1 |
2 |
buenos |
-------------------------------------------------------------------------------
|
2 |
|
|
--
|
3 |
|
|
-- (c) Copyright 2008, 2009 Xilinx, Inc. All rights reserved.
|
4 |
|
|
--
|
5 |
|
|
-- This file contains confidential and proprietary information of Xilinx, Inc.
|
6 |
|
|
-- and is protected under U.S. and international copyright and other
|
7 |
|
|
-- intellectual property laws.
|
8 |
|
|
--
|
9 |
|
|
-- DISCLAIMER
|
10 |
|
|
--
|
11 |
|
|
-- This disclaimer is not a license and does not grant any rights to the
|
12 |
|
|
-- materials distributed herewith. Except as otherwise provided in a valid
|
13 |
|
|
-- license issued to you by Xilinx, and to the maximum extent permitted by
|
14 |
|
|
-- applicable law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND WITH ALL
|
15 |
|
|
-- FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS,
|
16 |
|
|
-- IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
|
17 |
|
|
-- MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE;
|
18 |
|
|
-- and (2) Xilinx shall not be liable (whether in contract or tort, including
|
19 |
|
|
-- negligence, or under any other theory of liability) for any loss or damage
|
20 |
|
|
-- of any kind or nature related to, arising under or in connection with these
|
21 |
|
|
-- materials, including for any direct, or any indirect, special, incidental,
|
22 |
|
|
-- or consequential loss or damage (including loss of data, profits, goodwill,
|
23 |
|
|
-- or any type of loss or damage suffered as a result of any action brought by
|
24 |
|
|
-- a third party) even if such damage or loss was reasonably foreseeable or
|
25 |
|
|
-- Xilinx had been advised of the possibility of the same.
|
26 |
|
|
--
|
27 |
|
|
-- CRITICAL APPLICATIONS
|
28 |
|
|
--
|
29 |
|
|
-- Xilinx products are not designed or intended to be fail-safe, or for use in
|
30 |
|
|
-- any application requiring fail-safe performance, such as life-support or
|
31 |
|
|
-- safety devices or systems, Class III medical devices, nuclear facilities,
|
32 |
|
|
-- applications related to the deployment of airbags, or any other
|
33 |
|
|
-- applications that could lead to death, personal injury, or severe property
|
34 |
|
|
-- or environmental damage (individually and collectively, "Critical
|
35 |
|
|
-- Applications"). Customer assumes the sole risk and liability of any use of
|
36 |
|
|
-- Xilinx products in Critical Applications, subject only to applicable laws
|
37 |
|
|
-- and regulations governing limitations on product liability.
|
38 |
|
|
--
|
39 |
|
|
-- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS PART OF THIS FILE
|
40 |
|
|
-- AT ALL TIMES.
|
41 |
|
|
--
|
42 |
|
|
-------------------------------------------------------------------------------
|
43 |
|
|
-- Project : Spartan-6 Integrated Block for PCI Express
|
44 |
|
|
-- File : pcie_brams_s6.vhd
|
45 |
|
|
