OpenCores
URL https://opencores.org/ocsvn/or1k_soc_on_altera_embedded_dev_kit/or1k_soc_on_altera_embedded_dev_kit/trunk

Subversion Repositories or1k_soc_on_altera_embedded_dev_kit

[/] [or1k_soc_on_altera_embedded_dev_kit/] [trunk/] [linux-2.6/] [linux-2.6.24/] [sound/] [core/] [pcm_lib.c] - Blame information for rev 3

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 3 xianfeng
/*
2
 *  Digital Audio (PCM) abstract layer
3
 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4
 *                   Abramo Bagnara <abramo@alsa-project.org>
5
 *
6
 *
7
 *   This program is free software; you can redistribute it and/or modify
8
 *   it under the terms of the GNU General Public License as published by
9
 *   the Free Software Foundation; either version 2 of the License, or
10
 *   (at your option) any later version.
11
 *
12
 *   This program is distributed in the hope that it will be useful,
13
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
 *   GNU General Public License for more details.
16
 *
17
 *   You should have received a copy of the GNU General Public License
18
 *   along with this program; if not, write to the Free Software
19
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20
 *
21
 */
22
 
23
#include <sound/driver.h>
24
#include <linux/slab.h>
25
#include <linux/time.h>
26
#include <sound/core.h>
27
#include <sound/control.h>
28
#include <sound/info.h>
29
#include <sound/pcm.h>
30
#include <sound/pcm_params.h>
31
#include <sound/timer.h>
32
 
33
/*
34
 * fill ring buffer with silence
35
 * runtime->silence_start: starting pointer to silence area
36
 * runtime->silence_filled: size filled with silence
37
 * runtime->silence_threshold: threshold from application
38
 * runtime->silence_size: maximal size from application
39
 *
40
 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
41
 */
42
void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
43
{
44
        struct snd_pcm_runtime *runtime = substream->runtime;
45
        snd_pcm_uframes_t frames, ofs, transfer;
46
 
47
        if (runtime->silence_size < runtime->boundary) {
48
                snd_pcm_sframes_t noise_dist, n;
49
                if (runtime->silence_start != runtime->control->appl_ptr) {
50
                        n = runtime->control->appl_ptr - runtime->silence_start;
51
                        if (n < 0)
52
                                n += runtime->boundary;
53
                        if ((snd_pcm_uframes_t)n < runtime->silence_filled)
54
                                runtime->silence_filled -= n;
55
                        else
56
                                runtime->silence_filled = 0;
57
                        runtime->silence_start = runtime->control->appl_ptr;
58
                }
59
                if (runtime->silence_filled >= runtime->buffer_size)
60
                        return;
61
                noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
62
                if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
63
                        return;
64
                frames = runtime->silence_threshold - noise_dist;
65
                if (frames > runtime->silence_size)
66
                        frames = runtime->silence_size;
67
        } else {
68
                if (new_hw_ptr == ULONG_MAX) {  /* initialization */
69
                        snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
70
                        runtime->silence_filled = avail > 0 ? avail : 0;
71
                        runtime->silence_start = (runtime->status->hw_ptr +
72
                                                  runtime->silence_filled) %
73
                                                 runtime->boundary;
74
                } else {
75
                        ofs = runtime->status->hw_ptr;
76
                        frames = new_hw_ptr - ofs;
77
                        if ((snd_pcm_sframes_t)frames < 0)
78
                                frames += runtime->boundary;
79
                        runtime->silence_filled -= frames;
80
                        if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
81
                                runtime->silence_filled = 0;
82
                                runtime->silence_start = new_hw_ptr;
83
                        } else {
84
                                runtime->silence_start = ofs;
85
                        }
86
                }
87
                frames = runtime->buffer_size - runtime->silence_filled;
88
        }
89
        snd_assert(frames <= runtime->buffer_size, return);
90
        if (frames == 0)
91
                return;
92
        ofs = runtime->silence_start % runtime->buffer_size;
93
        while (frames > 0) {
94
                transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
95
                if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
96
                    runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
97
                        if (substream->ops->silence) {
98
                                int err;
99
                                err = substream->ops->silence(substream, -1, ofs, transfer);
100
                                snd_assert(err >= 0, );
101
                        } else {
102
                                char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
103
                                snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
104
                        }
105
                } else {
106
                        unsigned int c;
107
                        unsigned int channels = runtime->channels;
108
                        if (substream->ops->silence) {
109
                                for (c = 0; c < channels; ++c) {
110
                                        int err;
111
                                        err = substream->ops->silence(substream, c, ofs, transfer);
112
                                        snd_assert(err >= 0, );
113
                                }
114
                        } else {
115
                                size_t dma_csize = runtime->dma_bytes / channels;
116
                                for (c = 0; c < channels; ++c) {
117
                                        char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
118
                                        snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
119
                                }
120
                        }
121
                }
122
                runtime->silence_filled += transfer;
123
                frames -= transfer;
124
                ofs = 0;
125
        }
126
}
127
 
128
static void xrun(struct snd_pcm_substream *substream)
129
{
130
        snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
131
#ifdef CONFIG_SND_PCM_XRUN_DEBUG
132
        if (substream->pstr->xrun_debug) {
133
                snd_printd(KERN_DEBUG "XRUN: pcmC%dD%d%c\n",
134
                           substream->pcm->card->number,
135
                           substream->pcm->device,
136
                           substream->stream ? 'c' : 'p');
137
                if (substream->pstr->xrun_debug > 1)
138
                        dump_stack();
139
        }
140
#endif
141
}
142
 
143
static inline snd_pcm_uframes_t snd_pcm_update_hw_ptr_pos(struct snd_pcm_substream *substream,
144
                                                          struct snd_pcm_runtime *runtime)
145
{
146
        snd_pcm_uframes_t pos;
147
 
148
        pos = substream->ops->pointer(substream);
149
        if (pos == SNDRV_PCM_POS_XRUN)
150
                return pos; /* XRUN */
151
        if (runtime->tstamp_mode & SNDRV_PCM_TSTAMP_MMAP)
152
                getnstimeofday((struct timespec *)&runtime->status->tstamp);
153
#ifdef CONFIG_SND_DEBUG
154
        if (pos >= runtime->buffer_size) {
155
                snd_printk(KERN_ERR  "BUG: stream = %i, pos = 0x%lx, buffer size = 0x%lx, period size = 0x%lx\n", substream->stream, pos, runtime->buffer_size, runtime->period_size);
156
        }
157
#endif
158
        pos -= pos % runtime->min_align;
159
        return pos;
160
}
161
 
162
static inline int snd_pcm_update_hw_ptr_post(struct snd_pcm_substream *substream,
163
                                             struct snd_pcm_runtime *runtime)
164
{
165
        snd_pcm_uframes_t avail;
166
 
167
        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
168
                avail = snd_pcm_playback_avail(runtime);
169
        else
170
                avail = snd_pcm_capture_avail(runtime);
171
        if (avail > runtime->avail_max)
172
                runtime->avail_max = avail;
173
        if (avail >= runtime->stop_threshold) {
174
                if (substream->runtime->status->state == SNDRV_PCM_STATE_DRAINING)
175
                        snd_pcm_drain_done(substream);
176
                else
177
                        xrun(substream);
178
                return -EPIPE;
179
        }
180
        if (avail >= runtime->control->avail_min)
181
                wake_up(&runtime->sleep);
182
        return 0;
183
}
184
 
185
static inline int snd_pcm_update_hw_ptr_interrupt(struct snd_pcm_substream *substream)
186
{
187
        struct snd_pcm_runtime *runtime = substream->runtime;
188
        snd_pcm_uframes_t pos;
189
        snd_pcm_uframes_t new_hw_ptr, hw_ptr_interrupt;
190
        snd_pcm_sframes_t delta;
191
 
192
        pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
193
        if (pos == SNDRV_PCM_POS_XRUN) {
194
                xrun(substream);
195
                return -EPIPE;
196
        }
197
        if (runtime->period_size == runtime->buffer_size)
198
                goto __next_buf;
199
        new_hw_ptr = runtime->hw_ptr_base + pos;
200
        hw_ptr_interrupt = runtime->hw_ptr_interrupt + runtime->period_size;
201
 
202
        delta = hw_ptr_interrupt - new_hw_ptr;
203
        if (delta > 0) {
204
                if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) {
205
#ifdef CONFIG_SND_PCM_XRUN_DEBUG
206
                        if (runtime->periods > 1 && substream->pstr->xrun_debug) {
207
                                snd_printd(KERN_ERR "Unexpected hw_pointer value [1] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2);
208
                                if (substream->pstr->xrun_debug > 1)
209
                                        dump_stack();
210
                        }
211
#endif
212
                        return 0;
213
                }
214
              __next_buf:
215
                runtime->hw_ptr_base += runtime->buffer_size;
216
                if (runtime->hw_ptr_base == runtime->boundary)
217
                        runtime->hw_ptr_base = 0;
218
                new_hw_ptr = runtime->hw_ptr_base + pos;
219
        }
220
 
221
        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
222
            runtime->silence_size > 0)
223
                snd_pcm_playback_silence(substream, new_hw_ptr);
224
 
225
        runtime->status->hw_ptr = new_hw_ptr;
226
        runtime->hw_ptr_interrupt = new_hw_ptr - new_hw_ptr % runtime->period_size;
227
 
