1 |
2 |
dsmv |
|
2 |
|
|
#include <linux/kernel.h>
|
3 |
|
|
#define __NO_VERSION__
|
4 |
|
|
#include <linux/module.h>
|
5 |
|
|
#include <linux/types.h>
|
6 |
|
|
#include <linux/ioport.h>
|
7 |
|
|
#include <linux/pci.h>
|
8 |
|
|
#include <linux/interrupt.h>
|
9 |
|
|
#include <linux/pagemap.h>
|
10 |
|
|
#include <linux/interrupt.h>
|
11 |
|
|
#include <linux/proc_fs.h>
|
12 |
|
|
#include <asm/io.h>
|
13 |
|
|
|
14 |
|
|
#ifndef _EVENT_H_
|
15 |
|
|
#include "event.h"
|
16 |
|
|
#endif
|
17 |
|
|
#ifndef _DMA_CHAN_H_
|
18 |
|
|
#include "dmachan.h"
|
19 |
|
|
#endif
|
20 |
|
|
#ifndef _HARDWARE_H_
|
21 |
|
|
#include "hardware.h"
|
22 |
|
|
#endif
|
23 |
|
|
|
24 |
|
|
//-----------------------------------------------------------------------------
|
25 |
|
|
|
26 |
|
|
struct CDmaChannel* CDmaChannelCreate( u32 NumberOfChannel,
|
27 |
|
|
void *brd,
|
28 |
|
|
struct device *dev,
|
29 |
|
|
u32 cbMaxTransferLength,
|
30 |
|
|
u16 idBlockFifo,
|
31 |
|
|
int bScatterGather )
|
32 |
|
|
{
|
33 |
|
|
struct CDmaChannel *dma = NULL;
|
34 |
|
|
|
35 |
|
|
dma = kzalloc(sizeof(struct CDmaChannel), GFP_KERNEL);
|
36 |
|
|
if(!dma) {
|
37 |
|
|
printk("<0>%s(): Error allocate memory for CDmaChannel object\n", __FUNCTION__);
|
38 |
|
|
return NULL;
|
39 |
|
|
}
|
40 |
|
|
|
41 |
|
|
dma->m_NumberOfChannel = NumberOfChannel;
|
42 |
|
|
dma->m_Board = brd;
|
43 |
|
|
dma->m_dev = dev;
|
44 |
|
|
dma->m_UseCount = 0;
|
45 |
|
|
dma->m_DpcForIsr = DmaDpcForIsr;
|
46 |
|
|
dma->m_idBlockFifo = idBlockFifo;
|
47 |
|
|
|
48 |
|
|
spin_lock_init( &dma->m_DmaLock );
|
49 |
|
|
init_waitqueue_head( &dma->m_DmaWq );
|
50 |
|
|
tasklet_init( &dma->m_Dpc, dma->m_DpcForIsr, (unsigned long)dma );
|
51 |
|
|
InitKevent( &dma->m_BlockEndEvent );
|
52 |
|
|
InitKevent( &dma->m_BufferEndEvent );
|
53 |
|
|
|
54 |
|
|
//printk("<0>%s(%d): COMPLETE.\n", __FUNCTION__, dma->m_NumberOfChannel);
|
55 |
|
|
|
56 |
|
|
return dma;
|
57 |
|
|
}
|
58 |
|
|
|
59 |
|
|
//-----------------------------------------------------------------------------
|
60 |
|
|
|
61 |
|
|
void CDmaChannelDelete(struct CDmaChannel *dma)
|
62 |
|
|
{
|
63 |
|
|
//printk("<0>%s()\n", __FUNCTION__);
|
64 |
|
|
if (dma) {
|
65 |
|
|
tasklet_kill( &dma->m_Dpc );
|
66 |
|
|
kfree(dma);
|
67 |
|
|
}
|
68 |
|
|
}
|
69 |
|
|
|
70 |
|
|
//-----------------------------------------------------------------------------
|
71 |
|
|
|
72 |
|
|
int RequestMemory(struct CDmaChannel *dma, void** ppVirtAddr, u32 size, u32 *pCount, void** pStub, u32 bMemType)
|
73 |
|
|
{
|
74 |
|
|
int Status = -ENOMEM;
|
75 |
|
|
|
76 |
|
|
//printk("<0>%s(): Channel = %d\n", __FUNCTION__, dma->m_NumberOfChannel);
|
77 |
|
|
|
78 |
|
|
// при первом обращении действительно выделяем память,
|
79 |
|
|
// а при повторных только отображаем выделенную память на пользовательское пространство
|
80 |
|
|
if(!dma->m_UseCount)
|
81 |
|
|
{
|
82 |
6 |
v.karak |
dma_addr_t pa = (dma_addr_t)0;
|
83 |
|
|
|
84 |
2 |
dsmv |
dma->m_MemType = bMemType;
|
85 |
|
|
dma->m_BlockCount = *pCount;
|
86 |
|
|
dma->m_BlockSize = size;
|
87 |
|
|
|
88 |
|
|
// выделяем память под описатели блоков (системный, и логический адрес для каждого блока)
|
89 |
|
|
dma->m_pBufDscr.SystemAddress = (void*)dma_alloc_coherent( dma->m_dev,
|
90 |
|
|
dma->m_BlockCount * sizeof(SHARED_MEMORY_DESCRIPTION),
|
91 |
6 |
v.karak |
&pa, GFP_KERNEL);
|
92 |
2 |
dsmv |
if(!dma->m_pBufDscr.SystemAddress)
|
93 |
|
|
{
|
94 |
|
|
printk("<0>%s(): Not memory for buffer descriptions\n", __FUNCTION__);
|
95 |
|
|
return -ENOMEM;
|
96 |
|
|
}
|
97 |
|
|
|
98 |
6 |
v.karak |
dma->m_pBufDscr.LogicalAddress = (size_t)pa;
|
99 |
2 |
dsmv |
dma->m_ScatterGatherTableEntryCnt = 0;
|
100 |
|
|
}
|
101 |
|
|
|
102 |
|
|
Status = RequestStub(dma, pStub);
|
103 |
|
|
if(Status == 0)
|
104 |
|
|
{
|
105 |
|
|
if(dma->m_MemType == SYSTEM_MEMORY_TYPE) {
|
106 |
|
|
Status = RequestSysBuf(dma, ppVirtAddr);
|
107 |
|
|
} else {
|
108 |
|
|
ReleaseStub(dma);
|
109 |
|
|
dma_free_coherent(dma->m_dev,
|
110 |
|
|
dma->m_BlockCount * sizeof(SHARED_MEMORY_DESCRIPTION),
|
111 |
|
|
dma->m_pBufDscr.SystemAddress,
|
112 |
|
|
dma->m_pBufDscr.LogicalAddress);
|
113 |
|
|
dma->m_pBufDscr.SystemAddress = NULL;
|
114 |
|
|
dma->m_pBufDscr.LogicalAddress = 0;
|
115 |
|
|
printk("<0>%s(): Invalid memory type for DMA data blocks\n", __FUNCTION__);
|
116 |
|
|
return -EINVAL;
|
117 |
|
|
}
|
118 |
|
|
|
119 |
|
|
if(Status == 0)
|
120 |
|
|
{
|
121 |
|
|
if(!dma->m_UseCount)
|
122 |
|
|
{
|
123 |
|
|
//printk("<0>%s(): Scatter/Gather Table Entry is %d\n", __FUNCTION__, dma->m_ScatterGatherTableEntryCnt);
|
124 |
|
|
if(dma->m_idBlockFifo == PE_EXT_FIFO_ID)
|
125 |
|
|
SetScatterGatherListExt(dma);
