OpenCores
URL https://opencores.org/ocsvn/phr/phr/trunk

Subversion Repositories phr

[/] [phr/] [trunk/] [doc/] [papers/] [PHR/] [2014-03-12/] [bare_conf.tex] - Blame information for rev 181

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 153 guanucolui
 
2
%% bare_conf.tex
3
%% V1.3
4
%% 2007/01/11
5
%% by Michael Shell
6
%% See:
7
%% http://www.michaelshell.org/
8
%% for current contact information.
9
%%
10
%% This is a skeleton file demonstrating the use of IEEEtran.cls
11
%% (requires IEEEtran.cls version 1.7 or later) with an IEEE conference paper.
12
%%
13
%% Support sites:
14
%% http://www.michaelshell.org/tex/ieeetran/
15
%% http://www.ctan.org/tex-archive/macros/latex/contrib/IEEEtran/
16
%% and
17
%% http://www.ieee.org/
18
 
19
%%*************************************************************************
20
%% Legal Notice:
21
%% This code is offered as-is without any warranty either expressed or
22
%% implied; without even the implied warranty of MERCHANTABILITY or
23
%% FITNESS FOR A PARTICULAR PURPOSE!
24
%% User assumes all risk.
25
%% In no event shall IEEE or any contributor to this code be liable for
26
%% any damages or losses, including, but not limited to, incidental,
27
%% consequential, or any other damages, resulting from the use or misuse
28
%% of any information contained here.
29
%%
30
%% All comments are the opinions of their respective authors and are not
31
%% necessarily endorsed by the IEEE.
32
%%
33
%% This work is distributed under the LaTeX Project Public License (LPPL)
34
%% ( http://www.latex-project.org/ ) version 1.3, and may be freely used,
35
%% distributed and modified. A copy of the LPPL, version 1.3, is included
36
%% in the base LaTeX documentation of all distributions of LaTeX released
37
%% 2003/12/01 or later.
38
%% Retain all contribution notices and credits.
39
%% ** Modified files should be clearly indicated as such, including  **
40
%% ** renaming them and changing author support contact information. **
41
%%
42
%% File list of work: IEEEtran.cls, IEEEtran_HOWTO.pdf, bare_adv.tex,
43
%%                    bare_conf.tex, bare_jrnl.tex, bare_jrnl_compsoc.tex
44
%%*************************************************************************
45
 
46
% *** Authors should verify (and, if needed, correct) their LaTeX system  ***
47
% *** with the testflow diagnostic prior to trusting their LaTeX platform ***
48
% *** with production work. IEEE's font choices can trigger bugs that do  ***
49
% *** not appear when using other class files.                            ***
50
% The testflow support page is at:
51
% http://www.michaelshell.org/tex/testflow/
52
 
53
 
54
 
55
% Note that the a4paper option is mainly intended so that authors in
56
% countries using A4 can easily print to A4 and see how their papers will
57
% look in print - the typesetting of the document will not typically be
58
% affected with changes in paper size (but the bottom and side margins will).
59
% Use the testflow package mentioned above to verify correct handling of
60
% both paper sizes by the user's LaTeX system.
61
%
62
% Also note that the "draftcls" or "draftclsnofoot", not "draft", option
63
% should be used if it is desired that the figures are to be displayed in
64
% draft mode.
65
%
66 155 maximiq
\documentclass[conference]{IEEEtran}
67 153 guanucolui
% Add the compsoc option for Computer Society conferences.
68
%
69
% If IEEEtran.cls has not been installed into the LaTeX system files,
70
% manually specify the path to it like:
71
% \documentclass[conference]{../sty/IEEEtran}
72
 
73
 
74
% Some very useful LaTeX packages include:
75
% (uncomment the ones you want to load)
76
 
77
 
78
% *** MISC UTILITY PACKAGES ***
79
%
80
%\usepackage{ifpdf}
81
% Heiko Oberdiek's ifpdf.sty is very useful if you need conditional
82
% compilation based on whether the output is pdf or dvi.
83
% usage:
84
% \ifpdf
85
%   % pdf code
86
% \else
87
%   % dvi code
88
% \fi
89
% The latest version of ifpdf.sty can be obtained from:
90
% http://www.ctan.org/tex-archive/macros/latex/contrib/oberdiek/
91
% Also, note that IEEEtran.cls V1.7 and later provides a builtin
92
% \ifCLASSINFOpdf conditional that works the same way.
93
% When switching from latex to pdflatex and vice-versa, the compiler may
94
% have to be run twice to clear warning/error messages.
95
 