-- Description: BlockRAM module for Spartan-6 PCIe Block
|
46 |
|
|
--
|
47 |
|
|
-- Arranges and connects brams
|
48 |
|
|
-- Implements address decoding, datapath muxing and
|
49 |
|
|
-- pipeline stages
|
50 |
|
|
--
|
51 |
|
|
-------------------------------------------------------------------------------
|
52 |
|
|
|
53 |
|
|
library ieee;
|
54 |
|
|
use ieee.std_logic_1164.all;
|
55 |
|
|
use ieee.std_logic_unsigned.all;
|
56 |
|
|
|
57 |
|
|
entity pcie_brams_s6 is
|
58 |
|
|
generic (
|
59 |
|
|
-- the number of BRAMs to use
|
60 |
|
|
-- supported values are:
|
61 |
|
|
-- 1,2,4,9
|
62 |
|
|
NUM_BRAMS : integer := 0;
|
63 |
|
|
|
64 |
|
|
-- BRAM read address latency
|
65 |
|
|
--
|
66 |
|
|
-- value meaning
|
67 |
|
|
-- ====================================================
|
68 |
|
|
-- 0 BRAM read address port sample
|
69 |
|
|
-- 1 BRAM read address port sample and a pipeline stage on the address port
|
70 |
|
|
RAM_RADDR_LATENCY : integer := 1;
|
71 |
|
|
|
72 |
|
|
-- BRAM read data latency
|
73 |
|
|
--
|
74 |
|
|
-- value meaning
|
75 |
|
|
-- ====================================================
|
76 |
|
|
-- 1 no BRAM OREG
|
77 |
|
|
-- 2 use BRAM OREG
|
78 |
|
|
-- 3 use BRAM OREG and a pipeline stage on the data port
|
79 |
|
|
RAM_RDATA_LATENCY : integer := 1;
|
80 |
|
|
|
81 |
|
|
-- BRAM write latency
|
82 |
|
|
-- The BRAM write port is synchronous
|
83 |
|
|
--
|
84 |
|
|
-- value meaning
|
85 |
|
|
-- ====================================================
|
86 |
|
|
-- 0 BRAM write port sample
|
87 |
|
|
-- 1 BRAM write port sample plus pipeline stage
|
88 |
|
|
RAM_WRITE_LATENCY : integer := 1
|
89 |
|
|
);
|
90 |
|
|
port (
|
91 |
|
|
user_clk_i : in std_logic;
|
92 |
|
|
reset_i : in std_logic;
|
93 |
|
|
wen : in std_logic;
|
94 |
|
|
waddr : in std_logic_vector(11 downto 0);
|
95 |
|
|
wdata : in std_logic_vector(35 downto 0);
|
96 |
|
|
ren : in std_logic;
|
97 |
|
|
rce : in std_logic;
|
98 |
|
|
raddr : in std_logic_vector(11 downto 0);
|
99 |
|
|
rdata : out std_logic_vector(35 downto 0)
|
100 |
|
|
);
|
101 |
|
|
end pcie_brams_s6;
|
102 |
|
|
|
103 |
|
|
architecture rtl of pcie_brams_s6 is
|
104 |
|
|
|
105 |
|
|
constant TCQ : time := 1 ns; -- Clock-to-out delay to be modeled
|
106 |
|
|
|
107 |
|
|
-- Turn on the bram output register
|
108 |
|
|
function CALC_DOB_REG(constant RAM_RDATA_LATENCY : in integer) return integer is
|
109 |
|
|
variable DOB_REG : integer;
|
110 |
|
|
begin
|
111 |
|
|
if (RAM_RDATA_LATENCY > 1) then DOB_REG := 1;
|
112 |
|
|
else DOB_REG := 0;
|
113 |
|
|
end if;
|
114 |
|
|
return DOB_REG;
|
115 |
|
|
end function CALC_DOB_REG;
|
116 |
|
|
|
117 |
|
|
-- Calculate the data width of the individual BRAMs
|
118 |
|
|
function CALC_WIDTH(constant NUM_BRAMS : in integer) return integer is
|
119 |
|
|
variable WIDTH : integer;
|
120 |
|
|
begin
|
121 |
|
|
if (NUM_BRAMS = 1) then WIDTH := 36;
|