|
126 |
|
|
else {
|
127 |
|
|
printk("<0>%s(): Scatter/Gather Table Entry not created\n", __FUNCTION__);
|
128 |
|
|
//SetScatterGatherList(dma);
|
129 |
|
|
}
|
130 |
|
|
*pCount = dma->m_BlockCount;
|
131 |
|
|
dma->m_pStub = (PAMB_STUB)dma->m_StubDscr.SystemAddress;
|
132 |
|
|
dma->m_pStub->lastBlock = -1;
|
133 |
|
|
dma->m_pStub->totalCounter = 0;
|
134 |
|
|
dma->m_pStub->offset = 0;
|
135 |
|
|
dma->m_pStub->state = STATE_STOP;
|
136 |
|
|
}
|
137 |
|
|
dma->m_UseCount++;
|
138 |
|
|
}
|
139 |
|
|
else
|
140 |
|
|
{
|
141 |
|
|
ReleaseStub(dma);
|
142 |
|
|
dma_free_coherent(dma->m_dev, dma->m_BlockCount * sizeof(SHARED_MEMORY_DESCRIPTION),
|
143 |
|
|
dma->m_pBufDscr.SystemAddress, dma->m_pBufDscr.LogicalAddress);
|
144 |
|
|
dma->m_pBufDscr.SystemAddress = NULL;
|
145 |
|
|
dma->m_pBufDscr.LogicalAddress = 0;
|
146 |
|
|
printk("<0>%s(): Error allocate memory\n", __FUNCTION__);
|
147 |
|
|
return -EINVAL;
|
148 |
|
|
}
|
149 |
|
|
}
|
150 |
|
|
else
|
151 |
|
|
{
|
152 |
|
|
if(!dma->m_UseCount) {
|
153 |
|
|
dma_free_coherent(dma->m_dev,
|
154 |
|
|
dma->m_BlockCount * sizeof(SHARED_MEMORY_DESCRIPTION),
|
155 |
|
|
dma->m_pBufDscr.SystemAddress, dma->m_pBufDscr.LogicalAddress);
|
156 |
|
|
dma->m_pBufDscr.SystemAddress = NULL;
|
157 |
|
|
dma->m_pBufDscr.LogicalAddress = 0;
|
158 |
|
|
}
|
159 |
|
|
}
|
160 |
|
|
return Status;
|
161 |
|
|
}
|
162 |
|
|
|
163 |
|
|
//-----------------------------------------------------------------------------
|
164 |
|
|
|
165 |
|
|
void ReleaseMemory(struct CDmaChannel *dma)
|
166 |
|
|
{
|
167 |
|
|
//printk("<0>%s(): Entered. Channel = %d\n", __FUNCTION__, dma->m_NumberOfChannel);
|
168 |
|
|
|
169 |
|
|
if(!dma->m_UseCount) {
|
170 |
|
|
printk("<0> %s: Memory not allocated.\n", __FUNCTION__);
|
171 |
|
|
return;
|
172 |
|
|
}
|
173 |
|
|
|
174 |
|
|
ReleaseStub( dma );
|
175 |
|
|
ReleaseSGList( dma );
|
176 |
|
|
ReleaseSysBuf( dma );
|
177 |
|
|
|
178 |
|
|
dma_free_coherent(dma->m_dev,
|
179 |
|
|
dma->m_BlockCount * sizeof(SHARED_MEMORY_DESCRIPTION),
|
180 |
|
|
dma->m_pBufDscr.SystemAddress, dma->m_pBufDscr.LogicalAddress);
|
181 |
|
|
|
182 |
|
|
dma->m_pBufDscr.SystemAddress = NULL;
|
183 |
|
|
dma->m_pBufDscr.LogicalAddress = 0;
|
184 |
|
|
dma->m_UseCount--;
|
185 |
|
|
}
|
186 |
|
|
|
187 |
|
|
//-----------------------------------------------------------------------------
|
188 |
|
|
|
189 |
|
|
int SetScatterGatherListExt(struct CDmaChannel *dma)
|
190 |
|
|
{
|
191 |
|
|
int Status = 0;
|
192 |
|
|
u32 iBlock = 0;
|
193 |
|
|
//u32 ii = 0;
|
194 |
|
|
u32 iEntry = 0;
|
195 |
|
|
u32 iBlkEntry = 0;
|
196 |
|
|
u64 *pDscrBuf = NULL;
|
197 |
|
|
u16* pNextDscr = NULL;
|
198 |
|
|
u32 DscrSize = 0;
|
199 |
|
|
SHARED_MEMORY_DESCRIPTION *pMemDscr = (SHARED_MEMORY_DESCRIPTION*)dma->m_pBufDscr.SystemAddress;
|
200 |
|
|
DMA_CHAINING_DESCR_EXT *pSGTEx = NULL;
|
201 |
|
|
|
202 |
|
|
//printk("<0>%s()\n", __FUNCTION__);
|
203 |
|
|
|
204 |
|
|
Status = RequestSGList(dma);
|
205 |
|
|
if(Status < 0)
|
206 |
|
|
return Status;
|
207 |
|
|
|
208 |
|
|
//получим адрес таблицы для хранения цепочек DMA
|
209 |
|
|
dma->m_pScatterGatherTableExt = (DMA_CHAINING_DESCR_EXT*)dma->m_SGTableDscr.SystemAddress;
|
210 |
|
|
pSGTEx = dma->m_pScatterGatherTableExt;
|
211 |
|
|
|
212 |
|
|
DscrSize = DSCR_BLOCK_SIZE*sizeof(DMA_CHAINING_DESCR_EXT);
|
213 |
|
|
|
214 |
|
|
//обнулим таблицу дескрипторов DMA
|
215 |
|
|
memset(pSGTEx, 0, dma->m_ScatterGatherBlockCnt*DscrSize);
|
216 |
|
|
|
217 |
|
|
//printk("<0>%s(): m_SGTableDscr.SystemAddress = %p\n", __FUNCTION__, dma->m_SGTableDscr.SystemAddress );
|
218 |
|
|
//printk("<0>%s(): m_SGTableDscr.LogicalAddress = %zx\n", __FUNCTION__, dma->m_SGTableDscr.LogicalAddress );
|
219 |
|
|
|
220 |
|
|
//заполним значениями таблицу цепочек DMA
|
221 |
|
|
for(iBlock=0, iEntry=0; iBlock < dma->m_BlockCount; iBlock++) {
|
222 |
|
|
|
223 |
|
|
//адрес и размер DMA блока
|
224 |
|
|
u64 address = pMemDscr[iBlock].LogicalAddress;
|
225 |
|
|
u64 DmaSize = dma->m_BlockSize - 0x1000;
|
226 |
|
|
|
227 |
|
|
|
228 |
|
|
//заполним поля элментов таблицы дескрипторов
|
229 |
|
|
pSGTEx[iEntry].AddrByte1 = (u8)((address >> 8) & 0xFF);
|
230 |
|
|
pSGTEx[iEntry].AddrByte2 = (u8)((address >> 16) & 0xFF);
|
231 |
|
|
pSGTEx[iEntry].AddrByte3 = (u8)((address >> 24) & 0xFF);
|
232 |
|
|
pSGTEx[iEntry].AddrByte4 = (u8)((address >> 32) & 0xFF);
|
233 |
|
|
pSGTEx[iEntry].SizeByte1 = (u8)((DmaSize >> 8) & 0xFF);
|
234 |
|
|
pSGTEx[iEntry].SizeByte2 = (u8)((DmaSize >> 16) & 0xFF);
|
235 |
|
|
pSGTEx[iEntry].SizeByte3 = (u8)((DmaSize >> 24) & 0xFF);
|
236 |
|
|
pSGTEx[iEntry].Cmd.JumpNextDescr = 1; //перейти к следующему дескриптору
|
237 |
|
|