96
 
97
 
98
% *** CITATION PACKAGES ***
99
%
100
%\usepackage{cite}
101
% cite.sty was written by Donald Arseneau
102
% V1.6 and later of IEEEtran pre-defines the format of the cite.sty package
103
% \cite{} output to follow that of IEEE. Loading the cite package will
104
% result in citation numbers being automatically sorted and properly
105
% "compressed/ranged". e.g., [1], [9], [2], [7], [5], [6] without using
106
% cite.sty will become [1], [2], [5]--[7], [9] using cite.sty. cite.sty's
107
% \cite will automatically add leading space, if needed. Use cite.sty's
108
% noadjust option (cite.sty V3.8 and later) if you want to turn this off.
109
% cite.sty is already installed on most LaTeX systems. Be sure and use
110
% version 4.0 (2003-05-27) and later if using hyperref.sty. cite.sty does
111
% not currently provide for hyperlinked citations.
112
% The latest version can be obtained at:
113
% http://www.ctan.org/tex-archive/macros/latex/contrib/cite/
114
% The documentation is contained in the cite.sty file itself.
115
 
116
 
117
% *** GRAPHICS RELATED PACKAGES ***
118
%
119
\ifCLASSINFOpdf
120 159 guanucolui
\usepackage[pdftex]{graphicx}
121 153 guanucolui
  % declare the path(s) where your graphic files are
122
  % \graphicspath{{../pdf/}{../jpeg/}}
123
  % and their extensions so you won't have to specify these with
124
  % every instance of \includegraphics
125
  % \DeclareGraphicsExtensions{.pdf,.jpeg,.png}
126
\else
127
  % or other class option (dvipsone, dvipdf, if not using dvips). graphicx
128
  % will default to the driver specified in the system graphics.cfg if no
129
  % driver is specified.
130
  % \usepackage[dvips]{graphicx}
131
  % declare the path(s) where your graphic files are
132
  % \graphicspath{{../eps/}}
133
  % and their extensions so you won't have to specify these with
134
  % every instance of \includegraphics
135
  % \DeclareGraphicsExtensions{.eps}
136
\fi
137
% graphicx was written by David Carlisle and Sebastian Rahtz. It is
138
% required if you want graphics, photos, etc. graphicx.sty is already
139
% installed on most LaTeX systems. The latest version and documentation can
140
% be obtained at:
141
% http://www.ctan.org/tex-archive/macros/latex/required/graphics/
142
% Another good source of documentation is "Using Imported Graphics in
143
% LaTeX2e" by Keith Reckdahl which can be found as epslatex.ps or
144
% epslatex.pdf at: http://www.ctan.org/tex-archive/info/
145
%
146
% latex, and pdflatex in dvi mode, support graphics in encapsulated
147
% postscript (.eps) format. pdflatex in pdf mode supports graphics
148
% in .pdf, .jpeg, .png and .mps (metapost) formats. Users should ensure
149
% that all non-photo figures use a vector format (.eps, .pdf, .mps) and
150
% not a bitmapped formats (.jpeg, .png). IEEE frowns on bitmapped formats
151
% which can result in "jaggedy"/blurry rendering of lines and letters as
152
% well as large increases in file sizes.
153
%
154
% You can find documentation about the pdfTeX application at:
155
% http://www.tug.org/applications/pdftex
156
 
157
 
158
% *** MATH PACKAGES ***
159
%
160 180 guanucolui
\usepackage[cmex10]{amsmath}
161 153 guanucolui
% A popular package from the American Mathematical Society that provides
162
% many useful and powerful commands for dealing with mathematics. If using
163
% it, be sure to load this package with the cmex10 option to ensure that
164
% only type 1 fonts will utilized at all point sizes. Without this option,
165
% it is possible that some math symbols, particularly those within
166
% footnotes, will be rendered in bitmap form which will result in a
167
% document that can not be IEEE Xplore compliant!
168
%
169
% Also, note that the amsmath package sets \interdisplaylinepenalty to 10000
170
% thus preventing page breaks from occurring within multiline equations. Use:
171
%\interdisplaylinepenalty=2500
172
% after loading amsmath to restore such page breaks as IEEEtran.cls normally
173
% does. amsmath.sty is already installed on most LaTeX systems. The latest
174
% version and documentation can be obtained at:
175
% http://www.ctan.org/tex-archive/macros/latex/required/amslatex/math/
176
 