228
        return snd_pcm_update_hw_ptr_post(substream, runtime);
229
}
230
 
231
/* CAUTION: call it with irq disabled */
232
int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
233
{
234
        struct snd_pcm_runtime *runtime = substream->runtime;
235
        snd_pcm_uframes_t pos;
236
        snd_pcm_uframes_t old_hw_ptr, new_hw_ptr;
237
        snd_pcm_sframes_t delta;
238
 
239
        old_hw_ptr = runtime->status->hw_ptr;
240
        pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
241
        if (pos == SNDRV_PCM_POS_XRUN) {
242
                xrun(substream);
243
                return -EPIPE;
244
        }
245
        new_hw_ptr = runtime->hw_ptr_base + pos;
246
 
247
        delta = old_hw_ptr - new_hw_ptr;
248
        if (delta > 0) {
249
                if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) {
250
#ifdef CONFIG_SND_PCM_XRUN_DEBUG
251
                        if (runtime->periods > 2 && substream->pstr->xrun_debug) {
252
                                snd_printd(KERN_ERR "Unexpected hw_pointer value [2] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2);
253
                                if (substream->pstr->xrun_debug > 1)
254
                                        dump_stack();
255
                        }
256
#endif
257
                        return 0;
258
                }
259
                runtime->hw_ptr_base += runtime->buffer_size;
260
                if (runtime->hw_ptr_base == runtime->boundary)
261
                        runtime->hw_ptr_base = 0;
262
                new_hw_ptr = runtime->hw_ptr_base + pos;
263
        }
264
        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
265
            runtime->silence_size > 0)
266
                snd_pcm_playback_silence(substream, new_hw_ptr);
267
 
268
        runtime->status->hw_ptr = new_hw_ptr;
269
 
270
        return snd_pcm_update_hw_ptr_post(substream, runtime);
271
}
272
 
273
/**
274
 * snd_pcm_set_ops - set the PCM operators
275
 * @pcm: the pcm instance
276
 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
277
 * @ops: the operator table
278
 *
279
 * Sets the given PCM operators to the pcm instance.
280
 */
281
void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
282
{
283
        struct snd_pcm_str *stream = &pcm->streams[direction];
284
        struct snd_pcm_substream *substream;
285
 
286
        for (substream = stream->substream; substream != NULL; substream = substream->next)
287
                substream->ops = ops;
288
}
289
 
290
EXPORT_SYMBOL(snd_pcm_set_ops);
291
 
292
/**
293
 * snd_pcm_sync - set the PCM sync id
294
 * @substream: the pcm substream
295
 *
296
 * Sets the PCM sync identifier for the card.
297
 */
298
void snd_pcm_set_sync(struct snd_pcm_substream *substream)
299
{
300
        struct snd_pcm_runtime *runtime = substream->runtime;
301
 
302
        runtime->sync.id32[0] = substream->pcm->card->number;
303
        runtime->sync.id32[1] = -1;
304
        runtime->sync.id32[2] = -1;
305
        runtime->sync.id32[3] = -1;
306
}
307
 
308
EXPORT_SYMBOL(snd_pcm_set_sync);
309
 
310
/*
311
 *  Standard ioctl routine
312
 */
313
 
314
static inline unsigned int div32(unsigned int a, unsigned int b,
315
                                 unsigned int *r)
316
{
317
        if (b == 0) {
318
                *r = 0;
319
                return UINT_MAX;
320
        }
321
        *r = a % b;
322
        return a / b;
323
}
324
 
325
static inline unsigned int div_down(unsigned int a, unsigned int b)
326
{
327
        if (b == 0)
328
                return UINT_MAX;
329
        return a / b;
330
}
331
 
332
static inline unsigned int div_up(unsigned int a, unsigned int b)
333
{
334
        unsigned int r;
335
        unsigned int q;
336
        if (b == 0)
337
                return UINT_MAX;
338
        q = div32(a, b, &r);
339
        if (r)
340
                ++q;
341
        return q;
342
}
343
 
344
static inline unsigned int mul(unsigned int a, unsigned int b)
345
{
346
        if (a == 0)
347
                return 0;
348
        if (div_down(UINT_MAX, a) < b)
349
                return UINT_MAX;
350
        return a * b;
351
}
352
 
353
static inline unsigned int muldiv32(unsigned int a, unsigned int b,
354
                                    unsigned int c, unsigned int *r)
355
{
356
        u_int64_t n = (u_int64_t) a * b;
357
        if (c == 0) {
358
                snd_assert(n > 0, );
359
                *r = 0;
360
                return UINT_MAX;
361
        }
362
        div64_32(&n, c, r);
363
        if (n >= UINT_MAX) {
364
                *r = 0;
365
                return UINT_MAX;
366
        }
367
        return n;
368
}
369
 
370
/**
371
 * snd_interval_refine - refine the interval value of configurator
372
 * @i: the interval value to refine
373
 * @v: the interval value to refer to
374
 *
375
 * Refines the interval value with the reference value.
376
 * The interval is changed to the range satisfying both intervals.
377
 * The interval status (min, max, integer, etc.) are evaluated.
378
 *
379
 * Returns non-zero if the value is changed, zero if not changed.
380
 */
381
int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
382
{
383
        int changed = 0;
384
        snd_assert(!snd_interval_empty(i), return -EINVAL);
385
        if (i->min < v->min) {
386
                i->min = v->min;
387
                i->openmin = v->openmin;
388
                changed = 1;
389
        } else if (i->min == v->min && !i->openmin && v->openmin) {
390
                i->openmin = 1;
391
                changed = 1;
392
        }
393
        if (i->max > v->max) {
394
                i->max = v->max;
395
                i->openmax = v->openmax;
396
                changed = 1;
397
        } else if (i->max == v->max && !i->openmax && v->openmax) {
398
                i->openmax = 1;
399
                changed = 1;
400
        }
401
        if (!i->integer && v->integer) {
402
                i->integer = 1;
403
                changed = 1;
404
        }
405
        if (i->integer) {
406
                if (i->openmin) {
407
                        i->min++;
408
                        i->openmin = 0;
409
                }
410
                if (i->openmax) {
411
                        i->max--;
412
                        i->openmax = 0;
413
                }
414
        } else if (!i->openmin && !i->openmax && i->min == i->max)
415
                i->integer = 1;
416
        if (snd_interval_checkempty(i)) {
417
                snd_interval_none(i);
418
                return -EINVAL;
419
        }
420
        return changed;
421
}
422
 
423
EXPORT_SYMBOL(snd_interval_refine);
424
 
425
static int snd_interval_refine_first(struct snd_interval *i)
426
{
427
        snd_assert(!snd_interval_empty(i), return -EINVAL);
428
        if (snd_interval_single(i))
429
                return 0;
430
        i->max = i->min;
431
        i->openmax = i->openmin;
432
        if (i->openmax)
433
                i->max++;
434
        return 1;
435
}
436
 
437
static int snd_interval_refine_last(struct snd_interval *i)
438
{
439
        snd_assert(!snd_interval_empty(i), return -EINVAL);
440
        if (snd_interval_single(i))
441
                return 0;
442
        i->min = i->max;
443
        i->openmin = i->openmax;
444
        if (i->openmin)
445
                i->min--;
446
        return 1;
447
}
448
 
449
void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
450
{
451
        if (a->empty || b->empty) {
452
                snd_interval_none(c);
453
                return;
454
        }
455
        c->empty = 0;
456
        c->min = mul(a->min, b->min);
457
        c->openmin = (a->openmin || b->openmin);
458
        c->max = mul(a->max,  b->max);
459
        c->openmax = (a->openmax || b->openmax);
460
        c->integer = (a->integer && b->integer);
461
}
462
 
463
/**
464
 * snd_interval_div - refine the interval value with division
465
 * @a: dividend
466
 * @b: divisor
467
 * @c: quotient
468
 *
469
 * c = a / b
470
 *
471
 * Returns non-zero if the value is changed, zero if not changed.
472
 */
473
void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
474
{
475
        unsigned int r;
476
        if (a->empty || b->empty) {
477
                snd_interval_none(c);
478
                return;
479
        }
480
        c->empty = 0;
481
        c->min = div32(a->min, b->max, &r);
482
        c->openmin = (r || a->openmin || b->openmax);
483
        if (b->min > 0) {
484
                c->max = div32(a->max, b->min, &r);
485
                if (r) {
486
                        c->max++;
487
                        c->openmax = 1;
488
                } else
489
                        c->openmax = (a->openmax || b->openmin);
490
        } else {
491
                c->max = UINT_MAX;
492
                c->openmax = 0;
493
        }
494
        c->integer = 0;
495
}
496
 
497
/**
498
 * snd_interval_muldivk - refine the interval value
499
 * @a: dividend 1
500
 * @b: dividend 2
501
 * @k: divisor (as integer)
502
 * @c: result
503
  *
504
 * c = a * b / k
505
 *
506
 * Returns non-zero if the value is changed, zero if not changed.
507
 */
508
void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
509
                      unsigned int k, struct snd_interval *c)
510
{
511
        unsigned int r;
512
        if (a->empty || b->empty) {
513
                snd_interval_none(c);
514
                return;
515
        }
516
        c->empty = 0;
517
        c->min = muldiv32(a->min, b->min, k, &r);
518
        c->openmin = (r || a->openmin || b->openmin);
519
        c->max = muldiv32(a->max, b->max, k, &r);
520
        if (r) {
521
                c->max++;
522
                c->openmax = 1;
523
        } else
524
                c->openmax = (a->openmax || b->openmax);
525
        c->integer = 0;
526
}
527
 