pSGTEx[iEntry].Cmd.JumpNextBlock = 0; //перейти к следующему блоку дескрипторов
|
238 |
|
|
pSGTEx[iEntry].Cmd.JumpDescr0 = 0;
|
239 |
|
|
pSGTEx[iEntry].Cmd.Res0 = 0;
|
240 |
|
|
pSGTEx[iEntry].Cmd.EndOfTrans = 1;
|
241 |
|
|
pSGTEx[iEntry].Cmd.Res = 0;
|
242 |
|
|
pSGTEx[iEntry].SizeByte1 |= dma->m_DmaDirection;
|
243 |
|
|
|
244 |
|
|
{
|
245 |
|
|
//u32 *ptr=(u32*)&pSGTEx[iEntry];
|
246 |
|
|
//printk("<0>%s(): %d: Entry Addr: %p, Data Addr: %llx %.8X %.8X\n",
|
247 |
|
|
// __FUNCTION__, iEntry, &pSGTEx[iEntry], address, ptr[1], ptr[0]);
|
248 |
|
|
}
|
249 |
|
|
|
250 |
|
|
if(((iEntry+2)%DSCR_BLOCK_SIZE) == 0)
|
251 |
|
|
{
|
252 |
|
|
size_t NextDscrBlockAddr = 0;
|
253 |
|
|
DMA_NEXT_BLOCK *pNextBlock = NULL;
|
254 |
|
|
|
255 |
|
|
pSGTEx[iEntry].Cmd.JumpNextBlock = 1;
|
256 |
|
|
pSGTEx[iEntry].Cmd.JumpNextDescr = 0;
|
257 |
|
|
|
258 |
|
|
//NextDscrBlockAddr = virt_to_bus((void*)&pSGTEx[iEntry+2]);
|
259 |
|
|
NextDscrBlockAddr = (size_t)((u8*)dma->m_SGTableDscr.LogicalAddress + sizeof(DMA_CHAINING_DESCR_EXT)*(iEntry +2));
|
260 |
|
|
|
261 |
|
|
//printk("<0>%s(): NextDscrBlock [PA]: %x\n", __FUNCTION__, NextDscrBlockAddr);
|
262 |
|
|
//printk("<0>%s(): NextDscrBlock [VA]: %p\n", __FUNCTION__, &pSGTEx[iEntry+2]);
|
263 |
|
|
|
264 |
|
|
pNextBlock = (DMA_NEXT_BLOCK*)&pSGTEx[iEntry+1];
|
265 |
|
|
|
266 |
|
|
//printk("<0>%s(): pNextBlock: %p\n", __FUNCTION__, pNextBlock);
|
267 |
|
|
|
268 |
|
|
pNextBlock->NextBlkAddr = (NextDscrBlockAddr >> 8) & 0xFFFFFF;
|
269 |
|
|
pNextBlock->Signature = 0x4953;
|
270 |
|
|
pNextBlock->Crc = 0;
|
271 |
|
|
iEntry++;
|
272 |
|
|
}
|
273 |
|
|
iEntry++;
|
274 |
|
|
}
|
275 |
|
|
|
276 |
|
|
//printk("<0>%s(): iEntry = %d\n", __FUNCTION__, iEntry);
|
277 |
|
|
|
278 |
|
|
if(((iEntry % DSCR_BLOCK_SIZE)) != 0)
|
279 |
|
|
{
|
280 |
|
|
DMA_NEXT_BLOCK *pNextBlock = NULL;
|
281 |
|
|
u32 i = 0;
|
282 |
|
|
|
283 |
|
|
pSGTEx[iEntry-1].Cmd.JumpNextDescr = 0;
|
284 |
|
|
|
285 |
|
|
pNextBlock = (DMA_NEXT_BLOCK*)(&pSGTEx[iEntry]);
|
286 |
|
|
pNextBlock->NextBlkAddr = (dma->m_SGTableDscr.LogicalAddress >> 8);
|
287 |
|
|
|
288 |
|
|
i = (DSCR_BLOCK_SIZE * dma->m_ScatterGatherBlockCnt) - 1;
|
289 |
|
|
pNextBlock = (DMA_NEXT_BLOCK*)(&pSGTEx[i]);
|
290 |
|
|
|
291 |
|
|
//printk("<0>%s(): %d: pNextBlock: %p\n", __FUNCTION__, i, pNextBlock );
|
292 |
|
|
|
293 |
|
|
pNextBlock->NextBlkAddr = 0;
|
294 |
|
|
pNextBlock->Signature = 0x4953;
|
295 |
|
|
pNextBlock->Crc = 0;
|
296 |
|
|
}
|
297 |
|
|
|
298 |
|
|
//printk("<0>%s(): DmaDirection = %d, DmaLocalAddress = 0x%X\n", __FUNCTION__, dma->m_DmaDirection, dma->m_DmaLocalAddress);
|
299 |
|
|
|
300 |
|
|
//for( ii=0; ii<dma->m_ScatterGatherBlockCnt*DSCR_BLOCK_SIZE; ii++ )
|
301 |
|
|
//{
|
302 |
|
|
//u32 *ptr=(u32*)&pSGTEx[ii];
|
303 |
|
|
//printk("<0>%s(): %d: %.8X %.8X\n", __FUNCTION__, ii, ptr[1], ptr[0]);
|
304 |
|
|
|
305 |
|
|
//}
|
306 |
|
|
|
307 |
|
|
pDscrBuf = (u64*)dma->m_pScatterGatherTableExt;
|
308 |
|
|
|
309 |
|
|
for(iBlkEntry = 0; iBlkEntry < dma->m_ScatterGatherBlockCnt; iBlkEntry++)
|
310 |
|
|
{
|
311 |
|
|
u32 ctrl_code = 0xFFFFFFFF;
|
312 |
|
|
|
313 |
|
|
for(iBlock = 0; iBlock < DSCR_BLOCK_SIZE; iBlock++)
|
314 |
|
|
{
|
315 |
|
|
u16 data0 = (u16)(pDscrBuf[iBlock] & 0xFFFF);
|
316 |
|
|
u16 data1 = (u16)((pDscrBuf[iBlock] >> 16) & 0xFFFF);
|
317 |
|
|
u16 data2 = (u16)((pDscrBuf[iBlock] >> 32) & 0xFFFF);
|
318 |
|
|
u16 data3 = (u16)((pDscrBuf[iBlock] >> 48) & 0xFFFF);
|
319 |
|
|
if(iBlock == DSCR_BLOCK_SIZE-1)
|
320 |
|
|
{
|
321 |
|
|
ctrl_code = ctrl_code ^ data0 ^ data1 ^ data2 ^ data3;
|
322 |
|
|
/*
|
323 |
|
|
printk("<0>%s(): DSCR_BLCK[%d] - NextBlkAddr = 0x%8X, Signature = 0x%4X, Crc = 0x%4X\n", __FUNCTION__,
|
324 |
|
|
iBlkEntry,
|
325 |
|
|
(u32)(pDscrBuf[iBlock] << 8),
|
326 |
|
|
(u16)((pDscrBuf[iBlock] >> 32) & 0xFFFF),
|
327 |
|
|
(u16)ctrl_code);
|
328 |
|
|
*/
|
329 |
|
|
}
|
330 |
|
|
else
|
331 |
|
|
{
|
332 |
|
|
u32 ctrl_tmp = 0;
|
333 |
|
|
ctrl_code = ctrl_code ^ data0 ^ data1 ^ data2 ^ data3;
|
334 |
|
|
ctrl_tmp = ctrl_code << 1;
|
335 |
|
|
ctrl_tmp |= (ctrl_code & 0x8000) ? 0: 1;
|
336 |
|
|
ctrl_code = ctrl_tmp;
|
337 |
|
|
|
338 |
|
|
//printk("<0>%s(): %d(%d) - PciAddr = 0x%8X, Cmd = 0x%2X, DmaLength = %d(%2X %2X %2X)\n", __FUNCTION__,
|
339 |
|
|
// iBlock, iBlkEntry,
|
340 |
|
|
// (u32)(pDscrBuf[iBlock] << 8),
|
341 |
|
|
// (u8)(pDscrBuf[iBlock] >> 32),
|
342 |
|
|
// (u32)((pDscrBuf[iBlock] >> 41) << 9),
|
343 |
|
|
// (u8)(pDscrBuf[iBlock] >> 56),
|
344 |
|
|
// (u8)(pDscrBuf[iBlock] >> 48),
|
345 |
|
|
// (u8)(pDscrBuf[iBlock] >> 40));
|
346 |
|
|
//printk("<0>%s(): JumpNextDescr = %d, JumpNextBlock = %d, JumpDescr0 = %d, EndOfTrans = %d, Signature = 0x%08X, Crc = 0x%08X\n",
