("fib6_nodes",
1475
                                           sizeof(struct fib6_node),
1476
                                           0, SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1477
                                           NULL);
1478
 
1479
        fib6_tables_init();
1480
 
1481
        __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib);
1482
}
1483
 
1484
void fib6_gc_cleanup(void)
1485
{
1486
        del_timer(&ip6_fib_timer);
1487
        kmem_cache_destroy(fib6_node_kmem);
1488
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.