528
/**
529
 * snd_interval_mulkdiv - refine the interval value
530
 * @a: dividend 1
531
 * @k: dividend 2 (as integer)
532
 * @b: divisor
533
 * @c: result
534
 *
535
 * c = a * k / b
536
 *
537
 * Returns non-zero if the value is changed, zero if not changed.
538
 */
539
void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
540
                      const struct snd_interval *b, struct snd_interval *c)
541
{
542
        unsigned int r;
543
        if (a->empty || b->empty) {
544
                snd_interval_none(c);
545
                return;
546
        }
547
        c->empty = 0;
548
        c->min = muldiv32(a->min, k, b->max, &r);
549
        c->openmin = (r || a->openmin || b->openmax);
550
        if (b->min > 0) {
551
                c->max = muldiv32(a->max, k, b->min, &r);
552
                if (r) {
553
                        c->max++;
554
                        c->openmax = 1;
555
                } else
556
                        c->openmax = (a->openmax || b->openmin);
557
        } else {
558
                c->max = UINT_MAX;
559
                c->openmax = 0;
560
        }
561
        c->integer = 0;
562
}
563
 
564
/* ---- */
565
 
566
 
567
/**
568
 * snd_interval_ratnum - refine the interval value
569
 * @i: interval to refine
570
 * @rats_count: number of ratnum_t
571
 * @rats: ratnum_t array
572
 * @nump: pointer to store the resultant numerator
573
 * @denp: pointer to store the resultant denominator
574
 *
575
 * Returns non-zero if the value is changed, zero if not changed.
576
 */
577
int snd_interval_ratnum(struct snd_interval *i,
578
                        unsigned int rats_count, struct snd_ratnum *rats,
579
                        unsigned int *nump, unsigned int *denp)
580
{
581
        unsigned int best_num, best_diff, best_den;
582
        unsigned int k;
583
        struct snd_interval t;
584
        int err;
585
 
586
        best_num = best_den = best_diff = 0;
587
        for (k = 0; k < rats_count; ++k) {
588
                unsigned int num = rats[k].num;
589
                unsigned int den;
590
                unsigned int q = i->min;
591
                int diff;
592
                if (q == 0)
593
                        q = 1;
594
                den = div_down(num, q);
595
                if (den < rats[k].den_min)
596
                        continue;
597
                if (den > rats[k].den_max)
598
                        den = rats[k].den_max;
599
                else {
600
                        unsigned int r;
601
                        r = (den - rats[k].den_min) % rats[k].den_step;
602
                        if (r != 0)
603
                                den -= r;
604
                }
605
                diff = num - q * den;
606
                if (best_num == 0 ||
607
                    diff * best_den < best_diff * den) {
608
                        best_diff = diff;
609
                        best_den = den;
610
                        best_num = num;
611
                }
612
        }
613
        if (best_den == 0) {
614
                i->empty = 1;
615
                return -EINVAL;
616
        }
617
        t.min = div_down(best_num, best_den);
618
        t.openmin = !!(best_num % best_den);
619
 
620
        best_num = best_den = best_diff = 0;
621
        for (k = 0; k < rats_count; ++k) {
622
                unsigned int num = rats[k].num;
623
                unsigned int den;
624
                unsigned int q = i->max;
625
                int diff;
626
                if (q == 0) {
627
                        i->empty = 1;
628
                        return -EINVAL;
629
                }
630
                den = div_up(num, q);
631
                if (den > rats[k].den_max)
632
                        continue;
633
                if (den < rats[k].den_min)
634
                        den = rats[k].den_min;
635
                else {
636
                        unsigned int r;
637
                        r = (den - rats[k].den_min) % rats[k].den_step;
638
                        if (r != 0)
639
                                den += rats[k].den_step - r;
640
                }
641
                diff = q * den - num;
642
                if (best_num == 0 ||
643
                    diff * best_den < best_diff * den) {
644
                        best_diff = diff;
645
                        best_den = den;
646
                        best_num = num;
647
                }
648
        }
649
        if (best_den == 0) {
650
                i->empty = 1;
651
                return -EINVAL;
652
        }
653
        t.max = div_up(best_num, best_den);
654
        t.openmax = !!(best_num % best_den);
655
        t.integer = 0;
656
        err = snd_interval_refine(i, &t);
657
        if (err < 0)
658
                return err;
659
 
660
        if (snd_interval_single(i)) {
661
                if (nump)
662
                        *nump = best_num;
663
                if (denp)
664
                        *denp = best_den;
665
        }
666
        return err;
667
}
668
 
669
EXPORT_SYMBOL(snd_interval_ratnum);
670
 
671
/**
672
 * snd_interval_ratden - refine the interval value
673
 * @i: interval to refine
674
 * @rats_count: number of struct ratden
675
 * @rats: struct ratden array
676
 * @nump: pointer to store the resultant numerator
677
 * @denp: pointer to store the resultant denominator
678
 *
679
 * Returns non-zero if the value is changed, zero if not changed.
680
 */
681
static int snd_interval_ratden(struct snd_interval *i,
682
                               unsigned int rats_count, struct snd_ratden *rats,
683
                               unsigned int *nump, unsigned int *denp)
684
{
685
        unsigned int best_num, best_diff, best_den;
686
        unsigned int k;
687
        struct snd_interval t;
688
        int err;
689
 
690
        best_num = best_den = best_diff = 0;
691
        for (k = 0; k < rats_count; ++k) {
692
                unsigned int num;
693
                unsigned int den = rats[k].den;
694
                unsigned int q = i->min;
695
                int diff;
696
                num = mul(q, den);
697
                if (num > rats[k].num_max)
698
                        continue;
699
                if (num < rats[k].num_min)
700
                        num = rats[k].num_max;
701
                else {
702
                        unsigned int r;
703
                        r = (num - rats[k].num_min) % rats[k].num_step;
704
                        if (r != 0)
705
                                num += rats[k].num_step - r;
706
                }
707
                diff = num - q * den;
708
                if (best_num == 0 ||
709
                    diff * best_den < best_diff * den) {
710
                        best_diff = diff;
711
                        best_den = den;
712
                        best_num = num;
713
                }
714
        }
715
        if (best_den == 0) {
716
                i->empty = 1;
717
                return -EINVAL;
718
        }
719
        t.min = div_down(best_num, best_den);
720
        t.openmin = !!(best_num % best_den);
721
 
722
        best_num = best_den = best_diff = 0;
723
        for (k = 0; k < rats_count; ++k) {
724
                unsigned int num;
725
                unsigned int den = rats[k].den;
726
                unsigned int q = i->max;
727
                int diff;
728
                num = mul(q, den);
729
                if (num < rats[k].num_min)
730
                        continue;
731
                if (num > rats[k].num_max)
732
                        num = rats[k].num_max;
733
                else {
734
                        unsigned int r;
735
                        r = (num - rats[k].num_min) % rats[k].num_step;
736
                        if (r != 0)
737
                                num -= r;
738
                }
739
                diff = q * den - num;
740
                if (best_num == 0 ||
741
                    diff * best_den < best_diff * den) {
742
                        best_diff = diff;
743
                        best_den = den;
744
                        best_num = num;
745
                }
746
        }
747
        if (best_den == 0) {
748
                i->empty = 1;
749
                return -EINVAL;
750
        }
751
        t.max = div_up(best_num, best_den);
752
        t.openmax = !!(best_num % best_den);
753
        t.integer = 0;
754
        err = snd_interval_refine(i, &t);
755
        if (err < 0)
756
                return err;
757
 
758
        if (snd_interval_single(i)) {
759
                if (nump)
760
                        *nump = best_num;
761
                if (denp)
762
                        *denp = best_den;
763
        }
764
        return err;
765
}
766
 
767
/**
768
 * snd_interval_list - refine the interval value from the list
769
 * @i: the interval value to refine
770
 * @count: the number of elements in the list
771
 * @list: the value list
772
 * @mask: the bit-mask to evaluate
773
 *
774
 * Refines the interval value from the list.
775
 * When mask is non-zero, only the elements corresponding to bit 1 are
776
 * evaluated.
777
 *
778
 * Returns non-zero if the value is changed, zero if not changed.
779
 */
780
int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask)
781
{
782
        unsigned int k;
783
        int changed = 0;
784
 
785
        if (!count) {
786
                i->empty = 1;
787
                return -EINVAL;
788
        }
789
        for (k = 0; k < count; k++) {
790
                if (mask && !(mask & (1 << k)))
791
                        continue;
792
                if (i->min == list[k] && !i->openmin)
793
                        goto _l1;
794
                if (i->min < list[k]) {
795
                        i->min = list[k];
796
                        i->openmin = 0;
797
                        changed = 1;
798
                        goto _l1;
799
                }
800
        }
801
        i->empty = 1;
802
        return -EINVAL;
803
 _l1:
804
        for (k = count; k-- > 0;) {
805
                if (mask && !(mask & (1 << k)))
806
                        continue;
807
                if (i->max == list[k] && !i->openmax)
808
                        goto _l2;
809
                if (i->max > list[k]) {
810
                        i->max = list[k];
811
                        i->openmax = 0;
812
                        changed = 1;
813
                        goto _l2;
814
                }
815
        }
816
        i->empty = 1;
817
        return -EINVAL;
818
 _l2:
819
        if (snd_interval_checkempty(i)) {
820
                i->empty = 1;
821
                return -EINVAL;
822
        }
823
        return changed;
824
}
825
 