|
347 |
|
|
// __FUNCTION__, m_pScatterGatherTable[iEntry].Cmd.EndOfChain,
|
348 |
|
|
// m_pScatterGatherTable[iEntry].Cmd.EndOfTrans,
|
349 |
|
|
// m_pScatterGatherTable[iEntry].Signature,
|
350 |
|
|
// m_pScatterGatherTable[iEntry].Crc
|
351 |
|
|
// );
|
352 |
|
|
}
|
353 |
|
|
}
|
354 |
|
|
pNextDscr = (u16*)pDscrBuf;
|
355 |
|
|
pNextDscr[255] |= (u16)ctrl_code;
|
356 |
|
|
pDscrBuf += DSCR_BLOCK_SIZE;
|
357 |
|
|
}
|
358 |
|
|
return 0;
|
359 |
|
|
}
|
360 |
|
|
|
361 |
|
|
//-----------------------------------------------------------------------------
|
362 |
|
|
/*
|
363 |
|
|
u32 NexDscrAddress(void *pVirtualAddress)
|
364 |
|
|
{
|
365 |
|
|
return (u32)(virt_to_bus(pVirtualAddress)>>4);
|
366 |
|
|
}
|
367 |
|
|
*/
|
368 |
|
|
//-----------------------------------------------------------------------------
|
369 |
|
|
// размещение в системном адресном пространстве памяти,
|
370 |
|
|
// доступной для операций ПДП и отображаемой в пользовательское пространство
|
371 |
|
|
//-----------------------------------------------------------------------------
|
372 |
|
|
|
373 |
|
|
int RequestSysBuf(struct CDmaChannel *dma, void **pMemPhysAddr)
|
374 |
|
|
{
|
375 |
|
|
u32 iBlock = 0;
|
376 |
|
|
u32 order = 0;
|
377 |
|
|
SHARED_MEMORY_DESCRIPTION *pMemDscr = (SHARED_MEMORY_DESCRIPTION*)dma->m_pBufDscr.SystemAddress;
|
378 |
|
|
|
379 |
|
|
//printk("<0>%s()\n", __FUNCTION__);
|
380 |
|
|
|
381 |
|
|
order = get_order(dma->m_BlockSize);
|
382 |
|
|
|
383 |
|
|
for(iBlock = 0; iBlock < dma->m_BlockCount; iBlock++)
|
384 |
|
|
{
|
385 |
|
|
dma_addr_t LogicalAddress;
|
386 |
|
|
void *pSystemAddress = NULL;
|
387 |
|
|
u32 *buffer = NULL;
|
388 |
|
|
int iii=0;
|
389 |
|
|
|
390 |
|
|
pSystemAddress = dma_alloc_coherent( dma->m_dev, dma->m_BlockSize, &LogicalAddress, GFP_KERNEL );
|
391 |
|
|
//pSystemAddress = (void*)__get_free_pages(GFP_KERNEL, order);
|
392 |
|
|
if(!pSystemAddress) {
|
393 |
|
|
printk("<0>%s(): Not enought memory for %i block location. m_BlockSize = %X, BlockOrder = %d\n",
|
394 |
|
|
__FUNCTION__, (int)iBlock, (int)dma->m_BlockSize, (int)order );
|
395 |
|
|
return -ENOMEM;
|
396 |
|
|
}
|
397 |
|
|
|
398 |
|
|
pMemDscr[iBlock].SystemAddress = pSystemAddress;
|
399 |
|
|
pMemDscr[iBlock].LogicalAddress = LogicalAddress;
|
400 |
|
|
//pMemDscr[iBlock].LogicalAddress = virt_to_bus(pSystemAddress);
|
401 |
|
|
|
402 |
|
|
lock_pages( pMemDscr[iBlock].SystemAddress, dma->m_BlockSize );
|
403 |
|
|
|
404 |
|
|
pMemPhysAddr[iBlock] = (void*)pMemDscr[iBlock].LogicalAddress;
|
405 |
|
|
|
406 |
|
|
buffer = (u32*)pMemDscr[iBlock].SystemAddress;
|
407 |
|
|
for(iii=0; iii<dma->m_BlockSize/4; iii++) {
|
408 |
|
|
buffer[iii] = 0x12345678;
|
409 |
|
|
}
|
410 |
|
|
|
411 |
|
|
//printk("<0>%s(): %i: %p\n", __FUNCTION__, iBlock, pMemPhysAddr[iBlock]);
|
412 |
|
|
}
|
413 |
|
|
|
414 |
|
|
dma->m_BlockCount = iBlock;
|
415 |
|
|
dma->m_ScatterGatherTableEntryCnt = iBlock;
|
416 |
|
|
|
417 |
|
|
return 0;
|
418 |
|
|
}
|
419 |
|
|
|
420 |
|
|
//-----------------------------------------------------------------------------
|
421 |
|
|
|
422 |
|
|
void ReleaseSysBuf(struct CDmaChannel *dma)
|
423 |
|
|
{
|
424 |
|
|
u32 iBlock = 0;
|
425 |
|
|
//u32 order = 0;
|
426 |
|
|
SHARED_MEMORY_DESCRIPTION *pMemDscr = (SHARED_MEMORY_DESCRIPTION*)dma->m_pBufDscr.SystemAddress;
|
427 |
|
|
|
428 |
|
|
//printk("<0>%s()\n", __FUNCTION__);
|
429 |
|
|
|
430 |
|
|
//order = get_order(dma->m_BlockSize);
|
431 |
|
|
|
432 |
|
|
if(!dma->m_UseCount) {
|
433 |
|
|
printk("<0> ReleaseSysBuf(): Memory not allocated.\n");
|
434 |
|
|
return;
|
435 |
|
|
}
|
436 |
|
|
|
437 |
|
|
for(iBlock = 0; iBlock < dma->m_BlockCount; iBlock++)
|
438 |
|
|
{
|
439 |
|
|
unlock_pages( pMemDscr[iBlock].SystemAddress, dma->m_BlockSize );
|
440 |
|
|
|
441 |
|
|
dma_free_coherent( dma->m_dev, dma->m_BlockSize, pMemDscr[iBlock].SystemAddress, pMemDscr[iBlock].LogicalAddress );
|
442 |
|
|
//free_pages((size_t)pMemDscr[iBlock].SystemAddress, order);
|
443 |
|
|
|
444 |
|
|
pMemDscr[iBlock].SystemAddress = NULL;
|
445 |
|
|
pMemDscr[iBlock].LogicalAddress = 0;
|
446 |
|
|
}
|
447 |
|
|
}
|
448 |
|
|
|
449 |
|
|
//-----------------------------------------------------------------------------
|
450 |
|
|
|
451 |
|
|
int RequestStub(struct CDmaChannel *dma, void **pStubPhysAddr)
|
452 |
|
|
{
|
453 |
|
|
dma_addr_t LogicalAddress = 0;
|
454 |
|
|
u32 StubSize = 0;
|
455 |
|
|
|
456 |
|
|
//printk("<0>%s()\n", __FUNCTION__ );
|
457 |
|
|
|
458 |
|
|
if(!dma)
|
459 |
|
|
return -EINVAL;
|
460 |
|
|
|
461 |
|
|
StubSize = sizeof(AMB_STUB) > PAGE_SIZE ? sizeof(AMB_STUB) : PAGE_SIZE;
|
462 |
|
|
|
463 |
|
|
//printk("<0>%s() 0\n", __FUNCTION__ );