122 |
|
|
elsif (NUM_BRAMS = 2) then WIDTH := 18;
|
123 |
|
|
elsif (NUM_BRAMS = 4) then WIDTH := 9;
|
124 |
|
|
else WIDTH := 4; -- NUM_BRAMS = 9
|
125 |
|
|
end if;
|
126 |
|
|
return WIDTH;
|
127 |
|
|
end function CALC_WIDTH;
|
128 |
|
|
|
129 |
|
|
component pcie_bram_s6 is
|
130 |
|
|
generic (
|
131 |
|
|
DOB_REG : integer;
|
132 |
|
|
WIDTH : integer
|
133 |
|
|
);
|
134 |
|
|
port (
|
135 |
|
|
user_clk_i : in std_logic;
|
136 |
|
|
reset_i : in std_logic;
|
137 |
|
|
|
138 |
|
|
wen_i : in std_logic;
|
139 |
|
|
waddr_i : in std_logic_vector(11 downto 0);
|
140 |
|
|
wdata_i : in std_logic_vector(CALC_WIDTH(NUM_BRAMS)-1 downto 0);
|
141 |
|
|
|
142 |
|
|
ren_i : in std_logic;
|
143 |
|
|
rce_i : in std_logic;
|
144 |
|
|
raddr_i : in std_logic_vector(11 downto 0);
|
145 |
|
|
|
146 |
|
|
rdata_o : out std_logic_vector(CALC_WIDTH(NUM_BRAMS)-1 downto 0) -- read data
|
147 |
|
|
);
|
148 |
|
|
end component;
|
149 |
|
|
|
150 |
|
|
-- Model the delays for RAM write latency
|
151 |
|
|
signal wen_int : std_logic;
|
152 |
|
|
signal waddr_int : std_logic_vector(11 downto 0);
|
153 |
|
|
signal wdata_int : std_logic_vector(35 downto 0);
|
154 |
|
|
|
155 |
|
|
-- Model the delays for RAM read latency
|
156 |
|
|
signal ren_int : std_logic;
|
157 |
|
|
signal raddr_int : std_logic_vector(11 downto 0);
|
158 |
|
|
signal rdata_int : std_logic_vector(35 downto 0);
|
159 |
|
|
|
160 |
|
|
begin
|
161 |
|
|
|
162 |
|
|
--synthesis translate_off
|
163 |
|
|
process begin
|
164 |
|
|
case NUM_BRAMS is
|
165 |
|
|
when 1 | 2 | 4 | 9 =>
|
166 |
|
|
null;
|
167 |
|
|
when others =>
|
168 |
|
|
report "Error NUM_BRAMS size " & integer'image(NUM_BRAMS) & " is not supported." severity failure;
|
169 |
|
|
end case; -- case NUM_BRAMS
|
170 |
|
|
|
171 |
|
|
case RAM_RADDR_LATENCY is
|
172 |
|
|
when 0 | 1 =>
|
173 |
|
|
null;
|
174 |
|
|
when others =>
|
175 |
|
|
report "Error RAM_RADDR_LATENCY size " & integer'image(RAM_RADDR_LATENCY) & " is not supported." severity failure;
|
176 |
|
|
end case; -- case RAM_RADDR_LATENCY
|
177 |
|
|
|
178 |
|
|
case RAM_RDATA_LATENCY is
|
179 |
|
|
when 1 | 2 | 3 =>
|
180 |
|
|
null;
|
181 |
|
|
when others =>
|
182 |
|
|
report "Error RAM_RDATA_LATENCY size " & integer'image(RAM_RDATA_LATENCY) & " is not supported." severity failure;
|
183 |
|
|
end case; -- case RAM_RDATA_LATENCY
|
184 |
|
|
|
185 |
|
|
case RAM_WRITE_LATENCY is
|
186 |
|
|
when 0 | 1 =>
|
187 |
|
|
null;
|
188 |
|
|
when others =>
|
189 |
|
|
report "Error RAM_WRITE_LATENCY size " & integer'image(RAM_WRITE_LATENCY) & " is not supported." severity failure;
|
190 |
|
|
end case; -- case RAM_WRITE_LATENCY
|
191 |
|
|
|
192 |
|
|
wait;
|
193 |
|
|
end process;
|
194 |
|
|
--synthesis translate_on
|
195 |
|
|
|
196 |
|
|
-- 1 stage RAM write pipeline
|
197 |
|
|
wr_lat_1 : if(RAM_WRITE_LATENCY = 1) generate
|
198 |
|
|
process (user_clk_i) begin
|
199 |