826
EXPORT_SYMBOL(snd_interval_list);
827
 
828
static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
829
{
830
        unsigned int n;
831
        int changed = 0;
832
        n = (i->min - min) % step;
833
        if (n != 0 || i->openmin) {
834
                i->min += step - n;
835
                changed = 1;
836
        }
837
        n = (i->max - min) % step;
838
        if (n != 0 || i->openmax) {
839
                i->max -= n;
840
                changed = 1;
841
        }
842
        if (snd_interval_checkempty(i)) {
843
                i->empty = 1;
844
                return -EINVAL;
845
        }
846
        return changed;
847
}
848
 
849
/* Info constraints helpers */
850
 
851
/**
852
 * snd_pcm_hw_rule_add - add the hw-constraint rule
853
 * @runtime: the pcm runtime instance
854
 * @cond: condition bits
855
 * @var: the variable to evaluate
856
 * @func: the evaluation function
857
 * @private: the private data pointer passed to function
858
 * @dep: the dependent variables
859
 *
860
 * Returns zero if successful, or a negative error code on failure.
861
 */
862
int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
863
                        int var,
864
                        snd_pcm_hw_rule_func_t func, void *private,
865
                        int dep, ...)
866
{
867
        struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
868
        struct snd_pcm_hw_rule *c;
869
        unsigned int k;
870
        va_list args;
871
        va_start(args, dep);
872
        if (constrs->rules_num >= constrs->rules_all) {
873
                struct snd_pcm_hw_rule *new;
874
                unsigned int new_rules = constrs->rules_all + 16;
875
                new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
876
                if (!new)
877
                        return -ENOMEM;
878
                if (constrs->rules) {
879
                        memcpy(new, constrs->rules,
880
                               constrs->rules_num * sizeof(*c));
881
                        kfree(constrs->rules);
882
                }
883
                constrs->rules = new;
884
                constrs->rules_all = new_rules;
885
        }
886
        c = &constrs->rules[constrs->rules_num];
887
        c->cond = cond;
888
        c->func = func;
889
        c->var = var;
890
        c->private = private;
891
        k = 0;
892
        while (1) {
893
                snd_assert(k < ARRAY_SIZE(c->deps), return -EINVAL);
894
                c->deps[k++] = dep;
895
                if (dep < 0)
896
                        break;
897
                dep = va_arg(args, int);
898
        }
899
        constrs->rules_num++;
900
        va_end(args);
901
        return 0;
902
}
903
 
904
EXPORT_SYMBOL(snd_pcm_hw_rule_add);
905
 
906
/**
907
 * snd_pcm_hw_constraint_mask
908
 * @runtime: PCM runtime instance
909
 * @var: hw_params variable to apply the mask
910
 * @mask: the bitmap mask
911
 *
912
 * Apply the constraint of the given bitmap mask to a mask parameter.
913
 */
914
int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
915
                               u_int32_t mask)
916
{
917
        struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
918
        struct snd_mask *maskp = constrs_mask(constrs, var);
919
        *maskp->bits &= mask;
920
        memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
921
        if (*maskp->bits == 0)
922
                return -EINVAL;
923
        return 0;
924
}
925
 
926
/**
927
 * snd_pcm_hw_constraint_mask64
928
 * @runtime: PCM runtime instance
929
 * @var: hw_params variable to apply the mask
930
 * @mask: the 64bit bitmap mask
931
 *
932
 * Apply the constraint of the given bitmap mask to a mask parameter.
933
 */
934
int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
935
                                 u_int64_t mask)
936
{
937
        struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
938
        struct snd_mask *maskp = constrs_mask(constrs, var);
939
        maskp->bits[0] &= (u_int32_t)mask;
940
        maskp->bits[1] &= (u_int32_t)(mask >> 32);
941
        memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
942
        if (! maskp->bits[0] && ! maskp->bits[1])
943
                return -EINVAL;
944
        return 0;
945
}
946
 
947
/**
948
 * snd_pcm_hw_constraint_integer
949
 * @runtime: PCM runtime instance
950
 * @var: hw_params variable to apply the integer constraint
951
 *
952
 * Apply the constraint of integer to an interval parameter.
953
 */
954
int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
955
{
956
        struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
957
        return snd_interval_setinteger(constrs_interval(constrs, var));
958
}
959
 
960
EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
961
 
962
/**
963
 * snd_pcm_hw_constraint_minmax
964
 * @runtime: PCM runtime instance
965
 * @var: hw_params variable to apply the range
966
 * @min: the minimal value
967
 * @max: the maximal value
968
 *
969
 * Apply the min/max range constraint to an interval parameter.
970
 */
971
int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
972
                                 unsigned int min, unsigned int max)
973
{
974
        struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
975
        struct snd_interval t;
976
        t.min = min;
977
        t.max = max;
978
        t.openmin = t.openmax = 0;
979
        t.integer = 0;
980
        return snd_interval_refine(constrs_interval(constrs, var), &t);
981
}
982
 
983
EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
984
 
985
static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
986
                                struct snd_pcm_hw_rule *rule)
987
{
988
        struct snd_pcm_hw_constraint_list *list = rule->private;
989
        return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
990
}
991
 
992
 
993
/**
994
 * snd_pcm_hw_constraint_list
995
 * @runtime: PCM runtime instance
996
 * @cond: condition bits
997
 * @var: hw_params variable to apply the list constraint
998
 * @l: list
999
 *
1000
 * Apply the list of constraints to an interval parameter.
1001
 */
1002
int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1003
                               unsigned int cond,
1004
                               snd_pcm_hw_param_t var,
1005
                               struct snd_pcm_hw_constraint_list *l)
1006
{
1007
        return snd_pcm_hw_rule_add(runtime, cond, var,
1008
                                   snd_pcm_hw_rule_list, l,
1009
                                   var, -1);
1010
}
1011
 
1012
EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1013
 
1014
static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1015
                                   struct snd_pcm_hw_rule *rule)
1016
{
1017
        struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1018
        unsigned int num = 0, den = 0;
1019
        int err;
1020
        err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1021
                                  r->nrats, r->rats, &num, &den);
1022
        if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1023
                params->rate_num = num;
1024
                params->rate_den = den;
1025
        }
1026
        return err;
1027
}
1028
 
1029
/**
1030
 * snd_pcm_hw_constraint_ratnums
1031
 * @runtime: PCM runtime instance
1032
 * @cond: condition bits
1033
 * @var: hw_params variable to apply the ratnums constraint
1034
 * @r: struct snd_ratnums constriants
1035
 */
1036
int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1037
                                  unsigned int cond,
1038
                                  snd_pcm_hw_param_t var,
1039
                                  struct snd_pcm_hw_constraint_ratnums *r)
1040
{
1041
        return snd_pcm_hw_rule_add(runtime, cond, var,
1042
                                   snd_pcm_hw_rule_ratnums, r,
1043
                                   var, -1);
1044
}
1045
 
1046
EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1047
 
1048
static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1049
                                   struct snd_pcm_hw_rule *rule)
1050
{
1051
        struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1052
        unsigned int num = 0, den = 0;
1053
        int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1054
                                  r->nrats, r->rats, &num, &den);
1055
        if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1056
                params->rate_num = num;
1057
                params->rate_den = den;
1058
        }
1059
        return err;
1060
}
1061
 
1062
/**
1063
 * snd_pcm_hw_constraint_ratdens
1064
 * @runtime: PCM runtime instance
1065
 * @cond: condition bits
1066
 * @var: hw_params variable to apply the ratdens constraint
1067
 * @r: struct snd_ratdens constriants
1068
 */
1069
int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1070
                                  unsigned int cond,
1071
                                  snd_pcm_hw_param_t var,
1072
                                  struct snd_pcm_hw_constraint_ratdens *r)
1073
{
1074
        return snd_pcm_hw_rule_add(runtime, cond, var,
1075
                                   snd_pcm_hw_rule_ratdens, r,
1076
                                   var, -1);
1077
}
1078
 
1079
EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1080
 
1081
static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1082
                                  struct snd_pcm_hw_rule *rule)
1083
{
1084
        unsigned int l = (unsigned long) rule->private;
1085
        int width = l & 0xffff;
1086
        unsigned int msbits = l >> 16;
1087
        struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1088
        if (snd_interval_single(i) && snd_interval_value(i) == width)
1089
                params->msbits = msbits;
1090
        return 0;
1091
}
1092
 
1093
/**
1094
 * snd_pcm_hw_constraint_msbits
1095
 * @runtime: PCM runtime instance
1096
 * @cond: condition bits
1097
 * @width: sample bits width
1098
 * @msbits: msbits width
1099
 */
1100
int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1101
                                 unsigned int cond,
1102
                                 unsigned int width,
1103
                                 unsigned int msbits)
1104
{
1105
        unsigned long l = (msbits << 16) | width;
1106
        return snd_pcm_hw_rule_add(runtime, cond, -1,
1107
                                    snd_pcm_hw_rule_msbits,
1108
                                    (void*) l,
1109
                                    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1110
}
1111
 