|
464 |
|
|
|
465 |
|
|
if(!dma->m_UseCount)
|
466 |
|
|
{
|
467 |
|
|
void *pStub = dma_alloc_coherent( dma->m_dev, StubSize, &LogicalAddress, GFP_KERNEL );
|
468 |
|
|
if(!pStub)
|
469 |
|
|
{
|
470 |
|
|
printk("<0>%s(): Not enought memory for stub\n", __FUNCTION__);
|
471 |
|
|
return -ENOMEM;
|
472 |
|
|
}
|
473 |
|
|
|
474 |
|
|
lock_pages( pStub, StubSize );
|
475 |
|
|
|
476 |
|
|
//printk("<0>%s() 1\n", __FUNCTION__ );
|
477 |
|
|
|
478 |
|
|
dma->m_StubDscr.SystemAddress = pStub;
|
479 |
|
|
dma->m_StubDscr.LogicalAddress = LogicalAddress;
|
480 |
|
|
dma->m_pStub = (AMB_STUB*)pStub; //может быть в этом нет необходимости,
|
481 |
|
|
//но в дальнейшем в модуле используется dma->m_pStub
|
482 |
|
|
}
|
483 |
|
|
|
484 |
|
|
//printk("<0>%s() 2\n", __FUNCTION__ );
|
485 |
|
|
|
486 |
|
|
pStubPhysAddr[0] = (void*)dma->m_StubDscr.LogicalAddress;
|
487 |
|
|
|
488 |
|
|
//printk("<0>%s(): Stub physical address: %zx\n", __FUNCTION__, dma->m_StubDscr.LogicalAddress);
|
489 |
|
|
//printk("<0>%s(): Stub virtual address: %p\n", __FUNCTION__, dma->m_StubDscr.SystemAddress);
|
490 |
|
|
|
491 |
|
|
return 0;
|
492 |
|
|
}
|
493 |
|
|
|
494 |
|
|
//-----------------------------------------------------------------------------
|
495 |
|
|
|
496 |
|
|
void ReleaseStub(struct CDmaChannel *dma)
|
497 |
|
|
{
|
498 |
|
|
u32 StubSize = sizeof(AMB_STUB) > PAGE_SIZE ? sizeof(AMB_STUB) : PAGE_SIZE;
|
499 |
|
|
|
500 |
|
|
//printk("<0>%s()\n", __FUNCTION__);
|
501 |
|
|
|
502 |
|
|
if(!dma->m_UseCount)
|
503 |
|
|
{
|
504 |
|
|
unlock_pages(dma->m_StubDscr.SystemAddress, StubSize);
|
505 |
|
|
|
506 |
|
|
dma_free_coherent(dma->m_dev, StubSize,
|
507 |
|
|
dma->m_StubDscr.SystemAddress,
|
508 |
|
|
dma->m_StubDscr.LogicalAddress);
|
509 |
|
|
dma->m_pStub = NULL;
|
510 |
|
|
dma->m_StubDscr.SystemAddress = NULL;
|
511 |
|
|
dma->m_StubDscr.LogicalAddress = 0;
|
512 |
|
|
}
|
513 |
|
|
}
|
514 |
|
|
|
515 |
|
|
//-----------------------------------------------------------------------------
|
516 |
|
|
// вызываем только при первичном размещении буфера
|
517 |
|
|
//-----------------------------------------------------------------------------
|
518 |
|
|
|
519 |
|
|
int RequestSGList(struct CDmaChannel *dma)
|
520 |
|
|
{
|
521 |
|
|
u32 SGListMemSize = 0;
|
522 |
|
|
u32 SGListSize = 0;
|
523 |
|
|
dma_addr_t PhysicalAddress;
|
524 |
|
|
|
525 |
|
|
//printk("<0>%s()\n", __FUNCTION__);
|
526 |
|
|
|
527 |
|
|
if(dma->m_idBlockFifo == PE_EXT_FIFO_ID)
|
528 |
|
|
{
|
529 |
|
|
dma->m_ScatterGatherBlockCnt = dma->m_ScatterGatherTableEntryCnt / (DSCR_BLOCK_SIZE-1);
|
530 |
|
|
dma->m_ScatterGatherBlockCnt = (dma->m_ScatterGatherTableEntryCnt % (DSCR_BLOCK_SIZE-1)) ? (dma->m_ScatterGatherBlockCnt+1) : dma->m_ScatterGatherBlockCnt;
|
531 |
|
|
SGListSize = sizeof(DMA_CHAINING_DESCR_EXT) * DSCR_BLOCK_SIZE * dma->m_ScatterGatherBlockCnt;
|
532 |
|
|
//printk("<0>%s(): SGBlockCnt = %d, SGListSize = %d.\n", __FUNCTION__, dma->m_ScatterGatherBlockCnt, SGListSize);
|
533 |
|
|
}
|
534 |
|
|
|
535 |
|
|
SGListMemSize = (SGListSize >= PAGE_SIZE) ? SGListSize : PAGE_SIZE;
|
536 |
|
|
|
537 |
|
|
// выделяем память под список
|
538 |
|
|
dma->m_SGTableDscr.SystemAddress = dma_alloc_coherent( dma->m_dev, SGListMemSize, &PhysicalAddress, GFP_KERNEL);
|
539 |
|
|
if(!dma->m_SGTableDscr.SystemAddress)
|
540 |
|
|
{
|
541 |
|
|
printk("<0>%s(): Not enought memory for scatter/gather list\n", __FUNCTION__);
|
542 |
|
|
return -ENOMEM;
|
543 |
|
|
}
|
544 |
|
|
|
545 |
|
|
dma->m_SGTableDscr.LogicalAddress = PhysicalAddress;
|
546 |
|
|
|
547 |
|
|
// закрепляем список в физической памяти
|
548 |
|
|
lock_pages(dma->m_SGTableDscr.SystemAddress, SGListMemSize);
|
549 |
|
|
|
550 |
|
|
return 0;
|
551 |
|
|
}
|
552 |
|
|
|
553 |
|
|
//-----------------------------------------------------------------------------
|
554 |
|
|
|
555 |
|
|
void ReleaseSGList(struct CDmaChannel *dma)
|
556 |
|
|
{
|
557 |
|
|
u32 SGListMemSize = 0;
|
558 |
|
|
u32 SGListSize = 0;
|
559 |
|
|
|
560 |
|
|
//printk("<0>%s()\n", __FUNCTION__);
|
561 |
|
|
|
562 |
|
|
if(dma->m_idBlockFifo == PE_EXT_FIFO_ID)
|
563 |
|
|
{
|
564 |
|
|
SGListSize = sizeof(DMA_CHAINING_DESCR_EXT) * DSCR_BLOCK_SIZE * dma->m_ScatterGatherBlockCnt;
|
565 |
|
|
}
|
566 |
|
|
|
567 |
|
|
SGListMemSize = (SGListSize >= PAGE_SIZE) ? SGListSize : PAGE_SIZE;
|
568 |
|
|
|
569 |
|
|
// закрепляем список в физической памяти
|
570 |
|
|
unlock_pages(dma->m_SGTableDscr.SystemAddress, SGListMemSize);
|
571 |
|
|
|
572 |
|
|
dma_free_coherent( dma->m_dev, SGListMemSize,
|
573 |
|
|
dma->m_SGTableDscr.SystemAddress,
|
574 |
|
|
dma->m_SGTableDscr.LogicalAddress );
|
575 |
|
|
|
576 |
|
|