177
 
178
% *** SPECIALIZED LIST PACKAGES ***
179
%
180
%\usepackage{algorithmic}
181
% algorithmic.sty was written by Peter Williams and Rogerio Brito.
182
% This package provides an algorithmic environment fo describing algorithms.
183
% You can use the algorithmic environment in-text or within a figure
184
% environment to provide for a floating algorithm. Do NOT use the algorithm
185
% floating environment provided by algorithm.sty (by the same authors) or
186
% algorithm2e.sty (by Christophe Fiorio) as IEEE does not use dedicated
187
% algorithm float types and packages that provide these will not provide
188
% correct IEEE style captions. The latest version and documentation of
189
% algorithmic.sty can be obtained at:
190
% http://www.ctan.org/tex-archive/macros/latex/contrib/algorithms/
191
% There is also a support site at:
192
% http://algorithms.berlios.de/index.html
193
% Also of interest may be the (relatively newer and more customizable)
194
% algorithmicx.sty package by Szasz Janos:
195
% http://www.ctan.org/tex-archive/macros/latex/contrib/algorithmicx/
196
 
197
 
198
% *** ALIGNMENT PACKAGES ***
199
%
200
%\usepackage{array}
201
% Frank Mittelbach's and David Carlisle's array.sty patches and improves
202
% the standard LaTeX2e array and tabular environments to provide better
203
% appearance and additional user controls. As the default LaTeX2e table
204
% generation code is lacking to the point of almost being broken with
205
% respect to the quality of the end results, all users are strongly
206
% advised to use an enhanced (at the very least that provided by array.sty)
207
% set of table tools. array.sty is already installed on most systems. The
208
% latest version and documentation can be obtained at:
209
% http://www.ctan.org/tex-archive/macros/latex/required/tools/
210
 
211
 
212
%\usepackage{mdwmath}
213
%\usepackage{mdwtab}
214
% Also highly recommended is Mark Wooding's extremely powerful MDW tools,
215
% especially mdwmath.sty and mdwtab.sty which are used to format equations
216
% and tables, respectively. The MDWtools set is already installed on most
217
% LaTeX systems. The lastest version and documentation is available at:
218
% http://www.ctan.org/tex-archive/macros/latex/contrib/mdwtools/
219
 
220
 
221
% IEEEtran contains the IEEEeqnarray family of commands that can be used to
222
% generate multiline equations as well as matrices, tables, etc., of high
223
% quality.
224
 
225
 
226
%\usepackage{eqparbox}
227
% Also of notable interest is Scott Pakin's eqparbox package for creating
228
% (automatically sized) equal width boxes - aka "natural width parboxes".
229
% Available at:
230
% http://www.ctan.org/tex-archive/macros/latex/contrib/eqparbox/
231
 
232
 
233
 
234
% *** SUBFIGURE PACKAGES ***
235
%\usepackage[tight,footnotesize]{subfigure}
236
% subfigure.sty was written by Steven Douglas Cochran. This package makes it
237
% easy to put subfigures in your figures. e.g., "Figure 1a and 1b". For IEEE
238
% work, it is a good idea to load it with the tight package option to reduce
239
% the amount of white space around the subfigures. subfigure.sty is already
240
% installed on most LaTeX systems. The latest version and documentation can
241
% be obtained at:
242
% http://www.ctan.org/tex-archive/obsolete/macros/latex/contrib/subfigure/
243
% subfigure.sty has been superceeded by subfig.sty.
244
 