1112
EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1113
 
1114
static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1115
                                struct snd_pcm_hw_rule *rule)
1116
{
1117
        unsigned long step = (unsigned long) rule->private;
1118
        return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1119
}
1120
 
1121
/**
1122
 * snd_pcm_hw_constraint_step
1123
 * @runtime: PCM runtime instance
1124
 * @cond: condition bits
1125
 * @var: hw_params variable to apply the step constraint
1126
 * @step: step size
1127
 */
1128
int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1129
                               unsigned int cond,
1130
                               snd_pcm_hw_param_t var,
1131
                               unsigned long step)
1132
{
1133
        return snd_pcm_hw_rule_add(runtime, cond, var,
1134
                                   snd_pcm_hw_rule_step, (void *) step,
1135
                                   var, -1);
1136
}
1137
 
1138
EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1139
 
1140
static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1141
{
1142
        static int pow2_sizes[] = {
1143
                1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1144
                1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1145
                1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1146
                1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1147
        };
1148
        return snd_interval_list(hw_param_interval(params, rule->var),
1149
                                 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1150
}
1151
 
1152
/**
1153
 * snd_pcm_hw_constraint_pow2
1154
 * @runtime: PCM runtime instance
1155
 * @cond: condition bits
1156
 * @var: hw_params variable to apply the power-of-2 constraint
1157
 */
1158
int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1159
                               unsigned int cond,
1160
                               snd_pcm_hw_param_t var)
1161
{
1162
        return snd_pcm_hw_rule_add(runtime, cond, var,
1163
                                   snd_pcm_hw_rule_pow2, NULL,
1164
                                   var, -1);
1165
}
1166
 
1167
EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1168
 
1169
static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1170
                                  snd_pcm_hw_param_t var)
1171
{
1172
        if (hw_is_mask(var)) {
1173
                snd_mask_any(hw_param_mask(params, var));
1174
                params->cmask |= 1 << var;
1175
                params->rmask |= 1 << var;
1176
                return;
1177
        }
1178
        if (hw_is_interval(var)) {
1179
                snd_interval_any(hw_param_interval(params, var));
1180
                params->cmask |= 1 << var;
1181
                params->rmask |= 1 << var;
1182
                return;
1183
        }
1184
        snd_BUG();
1185
}
1186
 
1187
void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1188
{
1189
        unsigned int k;
1190
        memset(params, 0, sizeof(*params));
1191
        for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1192
                _snd_pcm_hw_param_any(params, k);
1193
        for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1194
                _snd_pcm_hw_param_any(params, k);
1195
        params->info = ~0U;
1196
}
1197
 
1198
EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1199
 
1200
/**
1201
 * snd_pcm_hw_param_value
1202
 * @params: the hw_params instance
1203
 * @var: parameter to retrieve
1204
 * @dir: pointer to the direction (-1,0,1) or NULL
1205
 *
1206
 * Return the value for field PAR if it's fixed in configuration space
1207
 *  defined by PARAMS. Return -EINVAL otherwise
1208
 */
1209
int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1210
                           snd_pcm_hw_param_t var, int *dir)
1211
{
1212
        if (hw_is_mask(var)) {
1213
                const struct snd_mask *mask = hw_param_mask_c(params, var);
1214
                if (!snd_mask_single(mask))
1215
                        return -EINVAL;
1216
                if (dir)
1217
                        *dir = 0;
1218
                return snd_mask_value(mask);
1219
        }
1220
        if (hw_is_interval(var)) {
1221
                const struct snd_interval *i = hw_param_interval_c(params, var);
1222
                if (!snd_interval_single(i))
1223
                        return -EINVAL;
1224
                if (dir)
1225
                        *dir = i->openmin;
1226
                return snd_interval_value(i);
1227
        }
1228
        return -EINVAL;
1229
}
1230
 
1231
EXPORT_SYMBOL(snd_pcm_hw_param_value);
1232
 
1233
void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1234
                                snd_pcm_hw_param_t var)
1235
{
1236
        if (hw_is_mask(var)) {
1237
                snd_mask_none(hw_param_mask(params, var));
1238
                params->cmask |= 1 << var;
1239
                params->rmask |= 1 << var;
1240
        } else if (hw_is_interval(var)) {
1241
                snd_interval_none(hw_param_interval(params, var));
1242
                params->cmask |= 1 << var;
1243
                params->rmask |= 1 << var;
1244
        } else {
1245
                snd_BUG();
1246
        }
1247
}
1248
 
1249
EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1250
 
1251
static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1252
                                   snd_pcm_hw_param_t var)
1253
{
1254
        int changed;
1255
        if (hw_is_mask(var))
1256
                changed = snd_mask_refine_first(hw_param_mask(params, var));
1257
        else if (hw_is_interval(var))
1258
                changed = snd_interval_refine_first(hw_param_interval(params, var));
1259
        else
1260
                return -EINVAL;
1261
        if (changed) {
1262
                params->cmask |= 1 << var;
1263
                params->rmask |= 1 << var;
1264
        }
1265
        return changed;
1266
}
1267
 
1268
 
1269
/**
1270
 * snd_pcm_hw_param_first
1271
 * @pcm: PCM instance
1272
 * @params: the hw_params instance
1273
 * @var: parameter to retrieve
1274
 * @dir: pointer to the direction (-1,0,1) or NULL
1275
 *
1276
 * Inside configuration space defined by PARAMS remove from PAR all
1277
 * values > minimum. Reduce configuration space accordingly.
1278
 * Return the minimum.
1279
 */
1280
int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1281
                           struct snd_pcm_hw_params *params,
1282
                           snd_pcm_hw_param_t var, int *dir)
1283
{
1284
        int changed = _snd_pcm_hw_param_first(params, var);
1285
        if (changed < 0)
1286
                return changed;
1287
        if (params->rmask) {
1288
                int err = snd_pcm_hw_refine(pcm, params);
1289
                snd_assert(err >= 0, return err);
1290
        }
1291
        return snd_pcm_hw_param_value(params, var, dir);
1292
}
1293
 
1294
EXPORT_SYMBOL(snd_pcm_hw_param_first);
1295
 
1296
static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1297
                                  snd_pcm_hw_param_t var)
1298
{
1299
        int changed;
1300
        if (hw_is_mask(var))
1301
                changed = snd_mask_refine_last(hw_param_mask(params, var));
1302
        else if (hw_is_interval(var))
1303
                changed = snd_interval_refine_last(hw_param_interval(params, var));
1304
        else
1305
                return -EINVAL;
1306
        if (changed) {
1307
                params->cmask |= 1 << var;
1308
                params->rmask |= 1 << var;
1309
        }
1310
        return changed;
1311
}
1312
 
1313
 
1314
/**
1315
 * snd_pcm_hw_param_last
1316
 * @pcm: PCM instance
1317
 * @params: the hw_params instance
1318
 * @var: parameter to retrieve
1319
 * @dir: pointer to the direction (-1,0,1) or NULL
1320
 *
1321
 * Inside configuration space defined by PARAMS remove from PAR all
1322
 * values < maximum. Reduce configuration space accordingly.
1323
 * Return the maximum.
1324
 */
1325
int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1326
                          struct snd_pcm_hw_params *params,
1327
                          snd_pcm_hw_param_t var, int *dir)
1328
{
1329
        int changed = _snd_pcm_hw_param_last(params, var);
1330
        if (changed < 0)
1331
                return changed;
1332
        if (params->rmask) {
1333
                int err = snd_pcm_hw_refine(pcm, params);
1334
                snd_assert(err >= 0, return err);
1335
        }
1336
        return snd_pcm_hw_param_value(params, var, dir);
1337
}
1338
 
1339
EXPORT_SYMBOL(snd_pcm_hw_param_last);
1340
 
1341
/**
1342
 * snd_pcm_hw_param_choose
1343
 * @pcm: PCM instance
1344
 * @params: the hw_params instance
1345
 *
1346
 * Choose one configuration from configuration space defined by PARAMS
1347
 * The configuration chosen is that obtained fixing in this order:
1348
 * first access, first format, first subformat, min channels,
1349
 * min rate, min period time, max buffer size, min tick time
1350
 */
1351
int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1352
                             struct snd_pcm_hw_params *params)
1353
{
1354
        static int vars[] = {
1355
                SNDRV_PCM_HW_PARAM_ACCESS,
1356
                SNDRV_PCM_HW_PARAM_FORMAT,
1357
                SNDRV_PCM_HW_PARAM_SUBFORMAT,
1358
                SNDRV_PCM_HW_PARAM_CHANNELS,
1359
                SNDRV_PCM_HW_PARAM_RATE,
1360
                SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1361
                SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1362
                SNDRV_PCM_HW_PARAM_TICK_TIME,
1363
                -1
1364
        };
1365
        int err, *v;
1366
 
1367
        for (v = vars; *v != -1; v++) {
1368
                if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1369
                        err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1370
                else
1371
                        err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1372
                snd_assert(err >= 0, return err);
1373
        }
1374
        return 0;
1375
}
1376
 
1377
static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1378
                                   void *arg)
1379
{
1380
        struct snd_pcm_runtime *runtime = substream->runtime;
1381
        unsigned long flags;
1382
        snd_pcm_stream_lock_irqsave(substream, flags);
1383
        if (snd_pcm_running(substream) &&
1384
            snd_pcm_update_hw_ptr(substream) >= 0)
1385
                runtime->status->hw_ptr %= runtime->buffer_size;
1386
        else
1387
                runtime->status->hw_ptr = 0;
1388
        snd_pcm_stream_unlock_irqrestore(substream, flags);
1389
        return 0;
1390
}
1391
 