dma->m_SGTableDscr.SystemAddress = NULL;
|
577 |
|
|
dma->m_SGTableDscr.LogicalAddress = 0;
|
578 |
|
|
}
|
579 |
|
|
|
580 |
|
|
//-----------------------------------------------------------------------------
|
581 |
|
|
|
582 |
|
|
int StartDmaTransfer(struct CDmaChannel *dma, u32 IsCycling)
|
583 |
|
|
{
|
584 |
|
|
//printk("<0>%s()\n", __FUNCTION__);
|
585 |
|
|
|
586 |
|
|
dma->m_DmaCycling = IsCycling;
|
587 |
|
|
dma->m_DoneBlock = -1;
|
588 |
|
|
dma->m_DoneFlag = 1;
|
589 |
|
|
dma->m_CycleNum = 0;
|
590 |
|
|
dma->m_BlocksRemaining = dma->m_BlockCount;
|
591 |
|
|
dma->m_CurBlockNum = 0;
|
592 |
|
|
dma->m_preBlockCount1 = 1;
|
593 |
|
|
dma->m_preBlockCount2 = 2;
|
594 |
|
|
dma->m_preBlockCount3 = 3;
|
595 |
|
|
|
596 |
|
|
if(dma->m_idBlockFifo == PE_EXT_FIFO_ID)
|
597 |
|
|
{
|
598 |
|
|
u64 *pDscrBuf = NULL;
|
599 |
|
|
u32 ctrl_code = ~0;
|
600 |
|
|
u16* pDscr = NULL;
|
601 |
|
|
int iEntry = 0;
|
602 |
|
|
u32 iLastEntry = dma->m_ScatterGatherTableEntryCnt + dma->m_ScatterGatherBlockCnt - 1;
|
603 |
|
|
if(dma->m_ScatterGatherBlockCnt == 1)
|
604 |
|
|
dma->m_pScatterGatherTableExt[iLastEntry - 1].Cmd.JumpDescr0 = dma->m_DmaCycling;
|
605 |
|
|
else
|
606 |
|
|
dma->m_pScatterGatherTableExt[iLastEntry - 1].Cmd.JumpNextBlock = dma->m_DmaCycling;
|
607 |
|
|
|
608 |
|
|
//printk("<0>%s(): m_DmaCycling = %d\n", __FUNCTION__, dma->m_DmaCycling);
|
609 |
|
|
|
610 |
|
|
pDscrBuf = (u64*)dma->m_pScatterGatherTableExt + DSCR_BLOCK_SIZE * (dma->m_ScatterGatherBlockCnt - 1);
|
611 |
|
|
ctrl_code = 0xFFFFFFFF;
|
612 |
|
|
pDscr = (u16*)pDscrBuf;
|
613 |
|
|
pDscr[255] = 0;
|
614 |
|
|
for(iEntry = 0; iEntry < DSCR_BLOCK_SIZE; iEntry++)
|
615 |
|
|
{
|
616 |
|
|
u16 data0 = (u16)(pDscrBuf[iEntry] & 0xFFFF);
|
617 |
|
|
u16 data1 = (u16)((pDscrBuf[iEntry] >> 16) & 0xFFFF);
|
618 |
|
|
u16 data2 = (u16)((pDscrBuf[iEntry] >> 32) & 0xFFFF);
|
619 |
|
|
u16 data3 = (u16)((pDscrBuf[iEntry] >> 48) & 0xFFFF);
|
620 |
|
|
if(iEntry == DSCR_BLOCK_SIZE-1)
|
621 |
|
|
{
|
622 |
|
|
ctrl_code = ctrl_code ^ data0 ^ data1 ^ data2 ^ data3;
|
623 |
|
|
/*
|
624 |
|
|
printk("<0>%s(): DSCR_BLK[%d] - NextBlkAddr = 0x%08X, Signature = 0x%04X, Crc = 0x%04X\n",
|
625 |
|
|
__FUNCTION__,
|
626 |
|
|
dma->m_ScatterGatherBlockCnt-1,
|
627 |
|
|
(u32)(pDscrBuf[iEntry] << 8),
|
628 |
|
|
(u16)((pDscrBuf[iEntry] >> 32) & 0xFFFF),
|
629 |
|
|
(u16)ctrl_code);
|
630 |
|
|
*/
|
631 |
|
|
}
|
632 |
|
|
else
|
633 |
|
|
{
|
634 |
|
|
u32 ctrl_tmp = 0;
|
635 |
|
|
ctrl_code = ctrl_code ^ data0 ^ data1 ^ data2 ^ data3;
|
636 |
|
|
ctrl_tmp = ctrl_code << 1;
|
637 |
|
|
ctrl_tmp |= (ctrl_code & 0x8000) ? 0: 1;
|
638 |
|
|
ctrl_code = ctrl_tmp;
|
639 |
|
|
|
640 |
|
|
// 3 способа циклического сдвига влево 32-разрядного значения
|
641 |
|
|
// (у нас оказалось не совсем то: значение берется 16-разрядное и старший бит при переносе в младший инвертируется)
|
642 |
|
|
//_rotl(ctrl_code, 1);
|
643 |
|
|
//ctrl_code = (ctrl_code << 1) | (ctrl_code >> 31);
|
644 |
|
|
//__asm {
|
645 |
|
|
// rol ctrl_code,1
|
646 |
|
|
//}
|
647 |
|
|
|
648 |
|
|
//printk("<0>%s(): %d(%d) - PciAddr = 0x%08X, Cmd = 0x%02X, DmaLength = %d(%02X %02X %02X)\n",
|
649 |
|
|
// __FUNCTION__,
|
650 |
|
|
// iEntry, dma->m_ScatterGatherBlockCnt-1,
|
651 |
|
|
// (u32)(pDscrBuf[iEntry] << 8),
|
652 |
|
|
// (u16)(pDscrBuf[iEntry] >> 32),
|
653 |
|
|
// (u32)((pDscrBuf[iEntry] >> 41) << 9),
|
654 |
|
|
// (u8)(pDscrBuf[iEntry] >> 56), (u8)(pDscrBuf[iEntry] >> 48), (u8)(pDscrBuf[iEntry] >> 40));
|
655 |
|
|
}
|
656 |
|
|
}
|
657 |
|
|
pDscr[255] |= (u16)ctrl_code;
|
658 |
|
|
}
|
659 |
|
|
|
660 |
|
|
dma->m_pStub->lastBlock = -1;
|
661 |
|
|
dma->m_pStub->totalCounter = 0;
|
662 |
|
|
dma->m_pStub->state = STATE_RUN;
|
663 |
|
|
|
664 |
|
|
return 0;
|
665 |
|
|
}
|
666 |
|
|
|
667 |
|
|
//-----------------------------------------------------------------------------
|
668 |
|
|
|
669 |
|
|
u32 NextDmaTransfer(struct CDmaChannel *dma)
|
670 |
|
|
{
|
671 |
|
|
//printk("<0>%s(): - last block = %d, cycle counter = %d\n", __FUNCTION__, dma->m_pStub->lastBlock, dma->m_CycleNum);
|
672 |
|
|
|
673 |
|
|
if(dma->m_pStub->lastBlock + 1 >= (long)dma->m_BlockCount)
|
674 |
|
|
dma->m_pStub->lastBlock = 0;
|
675 |
|
|
else
|
676 |
|
|
dma->m_pStub->lastBlock++;
|
677 |
|
|
|
678 |
|
|
dma->m_CurBlockNum++;
|
679 |
|
|
dma->m_pStub->totalCounter++;
|
680 |
|
|
dma->m_BlocksRemaining--;
|
681 |
|
|
|
682 |
|
|
tasklet_hi_schedule(&dma->m_Dpc);
|
683 |
|
|
|
684 |
|
|
//printk("<0>%s(): tasklet_hi_schedule()\n", __FUNCTION__);
|
685 |
|
|
/*
|
686 |
|
|
if(dma->m_AdjustMode && dma->m_DmaCycling)
|
687 |
|
|
{
|
688 |
|
|
u32 next_done_blk = (dma->m_DoneBlock == dma->m_BlockCount-1) ? 0 : (dma->m_DoneBlock + 1);