245
 
246
 
247
%\usepackage[caption=false]{caption}
248 159 guanucolui
\usepackage[font=footnotesize,caption=false]{subfig}
249 153 guanucolui
% subfig.sty, also written by Steven Douglas Cochran, is the modern
250
% replacement for subfigure.sty. However, subfig.sty requires and
251
% automatically loads Axel Sommerfeldt's caption.sty which will override
252
% IEEEtran.cls handling of captions and this will result in nonIEEE style
253
% figure/table captions. To prevent this problem, be sure and preload
254
% caption.sty with its "caption=false" package option. This is will preserve
255
% IEEEtran.cls handing of captions. Version 1.3 (2005/06/28) and later
256
% (recommended due to many improvements over 1.2) of subfig.sty supports
257
% the caption=false option directly:
258
%\usepackage[caption=false,font=footnotesize]{subfig}
259
%
260
% The latest version and documentation can be obtained at:
261
% http://www.ctan.org/tex-archive/macros/latex/contrib/subfig/
262
% The latest version and documentation of caption.sty can be obtained at:
263
% http://www.ctan.org/tex-archive/macros/latex/contrib/caption/
264
 
265
 
266
% *** FLOAT PACKAGES ***
267
%
268
%\usepackage{fixltx2e}
269
% fixltx2e, the successor to the earlier fix2col.sty, was written by
270
% Frank Mittelbach and David Carlisle. This package corrects a few problems
271
% in the LaTeX2e kernel, the most notable of which is that in current
272
% LaTeX2e releases, the ordering of single and double column floats is not
273
% guaranteed to be preserved. Thus, an unpatched LaTeX2e can allow a
274
% single column figure to be placed prior to an earlier double column
275
% figure. The latest version and documentation can be found at:
276
% http://www.ctan.org/tex-archive/macros/latex/base/
277
 
278
 
279
 
280
%\usepackage{stfloats}
281
% stfloats.sty was written by Sigitas Tolusis. This package gives LaTeX2e
282
% the ability to do double column floats at the bottom of the page as well
283
% as the top. (e.g., "\begin{figure*}[!b]" is not normally possible in
284
% LaTeX2e). It also provides a command:
285
%\fnbelowfloat
286
% to enable the placement of footnotes below bottom floats (the standard
287
% LaTeX2e kernel puts them above bottom floats). This is an invasive package
288
% which rewrites many portions of the LaTeX2e float routines. It may not work
289
% with other packages that modify the LaTeX2e float routines. The latest
290
% version and documentation can be obtained at:
291
% http://www.ctan.org/tex-archive/macros/latex/contrib/sttools/
292
% Documentation is contained in the stfloats.sty comments as well as in the
293
% presfull.pdf file. Do not use the stfloats baselinefloat ability as IEEE
294
% does not allow \baselineskip to stretch. Authors submitting work to the
295
% IEEE should note that IEEE rarely uses double column equations and
296
% that authors should try to avoid such use. Do not be tempted to use the
297
% cuted.sty or midfloat.sty packages (also by Sigitas Tolusis) as IEEE does
298
% not format its papers in such ways.
299
 
300
% --------------- USEPACKAGE agregados por guanucoluis ----------------
301
 
302
\usepackage[utf8]{inputenc}
303 178 guanucolui
\usepackage{multirow}
304 155 maximiq
%\usepackage[spanish]{babel}
305 159 guanucolui
%\usepackage[pdftex]{graphicx}
306 153 guanucolui
 
307 159 guanucolui
 
308 155 maximiq
% ------------------------- Agregados por maxi ------------------------
309 153 guanucolui
 
310 155 maximiq
\renewcommand{\abstractname}{Resumen}
311
 
312
%lista de posibles "Fixed names"  de latex que pueden hacer falta
313
%\abstractname   Abstract
314
%\alsoname       see also (makeidx package)
315
%\appendixname   Appendix
316
%\bibname        Bibliography (report,book)
317
%\ccname         cc (letter)
318
%\chaptername    Chapter (report,book)
319
%\contentsname   Contents
320
%\enclname       encl (letter)
321
%\figurename     Figure (for captions)
322
%\headtoname     To (letter)
323
%\indexname      Index
324
%\listfigurename         List of Figures
325
%\listtablename  List of Tables
326
%\pagename       Page (letter)
327
%\partname       Part
328
%\refname        References (article)
329
%\seename        see (makeidx package)
330
%\tablename      Table (for caption)
331
 
332
 
333 153 guanucolui
% *** PDF, URL AND HYPERLINK PACKAGES ***
334
%
335
%\usepackage{url}
336
% url.sty was written by Donald Arseneau. It provides better support for
337
% handling and breaking URLs. url.sty is already installed on most LaTeX
338
% systems. The latest version can be obtained at:
339
% http://www.ctan.org/tex-archive/macros/latex/contrib/misc/
340
% Read the url.sty source comments for usage information. Basically,
341
% \url{my_url_here}.
342
 