1392
static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1393
                                          void *arg)
1394
{
1395
        struct snd_pcm_channel_info *info = arg;
1396
        struct snd_pcm_runtime *runtime = substream->runtime;
1397
        int width;
1398
        if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1399
                info->offset = -1;
1400
                return 0;
1401
        }
1402
        width = snd_pcm_format_physical_width(runtime->format);
1403
        if (width < 0)
1404
                return width;
1405
        info->offset = 0;
1406
        switch (runtime->access) {
1407
        case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1408
        case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1409
                info->first = info->channel * width;
1410
                info->step = runtime->channels * width;
1411
                break;
1412
        case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1413
        case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1414
        {
1415
                size_t size = runtime->dma_bytes / runtime->channels;
1416
                info->first = info->channel * size * 8;
1417
                info->step = width;
1418
                break;
1419
        }
1420
        default:
1421
                snd_BUG();
1422
                break;
1423
        }
1424
        return 0;
1425
}
1426
 
1427
/**
1428
 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1429
 * @substream: the pcm substream instance
1430
 * @cmd: ioctl command
1431
 * @arg: ioctl argument
1432
 *
1433
 * Processes the generic ioctl commands for PCM.
1434
 * Can be passed as the ioctl callback for PCM ops.
1435
 *
1436
 * Returns zero if successful, or a negative error code on failure.
1437
 */
1438
int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1439
                      unsigned int cmd, void *arg)
1440
{
1441
        switch (cmd) {
1442
        case SNDRV_PCM_IOCTL1_INFO:
1443
                return 0;
1444
        case SNDRV_PCM_IOCTL1_RESET:
1445
                return snd_pcm_lib_ioctl_reset(substream, arg);
1446
        case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1447
                return snd_pcm_lib_ioctl_channel_info(substream, arg);
1448
        }
1449
        return -ENXIO;
1450
}
1451
 
1452
EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1453
 
1454
/*
1455
 *  Conditions
1456
 */
1457
 
1458
static void snd_pcm_system_tick_set(struct snd_pcm_substream *substream,
1459
                                    unsigned long ticks)
1460
{
1461
        struct snd_pcm_runtime *runtime = substream->runtime;
1462
        if (ticks == 0)
1463
                del_timer(&runtime->tick_timer);
1464
        else {
1465
                ticks += (1000000 / HZ) - 1;
1466
                ticks /= (1000000 / HZ);
1467
                mod_timer(&runtime->tick_timer, jiffies + ticks);
1468
        }
1469
}
1470
 
1471
/* Temporary alias */
1472
void snd_pcm_tick_set(struct snd_pcm_substream *substream, unsigned long ticks)
1473
{
1474
        snd_pcm_system_tick_set(substream, ticks);
1475
}
1476
 
1477
void snd_pcm_tick_prepare(struct snd_pcm_substream *substream)
1478
{
1479
        struct snd_pcm_runtime *runtime = substream->runtime;
1480
        snd_pcm_uframes_t frames = ULONG_MAX;
1481
        snd_pcm_uframes_t avail, dist;
1482
        unsigned int ticks;
1483
        u_int64_t n;
1484
        u_int32_t r;
1485
        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
1486
                if (runtime->silence_size >= runtime->boundary) {
1487
                        frames = 1;
1488
                } else if (runtime->silence_size > 0 &&
1489
                           runtime->silence_filled < runtime->buffer_size) {
1490
                        snd_pcm_sframes_t noise_dist;
1491
                        noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
1492
                        if (noise_dist > (snd_pcm_sframes_t)runtime->silence_threshold)
1493
                                frames = noise_dist - runtime->silence_threshold;
1494
                }
1495
                avail = snd_pcm_playback_avail(runtime);
1496
        } else {
1497
                avail = snd_pcm_capture_avail(runtime);
1498
        }
1499
        if (avail < runtime->control->avail_min) {
1500
                snd_pcm_sframes_t n = runtime->control->avail_min - avail;
1501
                if (n > 0 && frames > (snd_pcm_uframes_t)n)
1502
                        frames = n;
1503
        }
1504
        if (avail < runtime->buffer_size) {
1505
                snd_pcm_sframes_t n = runtime->buffer_size - avail;
1506
                if (n > 0 && frames > (snd_pcm_uframes_t)n)
1507
                        frames = n;
1508
        }
1509
        if (frames == ULONG_MAX) {
1510
                snd_pcm_tick_set(substream, 0);
1511
                return;
1512
        }
1513
        dist = runtime->status->hw_ptr - runtime->hw_ptr_base;
1514
        /* Distance to next interrupt */
1515
        dist = runtime->period_size - dist % runtime->period_size;
1516
        if (dist <= frames) {
1517
                snd_pcm_tick_set(substream, 0);
1518
                return;
1519
        }
1520
        /* the base time is us */
1521
        n = frames;
1522
        n *= 1000000;
1523
        div64_32(&n, runtime->tick_time * runtime->rate, &r);
1524
        ticks = n + (r > 0 ? 1 : 0);
1525
        if (ticks < runtime->sleep_min)
1526
                ticks = runtime->sleep_min;
1527
        snd_pcm_tick_set(substream, (unsigned long) ticks);
1528
}
1529
 
1530
void snd_pcm_tick_elapsed(struct snd_pcm_substream *substream)
1531
{
1532
        struct snd_pcm_runtime *runtime;
1533
        unsigned long flags;
1534
 
1535
        snd_assert(substream != NULL, return);
1536
        runtime = substream->runtime;
1537
        snd_assert(runtime != NULL, return);
1538
 
1539
        snd_pcm_stream_lock_irqsave(substream, flags);
1540
        if (!snd_pcm_running(substream) ||
1541
            snd_pcm_update_hw_ptr(substream) < 0)
1542
                goto _end;
1543
        if (runtime->sleep_min)
1544
                snd_pcm_tick_prepare(substream);
1545
 _end:
1546
        snd_pcm_stream_unlock_irqrestore(substream, flags);
1547
}
1548
 
1549
/**
1550
 * snd_pcm_period_elapsed - update the pcm status for the next period
1551
 * @substream: the pcm substream instance
1552
 *
1553
 * This function is called from the interrupt handler when the
1554
 * PCM has processed the period size.  It will update the current
1555
 * pointer, set up the tick, wake up sleepers, etc.
1556
 *
1557
 * Even if more than one periods have elapsed since the last call, you
1558
 * have to call this only once.
1559
 */
1560
void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1561
{
1562
        struct snd_pcm_runtime *runtime;
1563
        unsigned long flags;
1564
 
1565
        snd_assert(substream != NULL, return);
1566
        runtime = substream->runtime;
1567
        snd_assert(runtime != NULL, return);
1568
 
1569
        if (runtime->transfer_ack_begin)
1570
                runtime->transfer_ack_begin(substream);
1571
 
1572
        snd_pcm_stream_lock_irqsave(substream, flags);
1573
        if (!snd_pcm_running(substream) ||
1574
            snd_pcm_update_hw_ptr_interrupt(substream) < 0)
1575
                goto _end;
1576
 
1577
        if (substream->timer_running)
1578
                snd_timer_interrupt(substream->timer, 1);
1579
        if (runtime->sleep_min)
1580
                snd_pcm_tick_prepare(substream);
1581
 _end:
1582
        snd_pcm_stream_unlock_irqrestore(substream, flags);
1583
        if (runtime->transfer_ack_end)
1584
                runtime->transfer_ack_end(substream);
1585
        kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1586
}
1587
 
1588
EXPORT_SYMBOL(snd_pcm_period_elapsed);
1589
 
1590
static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1591
                                      unsigned int hwoff,
1592
                                      unsigned long data, unsigned int off,
1593
                                      snd_pcm_uframes_t frames)
1594
{
1595
        struct snd_pcm_runtime *runtime = substream->runtime;
1596
        int err;
1597
        char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1598
        if (substream->ops->copy) {
1599
                if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1600
                        return err;
1601
        } else {
1602
                char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1603
                snd_assert(runtime->dma_area, return -EFAULT);
1604
                if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1605
                        return -EFAULT;
1606
        }
1607
        return 0;
1608
}
1609
 
1610
typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1611
                          unsigned long data, unsigned int off,
1612
                          snd_pcm_uframes_t size);
1613
 
1614
static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream,
1615
                                            unsigned long data,
1616
                                            snd_pcm_uframes_t size,
1617
                                            int nonblock,
1618
                                            transfer_f transfer)
1619
{
1620
        struct snd_pcm_runtime *runtime = substream->runtime;
1621
        snd_pcm_uframes_t xfer = 0;
1622
        snd_pcm_uframes_t offset = 0;
1623
        int err = 0;
1624
 
1625
        if (size == 0)
1626
                return 0;
1627
        if (size > runtime->xfer_align)
1628
                size -= size % runtime->xfer_align;
1629
 