|
689 |
|
|
u32 next_cur_blk = ((dma->m_CurBlockNum + 1) >= dma->m_BlockCount) ? ((dma->m_CurBlockNum + 1) - dma->m_BlockCount) : (dma->m_CurBlockNum + 1);
|
690 |
|
|
s32 difBlock = next_done_blk - next_cur_blk;
|
691 |
|
|
|
692 |
|
|
if(!difBlock)
|
693 |
|
|
dma->m_DoneFlag = 0;
|
694 |
|
|
|
695 |
|
|
//printk("%s(): DoneBlock = %d, Nextdb = %d, CurBlock = %d, Nextcb = %d, difBlock = %d, DoneFlag = %d\n",
|
696 |
|
|
// __FUNCTION__, dma->m_DoneBlock, next_done_blk, dma->m_CurBlockNum, next_cur_blk, difBlock, dma->m_DoneFlag);
|
697 |
|
|
}
|
698 |
|
|
*/
|
699 |
|
|
if(dma->m_BlocksRemaining <= 0 && dma->m_DmaCycling)
|
700 |
|
|
{
|
701 |
|
|
dma->m_BlocksRemaining = dma->m_BlockCount;
|
702 |
|
|
dma->m_CurBlockNum = 0;
|
703 |
|
|
dma->m_CycleNum++;
|
704 |
|
|
}
|
705 |
|
|
|
706 |
|
|
if(dma->m_preBlockCount1+1 == dma->m_BlockCount)
|
707 |
|
|
{
|
708 |
|
|
dma->m_preBlockCount1 = 0;
|
709 |
|
|
} else {
|
710 |
|
|
dma->m_preBlockCount1++;
|
711 |
|
|
}
|
712 |
|
|
|
713 |
|
|
if(dma->m_preBlockCount2+1 == dma->m_BlockCount)
|
714 |
|
|
{
|
715 |
|
|
dma->m_preBlockCount2 = 0;
|
716 |
|
|
} else {
|
717 |
|
|
dma->m_preBlockCount2++;
|
718 |
|
|
}
|
719 |
|
|
|
720 |
|
|
if(dma->m_preBlockCount3+1 == dma->m_BlockCount)
|
721 |
|
|
{
|
722 |
|
|
dma->m_preBlockCount3 = 0;
|
723 |
|
|
} else {
|
724 |
|
|
dma->m_preBlockCount3++;
|
725 |
|
|
}
|
726 |
|
|
|
727 |
|
|
|
728 |
|
|
if(dma->m_AdjustMode && dma->m_DmaCycling)
|
729 |
|
|
{
|
730 |
|
|
if(((dma->m_preBlockCount3 == 0)&&(dma->m_DoneBlock == -1)) || (dma->m_preBlockCount3 == dma->m_DoneBlock)) {
|
731 |
|
|
dma->m_DoneFlag = 0;
|
732 |
|
|
//printk("<0>%s(): m_preBlockCount = %d, m_DoneBlock = %d\n", __FUNCTION__, dma->m_preBlockCount3, dma->m_DoneBlock);
|
733 |
|
|
}
|
734 |
|
|
}
|
735 |
|
|
|
736 |
|
|
return dma->m_DoneFlag;
|
737 |
|
|
}
|
738 |
|
|
|
739 |
|
|
//-----------------------------------------------------------------------------
|
740 |
|
|
|
741 |
|
|
u32 SetDoneBlock(struct CDmaChannel *dma, long numBlk)
|
742 |
|
|
{
|
743 |
|
|
if(numBlk != dma->m_DoneBlock)
|
744 |
|
|
{
|
745 |
|
|
dma->m_DoneBlock = numBlk;
|
746 |
|
|
|
747 |
|
|
if((dma->m_preBlockCount1 != dma->m_DoneBlock) && (dma->m_preBlockCount2 != dma->m_DoneBlock) && (dma->m_preBlockCount3 != dma->m_DoneBlock)) {
|
748 |
|
|
|
749 |
|
|
if(dma->m_AdjustMode && dma->m_DmaCycling && !dma->m_DoneFlag)
|
750 |
|
|
{
|
751 |
|
|
dma->m_DoneFlag = 1;
|
752 |
|
|
}
|
753 |
|
|
}
|
754 |
|
|
}
|
755 |
|
|
|
756 |
|
|
//printk("<0>%s(): DoneBlock = %d, DoneFlag = %d\n", __FUNCTION__, dma->m_DoneBlock, dma->m_DoneFlag);
|
757 |
|
|
|
758 |
|
|
return dma->m_DoneFlag;
|
759 |
|
|
}
|
760 |
|
|
|
761 |
|
|
//-----------------------------------------------------------------------------
|
762 |
|
|
|
763 |
|
|
void GetState(struct CDmaChannel *dma, u32 *BlockNum, u32 *BlockNumTotal, u32 *OffsetInBlock, u32 *DmaChanState)
|
764 |
|
|
{
|
765 |
|
|
//printk("<0>%s(): - last block = %d, cycle counter = %d\n", __FUNCTION__, dma->m_pStub->lastBlock, dma->m_CycleNum);
|
766 |
|
|
|
767 |
|
|
*BlockNum = dma->m_State.lastBlock;
|
768 |
|
|
*BlockNumTotal = dma->m_State.totalCounter;
|
769 |
|
|
*OffsetInBlock = dma->m_State.offset;// регистр подсчета переданных байт в текущем буфере будет реализован позже
|
770 |
|
|
*DmaChanState = dma->m_State.state;
|
771 |
|
|
}
|
772 |
|
|
|
773 |
|
|
//-----------------------------------------------------------------------------
|
774 |
|
|
|
775 |
|
|
void FreezeState(struct CDmaChannel *dma)
|
776 |
|
|
{
|
777 |
|
|
//printk("<0>%s()\n", __FUNCTION__);
|
778 |
|
|
}
|
779 |
|
|
|
780 |
|
|
//-----------------------------------------------------------------------------
|
781 |
|
|
|
782 |
|
|
int WaitBlockEndEvent(struct CDmaChannel *dma, u32 msTimeout)
|
783 |
|
|
{
|
784 |
|
|
int status = -ETIMEDOUT;
|
785 |
|
|
|
786 |
|
|
//printk("<0>%s(): DMA%d\n", __FUNCTION__, dma->m_NumberOfChannel);
|
787 |
|
|
|
788 |
|
|
if( msTimeout < 0 ) {
|
789 |
|
|
status = GrabEvent( &dma->m_BlockEndEvent, -1 );
|
790 |
|
|
} else {
|
791 |
|
|
status = GrabEvent( &dma->m_BlockEndEvent, msTimeout );
|
792 |
|
|
}
|
793 |
|
|
return status;
|
794 |
|
|
}
|
795 |
|
|
|
796 |
|
|
//-----------------------------------------------------------------------------
|
797 |
|
|
|
798 |
|
|
int WaitBufferEndEvent(struct CDmaChannel *dma, u32 msTimeout)
|
799 |
|
|
{
|
800 |
|
|
int status = -ETIMEDOUT;
|
801 |
|
|
|
802 |
|
|
//printk("<0>%s(): DMA%d\n", __FUNCTION__, dma->m_NumberOfChannel);
|
803 |
|
|
|
804 |
|
|
if( msTimeout < 0 ) {
|
805 |
|
|
status = GrabEvent( &dma->m_BufferEndEvent, -1 );
|
806 |
|
|
} else {
|
807 |
|
|