|
|
if (reset_i = '1') then
|
200 |
|
|
wen_int <= '0' after TCQ;
|
201 |
|
|
waddr_int <= (others => '0') after TCQ;
|
202 |
|
|
wdata_int <= (others => '0') after TCQ;
|
203 |
|
|
elsif (rising_edge(user_clk_i)) then
|
204 |
|
|
wen_int <= wen after TCQ;
|
205 |
|
|
waddr_int <= waddr after TCQ;
|
206 |
|
|
wdata_int <= wdata after TCQ;
|
207 |
|
|
end if;
|
208 |
|
|
end process;
|
209 |
|
|
end generate wr_lat_1;
|
210 |
|
|
|
211 |
|
|
-- No RAM write pipeline
|
212 |
|
|
wr_lat_0 : if(RAM_WRITE_LATENCY /= 1) generate
|
213 |
|
|
wen_int <= wen;
|
214 |
|
|
waddr_int <= waddr;
|
215 |
|
|
wdata_int <= wdata;
|
216 |
|
|
end generate wr_lat_0;
|
217 |
|
|
|
218 |
|
|
|
219 |
|
|
-- 1 stage RAM read addr pipeline
|
220 |
|
|
raddr_lat_1 : if(RAM_RADDR_LATENCY = 1) generate
|
221 |
|
|
process (user_clk_i) begin
|
222 |
|
|
if (reset_i = '1') then
|
223 |
|
|
ren_int <= '0' after TCQ;
|
224 |
|
|
raddr_int <= (others => '0') after TCQ;
|
225 |
|
|
elsif (rising_edge(user_clk_i)) then
|
226 |
|
|
ren_int <= ren after TCQ;
|
227 |
|
|
raddr_int <= raddr after TCQ;
|
228 |
|
|
end if;
|
229 |
|
|
end process;
|
230 |
|
|
end generate raddr_lat_1;
|
231 |
|
|
|
232 |
|
|
-- No RAM read addr pipeline
|
233 |
|
|
raddr_lat_0 : if(RAM_RADDR_LATENCY /= 1) generate
|
234 |
|
|
ren_int <= ren after TCQ;
|
235 |
|
|
raddr_int <= raddr after TCQ;
|
236 |
|
|
end generate raddr_lat_0;
|
237 |
|
|
|
238 |
|
|
-- 3 stages RAM read data pipeline (first is internal to BRAM)
|
239 |
|
|
rdata_lat_3 : if(RAM_RDATA_LATENCY = 3) generate
|
240 |
|
|
process (user_clk_i) begin
|
241 |
|
|
if (reset_i = '1') then
|
242 |
|
|
rdata <= (others => '0') after TCQ;
|
243 |
|
|
elsif (rising_edge(user_clk_i)) then
|
244 |
|
|
rdata <= rdata_int after TCQ;
|
245 |
|
|
end if;
|
246 |
|
|
end process;
|
247 |
|
|
end generate rdata_lat_3;
|
248 |
|
|
|
249 |
|
|
-- 1 or 2 stages RAM read data pipeline
|
250 |
|
|
rdata_lat_1_2 : if(RAM_RDATA_LATENCY /= 3) generate
|
251 |
|
|
rdata <= rdata_int;
|
252 |
|
|
end generate rdata_lat_1_2;
|
253 |
|
|
|
254 |
|
|
-- Instantiate BRAM(s)
|
255 |
|
|
brams : for i in 0 to (NUM_BRAMS - 1) generate
|
256 |
|
|
begin
|
257 |
|
|
ram : pcie_bram_s6
|
258 |
|
|
generic map (
|
259 |
|
|
DOB_REG => CALC_DOB_REG(RAM_RDATA_LATENCY),
|
260 |
|
|
WIDTH => CALC_WIDTH(NUM_BRAMS)
|
261 |
|
|
)
|
262 |
|
|
port map (
|
263 |
|
|
user_clk_i => user_clk_i,
|
264 |
|
|
reset_i => reset_i,
|
265 |
|
|
wen_i => wen_int,
|
266 |
|
|
waddr_i => waddr_int,
|
267 |
|
|
wdata_i => wdata_int((((i + 1) * CALC_WIDTH(NUM_BRAMS)) - 1) downto (i * CALC_WIDTH(NUM_BRAMS))),
|
268 |
|
|
ren_i => ren_int,
|
269 |
|
|
rce_i => rce,
|
270 |
|
|
raddr_i => raddr_int,
|
271 |
|
|
rdata_o => rdata_int((((i + 1) * CALC_WIDTH(NUM_BRAMS)) - 1) downto (i * CALC_WIDTH(NUM_BRAMS)))
|
272 |
|
|
);
|
273 |
|
|
end generate brams;
|
274 |
|
|
|
275 |
|
|
end rtl;
|
276 |
|
|
|