1630
        snd_pcm_stream_lock_irq(substream);
1631
        switch (runtime->status->state) {
1632
        case SNDRV_PCM_STATE_PREPARED:
1633
        case SNDRV_PCM_STATE_RUNNING:
1634
        case SNDRV_PCM_STATE_PAUSED:
1635
                break;
1636
        case SNDRV_PCM_STATE_XRUN:
1637
                err = -EPIPE;
1638
                goto _end_unlock;
1639
        case SNDRV_PCM_STATE_SUSPENDED:
1640
                err = -ESTRPIPE;
1641
                goto _end_unlock;
1642
        default:
1643
                err = -EBADFD;
1644
                goto _end_unlock;
1645
        }
1646
 
1647
        while (size > 0) {
1648
                snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1649
                snd_pcm_uframes_t avail;
1650
                snd_pcm_uframes_t cont;
1651
                if (runtime->sleep_min == 0 && runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1652
                        snd_pcm_update_hw_ptr(substream);
1653
                avail = snd_pcm_playback_avail(runtime);
1654
                if (((avail < runtime->control->avail_min && size > avail) ||
1655
                   (size >= runtime->xfer_align && avail < runtime->xfer_align))) {
1656
                        wait_queue_t wait;
1657
                        enum { READY, SIGNALED, ERROR, SUSPENDED, EXPIRED, DROPPED } state;
1658
                        long tout;
1659
 
1660
                        if (nonblock) {
1661
                                err = -EAGAIN;
1662
                                goto _end_unlock;
1663
                        }
1664
 
1665
                        init_waitqueue_entry(&wait, current);
1666
                        add_wait_queue(&runtime->sleep, &wait);
1667
                        while (1) {
1668
                                if (signal_pending(current)) {
1669
                                        state = SIGNALED;
1670
                                        break;
1671
                                }
1672
                                set_current_state(TASK_INTERRUPTIBLE);
1673
                                snd_pcm_stream_unlock_irq(substream);
1674
                                tout = schedule_timeout(10 * HZ);
1675
                                snd_pcm_stream_lock_irq(substream);
1676
                                if (tout == 0) {
1677
                                        if (runtime->status->state != SNDRV_PCM_STATE_PREPARED &&
1678
                                            runtime->status->state != SNDRV_PCM_STATE_PAUSED) {
1679
                                                state = runtime->status->state == SNDRV_PCM_STATE_SUSPENDED ? SUSPENDED : EXPIRED;
1680
                                                break;
1681
                                        }
1682
                                }
1683
                                switch (runtime->status->state) {
1684
                                case SNDRV_PCM_STATE_XRUN:
1685
                                case SNDRV_PCM_STATE_DRAINING:
1686
                                        state = ERROR;
1687
                                        goto _end_loop;
1688
                                case SNDRV_PCM_STATE_SUSPENDED:
1689
                                        state = SUSPENDED;
1690
                                        goto _end_loop;
1691
                                case SNDRV_PCM_STATE_SETUP:
1692
                                        state = DROPPED;
1693
                                        goto _end_loop;
1694
                                default:
1695
                                        break;
1696
                                }
1697
                                avail = snd_pcm_playback_avail(runtime);
1698
                                if (avail >= runtime->control->avail_min) {
1699
                                        state = READY;
1700
                                        break;
1701
                                }
1702
                        }
1703
                       _end_loop:
1704
                        remove_wait_queue(&runtime->sleep, &wait);
1705
 
1706
                        switch (state) {
1707
                        case ERROR:
1708
                                err = -EPIPE;
1709
                                goto _end_unlock;
1710
                        case SUSPENDED:
1711
                                err = -ESTRPIPE;
1712
                                goto _end_unlock;
1713
                        case SIGNALED:
1714
                                err = -ERESTARTSYS;
1715
                                goto _end_unlock;
1716
                        case EXPIRED:
1717
                                snd_printd("playback write error (DMA or IRQ trouble?)\n");
1718
                                err = -EIO;
1719
                                goto _end_unlock;
1720
                        case DROPPED:
1721
                                err = -EBADFD;
1722
                                goto _end_unlock;
1723
                        default:
1724
                                break;
1725
                        }
1726
                }
1727
                if (avail > runtime->xfer_align)
1728
                        avail -= avail % runtime->xfer_align;
1729
                frames = size > avail ? avail : size;
1730
                cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1731
                if (frames > cont)
1732
                        frames = cont;
1733
                snd_assert(frames != 0, snd_pcm_stream_unlock_irq(substream); return -EINVAL);
1734
                appl_ptr = runtime->control->appl_ptr;
1735
                appl_ofs = appl_ptr % runtime->buffer_size;
1736
                snd_pcm_stream_unlock_irq(substream);
1737
                if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
1738
                        goto _end;
1739
                snd_pcm_stream_lock_irq(substream);
1740
                switch (runtime->status->state) {
1741
                case SNDRV_PCM_STATE_XRUN:
1742
                        err = -EPIPE;
1743
                        goto _end_unlock;
1744
                case SNDRV_PCM_STATE_SUSPENDED:
1745
                        err = -ESTRPIPE;
1746
                        goto _end_unlock;
1747
                default:
1748
                        break;
1749
                }
1750
                appl_ptr += frames;
1751
                if (appl_ptr >= runtime->boundary)
1752
                        appl_ptr -= runtime->boundary;
1753
                runtime->control->appl_ptr = appl_ptr;
1754
                if (substream->ops->ack)
1755
                        substream->ops->ack(substream);
1756
 
1757
                offset += frames;
1758
                size -= frames;
1759
                xfer += frames;
1760
                if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1761
                    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1762
                        err = snd_pcm_start(substream);
1763
                        if (err < 0)
1764
                                goto _end_unlock;
1765
                }
1766
                if (runtime->sleep_min &&
1767
                    runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1768
                        snd_pcm_tick_prepare(substream);
1769
        }
1770
 _end_unlock:
1771
        snd_pcm_stream_unlock_irq(substream);
1772
 _end:
1773
        return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1774
}
1775
 
1776
snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
1777
{
1778
        struct snd_pcm_runtime *runtime;
1779
        int nonblock;
1780
 
1781
        snd_assert(substream != NULL, return -ENXIO);
1782
        runtime = substream->runtime;
1783
        snd_assert(runtime != NULL, return -ENXIO);
1784
        snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
1785
        if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1786
                return -EBADFD;
1787
 
1788
        nonblock = !!(substream->f_flags & O_NONBLOCK);
1789
 
1790
        if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
1791
            runtime->channels > 1)
1792
                return -EINVAL;
1793
        return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
1794
                                  snd_pcm_lib_write_transfer);
1795
}
1796
 
1797
EXPORT_SYMBOL(snd_pcm_lib_write);
1798
 
1799
static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
1800
                                       unsigned int hwoff,
1801
                                       unsigned long data, unsigned int off,
1802
                                       snd_pcm_uframes_t frames)
1803
{
1804
        struct snd_pcm_runtime *runtime = substream->runtime;
1805
        int err;
1806
        void __user **bufs = (void __user **)data;
1807
        int channels = runtime->channels;
1808
        int c;
1809
        if (substream->ops->copy) {
1810
                snd_assert(substream->ops->silence != NULL, return -EINVAL);
1811
                for (c = 0; c < channels; ++c, ++bufs) {
1812
                        if (*bufs == NULL) {
1813
                                if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
1814
                                        return err;
1815
                        } else {
1816
                                char __user *buf = *bufs + samples_to_bytes(runtime, off);
1817
                                if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
1818
                                        return err;
1819
                        }
1820
                }
1821
        } else {
1822
                /* default transfer behaviour */
1823
                size_t dma_csize = runtime->dma_bytes / channels;
1824
                snd_assert(runtime->dma_area, return -EFAULT);
1825
                for (c = 0; c < channels; ++c, ++bufs) {
1826
                        char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
1827
                        if (*bufs == NULL) {
1828
                                snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
1829
                        } else {
1830
                                char __user *buf = *bufs + samples_to_bytes(runtime, off);
1831
                                if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
1832
                                        return -EFAULT;
1833
                        }
1834
                }
1835
        }
1836
        return 0;
1837
}
1838
 
1839
snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
1840
                                     void __user **bufs,
1841
                                     snd_pcm_uframes_t frames)
1842
{
1843
        struct snd_pcm_runtime *runtime;
1844
        int nonblock;
1845
 
1846
        snd_assert(substream != NULL, return -ENXIO);
1847
        runtime = substream->runtime;
1848
        snd_assert(runtime != NULL, return -ENXIO);
1849
        snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
1850
        if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1851
                return -EBADFD;
1852
 
1853
        nonblock = !!(substream->f_flags & O_NONBLOCK);
1854
 
1855
        if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
1856
                return -EINVAL;
1857
        return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
1858
                                  nonblock, snd_pcm_lib_writev_transfer);
1859
}
1860
 
1861
EXPORT_SYMBOL(snd_pcm_lib_writev);
1862
 
1863
static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,
1864
                                     unsigned int hwoff,
1865
                                     unsigned long data, unsigned int off,
1866
                                     snd_pcm_uframes_t frames)
1867
{
1868
        struct snd_pcm_runtime *runtime = substream->runtime;
1869
        int err;
1870
        char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1871
        if (substream->ops->copy) {
1872
                if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1873
                        return err;
1874
        } else {
1875
                char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1876
                snd_assert(runtime->dma_area, return -EFAULT);
1877
                if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
1878
                        return -EFAULT;
1879
        }
1880
        return 0;
1881
}
1882
 