status = GrabEvent( &dma->m_BufferEndEvent, msTimeout );
|
808 |
|
|
}
|
809 |
|
|
|
810 |
|
|
return status;
|
811 |
|
|
}
|
812 |
|
|
|
813 |
|
|
//-----------------------------------------------------------------------------
|
814 |
|
|
|
815 |
|
|
int CompleteDmaTransfer(struct CDmaChannel *dma)
|
816 |
|
|
{
|
817 |
|
|
//printk("<0> %s(): DMA%d\n", __FUNCTION__, dma->m_NumberOfChannel);
|
818 |
|
|
dma->m_pStub->state = STATE_STOP;
|
819 |
|
|
return 0;
|
820 |
|
|
}
|
821 |
|
|
|
822 |
|
|
//-----------------------------------------------------------------------------
|
823 |
|
|
|
824 |
|
|
void GetSGStartParams(struct CDmaChannel *dma, u64 *SGTableAddress, u32 *LocalAddress, u32 *DmaDirection)
|
825 |
|
|
{
|
826 |
|
|
if(dma->m_idBlockFifo == PE_EXT_FIFO_ID)
|
827 |
|
|
{
|
828 |
|
|
*SGTableAddress = dma->m_SGTableDscr.LogicalAddress;
|
829 |
|
|
}
|
830 |
|
|
|
831 |
|
|
*LocalAddress = dma->m_DmaLocalAddress;
|
832 |
|
|
*DmaDirection = dma->m_DmaDirection;
|
833 |
|
|
}
|
834 |
|
|
|
835 |
|
|
//-----------------------------------------------------------------------------
|
836 |
|
|
|
837 |
|
|
void GetStartParams(struct CDmaChannel *dma, u32 *PciAddress, u32 *LocalAddress, u32 *DmaLength)
|
838 |
|
|
{
|
839 |
|
|
// возвращает адрес и размер DMA из первого элемента таблицы
|
840 |
|
|
if(dma->m_idBlockFifo == PE_EXT_FIFO_ID)
|
841 |
|
|
{
|
842 |
|
|
u64 *pDscrBuf = (u64*)dma->m_pScatterGatherTableExt;
|
843 |
|
|
*PciAddress = (u32)(pDscrBuf[0] << 16);
|
844 |
|
|
*DmaLength = (u32)((pDscrBuf[0] >> 40) << 8);
|
845 |
|
|
}
|
846 |
|
|
*LocalAddress = dma->m_DmaLocalAddress;
|
847 |
|
|
}
|
848 |
|
|
|
849 |
|
|
//-----------------------------------------------------------------------------
|
850 |
|
|
|
851 |
|
|
void Adjust(struct CDmaChannel *dma, u32 mode)
|
852 |
|
|
{
|
853 |
|
|
//printk("<0>%s()\n", __FUNCTION__);
|
854 |
|
|
dma->m_AdjustMode = mode;
|
855 |
|
|
}
|
856 |
|
|
|
857 |
|
|
//-----------------------------------------------------------------------------
|
858 |
|
|
|
859 |
|
|
void SetAdmTetr(struct CDmaChannel *dma, u32 AdmNum, u32 TetrNum)
|
860 |
|
|
{
|
861 |
|
|
//printk("<0>%s()\n", __FUNCTION__);
|
862 |
|
|
dma->m_AdmNum = AdmNum;
|
863 |
|
|
dma->m_TetrNum = TetrNum;
|
864 |
|
|
}
|
865 |
|
|
|
866 |
|
|
//-----------------------------------------------------------------------------
|
867 |
|
|
|
868 |
|
|
void SetDmaLocalAddress(struct CDmaChannel *dma, u32 Address)
|
869 |
|
|
{
|
870 |
|
|
//printk("<0>%s()\n", __FUNCTION__);
|
871 |
|
|
dma->m_DmaLocalAddress = Address;
|
872 |
|
|
}
|
873 |
|
|
|
874 |
|
|
//-----------------------------------------------------------------------------
|
875 |
|
|
|
876 |
|
|
int SetDmaDirection(struct CDmaChannel *dma, u32 DmaDirection)
|
877 |
|
|
{
|
878 |
|
|
//printk("<0>%s()\n", __FUNCTION__);
|
879 |
|
|
switch(DmaDirection)
|
880 |
|
|
{
|
881 |
|
|
case 1:
|
882 |
|
|
dma->m_DmaDirection = TRANSFER_DIR_FROM_DEVICE;
|
883 |
|
|
break;
|
884 |
|
|
case 2:
|
885 |
|
|
dma->m_DmaDirection = TRANSFER_DIR_TO_DEVICE;
|
886 |
|
|
break;
|
887 |
|
|
default:
|
888 |
|
|
return -EINVAL;
|
889 |
|
|
}
|
890 |
|
|
|
891 |
|
|
return 0;
|
892 |
|
|
}
|
893 |
|
|
|
894 |
|
|
//-----------------------------------------------------------------------------
|
895 |
|
|
|
896 |
|
|
u32 GetAdmNum(struct CDmaChannel *dma)
|
897 |
|
|
{
|
898 |
|
|
return dma->m_AdmNum;
|
899 |
|
|
}
|
900 |
|
|
|
901 |
|
|
//-----------------------------------------------------------------------------
|
902 |
|
|
|
903 |
|
|
u32 GetTetrNum(struct CDmaChannel *dma)
|
904 |
|
|
{
|
905 |
|
|
return dma->m_TetrNum;
|
906 |
|
|
}
|
907 |
|
|
|
908 |
|
|
//-----------------------------------------------------------------------------
|
909 |
|
|
|
910 |
|
|
void DmaDpcForIsr( unsigned long Context )
|
911 |
|
|
{
|
912 |
|
|
struct CDmaChannel *DmaChannel = (struct CDmaChannel *)Context;
|
913 |
|
|
unsigned long flags = 0;
|
914 |
|
|
|
915 |
|
|
spin_lock_irqsave(&DmaChannel->m_DmaLock, flags);
|
916 |
|
|
|
917 |
|
|
//printk("<0>%s(): [DMA%d] m_CurBlockNum = %d, m_BlockCount = %d\n",
|
918 |
|
|
// __FUNCTION__, DmaChannel->m_NumberOfChannel, DmaChannel->m_CurBlockNum, DmaChannel->m_BlockCount );
|
919 |
9 |
v.karak |
DmaChannel->m_State = *DmaChannel->m_pStub;
|
920 |
2 |
dsmv |
|
921 |
|
|
SetEvent( &DmaChannel->m_BlockEndEvent );
|
922 |
|
|
|
923 |
|
|
if(DmaChannel->m_CurBlockNum >= DmaChannel->m_BlockCount)
|
924 |
|
|
{
|
925 |
|
|
HwCompleteDmaTransfer(DmaChannel->m_Board,DmaChannel->m_NumberOfChannel);
|
926 |
|
|
SetEvent( &DmaChannel->m_BufferEndEvent );
|
927 |
|
|
}
|
928 |
|
|
|
929 |
|
|
spin_unlock_irqrestore(&DmaChannel->m_DmaLock, flags);
|
930 |
|
|
}
|