1883
static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
1884
                                           unsigned long data,
1885
                                           snd_pcm_uframes_t size,
1886
                                           int nonblock,
1887
                                           transfer_f transfer)
1888
{
1889
        struct snd_pcm_runtime *runtime = substream->runtime;
1890
        snd_pcm_uframes_t xfer = 0;
1891
        snd_pcm_uframes_t offset = 0;
1892
        int err = 0;
1893
 
1894
        if (size == 0)
1895
                return 0;
1896
        if (size > runtime->xfer_align)
1897
                size -= size % runtime->xfer_align;
1898
 
1899
        snd_pcm_stream_lock_irq(substream);
1900
        switch (runtime->status->state) {
1901
        case SNDRV_PCM_STATE_PREPARED:
1902
                if (size >= runtime->start_threshold) {
1903
                        err = snd_pcm_start(substream);
1904
                        if (err < 0)
1905
                                goto _end_unlock;
1906
                }
1907
                break;
1908
        case SNDRV_PCM_STATE_DRAINING:
1909
        case SNDRV_PCM_STATE_RUNNING:
1910
        case SNDRV_PCM_STATE_PAUSED:
1911
                break;
1912
        case SNDRV_PCM_STATE_XRUN:
1913
                err = -EPIPE;
1914
                goto _end_unlock;
1915
        case SNDRV_PCM_STATE_SUSPENDED:
1916
                err = -ESTRPIPE;
1917
                goto _end_unlock;
1918
        default:
1919
                err = -EBADFD;
1920
                goto _end_unlock;
1921
        }
1922
 
1923
        while (size > 0) {
1924
                snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1925
                snd_pcm_uframes_t avail;
1926
                snd_pcm_uframes_t cont;
1927
                if (runtime->sleep_min == 0 && runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1928
                        snd_pcm_update_hw_ptr(substream);
1929
              __draining:
1930
                avail = snd_pcm_capture_avail(runtime);
1931
                if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
1932
                        if (avail < runtime->xfer_align) {
1933
                                err = -EPIPE;
1934
                                goto _end_unlock;
1935
                        }
1936
                } else if ((avail < runtime->control->avail_min && size > avail) ||
1937
                           (size >= runtime->xfer_align && avail < runtime->xfer_align)) {
1938
                        wait_queue_t wait;
1939
                        enum { READY, SIGNALED, ERROR, SUSPENDED, EXPIRED, DROPPED } state;
1940
                        long tout;
1941
 
1942
                        if (nonblock) {
1943
                                err = -EAGAIN;
1944
                                goto _end_unlock;
1945
                        }
1946
 
1947
                        init_waitqueue_entry(&wait, current);
1948
                        add_wait_queue(&runtime->sleep, &wait);
1949
                        while (1) {
1950
                                if (signal_pending(current)) {
1951
                                        state = SIGNALED;
1952
                                        break;
1953
                                }
1954
                                set_current_state(TASK_INTERRUPTIBLE);
1955
                                snd_pcm_stream_unlock_irq(substream);
1956
                                tout = schedule_timeout(10 * HZ);
1957
                                snd_pcm_stream_lock_irq(substream);
1958
                                if (tout == 0) {
1959
                                        if (runtime->status->state != SNDRV_PCM_STATE_PREPARED &&
1960
                                            runtime->status->state != SNDRV_PCM_STATE_PAUSED) {
1961
                                                state = runtime->status->state == SNDRV_PCM_STATE_SUSPENDED ? SUSPENDED : EXPIRED;
1962
                                                break;
1963
                                        }
1964
                                }
1965
                                switch (runtime->status->state) {
1966
                                case SNDRV_PCM_STATE_XRUN:
1967
                                        state = ERROR;
1968
                                        goto _end_loop;
1969
                                case SNDRV_PCM_STATE_SUSPENDED:
1970
                                        state = SUSPENDED;
1971
                                        goto _end_loop;
1972
                                case SNDRV_PCM_STATE_DRAINING:
1973
                                        goto __draining;
1974
                                case SNDRV_PCM_STATE_SETUP:
1975
                                        state = DROPPED;
1976
                                        goto _end_loop;
1977
                                default:
1978
                                        break;
1979
                                }
1980
                                avail = snd_pcm_capture_avail(runtime);
1981
                                if (avail >= runtime->control->avail_min) {
1982
                                        state = READY;
1983
                                        break;
1984
                                }
1985
                        }
1986
                       _end_loop:
1987
                        remove_wait_queue(&runtime->sleep, &wait);
1988
 
1989
                        switch (state) {
1990
                        case ERROR:
1991
                                err = -EPIPE;
1992
                                goto _end_unlock;
1993
                        case SUSPENDED:
1994
                                err = -ESTRPIPE;
1995
                                goto _end_unlock;
1996
                        case SIGNALED:
1997
                                err = -ERESTARTSYS;
1998
                                goto _end_unlock;
1999
                        case EXPIRED:
2000
                                snd_printd("capture read error (DMA or IRQ trouble?)\n");
2001
                                err = -EIO;
2002
                                goto _end_unlock;
2003
                        case DROPPED:
2004
                                err = -EBADFD;
2005
                                goto _end_unlock;
2006
                        default:
2007
                                break;
2008
                        }
2009
                }
2010
                if (avail > runtime->xfer_align)
2011
                        avail -= avail % runtime->xfer_align;
2012
                frames = size > avail ? avail : size;
2013
                cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2014
                if (frames > cont)
2015
                        frames = cont;
2016
                snd_assert(frames != 0, snd_pcm_stream_unlock_irq(substream); return -EINVAL);
2017
                appl_ptr = runtime->control->appl_ptr;
2018
                appl_ofs = appl_ptr % runtime->buffer_size;
2019
                snd_pcm_stream_unlock_irq(substream);
2020
                if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
2021
                        goto _end;
2022
                snd_pcm_stream_lock_irq(substream);
2023
                switch (runtime->status->state) {
2024
                case SNDRV_PCM_STATE_XRUN:
2025
                        err = -EPIPE;
2026
                        goto _end_unlock;
2027
                case SNDRV_PCM_STATE_SUSPENDED:
2028
                        err = -ESTRPIPE;
2029
                        goto _end_unlock;
2030
                default:
2031
                        break;
2032
                }
2033
                appl_ptr += frames;
2034
                if (appl_ptr >= runtime->boundary)
2035
                        appl_ptr -= runtime->boundary;
2036
                runtime->control->appl_ptr = appl_ptr;
2037
                if (substream->ops->ack)
2038
                        substream->ops->ack(substream);
2039
 
2040
                offset += frames;
2041
                size -= frames;
2042
                xfer += frames;
2043
                if (runtime->sleep_min &&
2044
                    runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2045
                        snd_pcm_tick_prepare(substream);
2046
        }
2047
 _end_unlock:
2048
        snd_pcm_stream_unlock_irq(substream);
2049
 _end:
2050
        return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2051
}
2052
 
2053
snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2054
{
2055
        struct snd_pcm_runtime *runtime;
2056
        int nonblock;
2057
 
2058
        snd_assert(substream != NULL, return -ENXIO);
2059
        runtime = substream->runtime;
2060
        snd_assert(runtime != NULL, return -ENXIO);
2061
        snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
2062
        if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2063
                return -EBADFD;
2064
 
2065
        nonblock = !!(substream->f_flags & O_NONBLOCK);
2066
        if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2067
                return -EINVAL;
2068
        return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2069
}
2070
 
2071
EXPORT_SYMBOL(snd_pcm_lib_read);
2072
 
2073
static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2074
                                      unsigned int hwoff,
2075
                                      unsigned long data, unsigned int off,
2076
                                      snd_pcm_uframes_t frames)
2077
{
2078
        struct snd_pcm_runtime *runtime = substream->runtime;
2079
        int err;
2080
        void __user **bufs = (void __user **)data;
2081
        int channels = runtime->channels;
2082
        int c;
2083
        if (substream->ops->copy) {
2084
                for (c = 0; c < channels; ++c, ++bufs) {
2085
                        char __user *buf;
2086
                        if (*bufs == NULL)
2087
                                continue;
2088
                        buf = *bufs + samples_to_bytes(runtime, off);
2089
                        if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2090
                                return err;
2091
                }
2092
        } else {
2093
                snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2094
                snd_assert(runtime->dma_area, return -EFAULT);
2095
                for (c = 0; c < channels; ++c, ++bufs) {
2096
                        char *hwbuf;
2097
                        char __user *buf;
2098
                        if (*bufs == NULL)
2099
                                continue;
2100
 
2101
                        hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2102
                        buf = *bufs + samples_to_bytes(runtime, off);
2103
                        if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2104
                                return -EFAULT;
2105
                }
2106
        }
2107
        return 0;
2108
}
2109
 
2110
snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2111
                                    void __user **bufs,
2112
                                    snd_pcm_uframes_t frames)
2113
{
2114
        struct snd_pcm_runtime *runtime;
2115
        int nonblock;
2116
 
2117
        snd_assert(substream != NULL, return -ENXIO);
2118
        runtime = substream->runtime;
2119
        snd_assert(runtime != NULL, return -ENXIO);
2120
        snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
2121
        if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2122
                return -EBADFD;
2123
 
2124
        nonblock = !!(substream->f_flags & O_NONBLOCK);
2125
        if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2126
                return -EINVAL;
2127
        return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2128
}
2129
 
2130
EXPORT_SYMBOL(snd_pcm_lib_readv);

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.