343
 
344
% *** Do not adjust lengths that control margins, column widths, etc. ***
345
% *** Do not use packages that alter fonts (such as pslatex).         ***
346
% There should be no need to do such things with IEEEtran.cls V1.6 and later.
347
% (Unless specifically asked to do so by the journal or conference you plan
348
% to submit to, of course. )
349
 
350
 
351
% correct bad hyphenation here
352
\hyphenation{op-tical net-works semi-conduc-tor}
353
 
354
 
355
\begin{document}
356
%
357
% paper title
358
% can use linebreaks \\ within to get better formatting as desired
359
\title{Plataforma de Hardware Reconfigurable para el Diseño de Sistemas Digitales}
360
 
361
 
362
% author names and affiliations
363
% use a multiple column layout for up to three different
364
% affiliations
365 169 guanucolui
\author{\IEEEauthorblockN{Alexis Maximiliano Quiteros, Luis Alberto Guanuco, Sergio Daniel Olmedo}
366
\IEEEauthorblockA{Centro Universitario de Desarrollo en Automoción y Robótica\\
367 153 guanucolui
Universidad Tecnológica Nacional\\
368
Facultad Regional Córdoba\\
369 169 guanucolui
Email: maximiliano.quinteros@gmail.com, lguanuco@electronica.frc.utn.edu.ar, solmedo@scdt.frc.utn.edu.ar}
370 165 guanucolui
% \and
371 169 guanucolui
% \IEEEauthorblockN{Luis Alberto Guanuco}
372
% \IEEEauthorblockA{Departamento de Ingeniería Electrónica\\
373
% Universidad Tecnológica Nacional\\
374
% Facultad Regional Córdoba\\
375
% Email: lguanuco@electronica.frc.utn.edu.ar}
376
% \and
377 165 guanucolui
% \IEEEauthorblockN{Sergio Daniel Olmedo}
378
% \IEEEauthorblockA{CUDAR\\%Centro Universitario de Desarrollo en Automoción y Robótica\\
379
% Universidad Tecnológica Nacional\\
380
% Facultad Regional Córdoba\\
381
% Email: solmedo@scdt.frc.utn.edu.ar}
382
}
383 153 guanucolui
 
384
 
385
% conference papers do not typically use \thanks and this command
386
% is locked out in conference mode. If really needed, such as for
387
% the acknowledgment of grants, issue a \IEEEoverridecommandlockouts
388
% after \documentclass
389
 
390
% for over three affiliations, or if they all won't fit within the width
391
% of the page, use this alternative format:
392
%
393
%\author{\IEEEauthorblockN{Michael Shell\IEEEauthorrefmark{1},
394
%Homer Simpson\IEEEauthorrefmark{2},
395
%James Kirk\IEEEauthorrefmark{3},
396
%Montgomery Scott\IEEEauthorrefmark{3} and
397
%Eldon Tyrell\IEEEauthorrefmark{4}}
398
%\IEEEauthorblockA{\IEEEauthorrefmark{1}School of Electrical and Computer Engineering\\
399
%Georgia Institute of Technology,
400
%Atlanta, Georgia 30332--0250\\ Email: see http://www.michaelshell.org/contact.html}
401
%\IEEEauthorblockA{\IEEEauthorrefmark{2}Twentieth Century Fox, Springfield, USA\\
402
%Email: homer@thesimpsons.com}
403
%\IEEEauthorblockA{\IEEEauthorrefmark{3}Starfleet Academy, San Francisco, California 96678-2391\\
404
%Telephone: (800) 555--1212, Fax: (888) 555--1212}
405
%\IEEEauthorblockA{\IEEEauthorrefmark{4}Tyrell Inc., 123 Replicant Street, Los Angeles, California 90210--4321}}
406
 
407
 
408
% use for special paper notices
409
%\IEEEspecialpapernotice{(Invited Paper)}
410
 
411
 
412
% make the title area
413
\maketitle
414
 
415
 
416
\begin{abstract}
417
 
418 176 guanucolui
La contaste evolución de los sistemas electrónicos (digitales y analógicos) exige la búsqueda de nuevas herramientas para la formación académica. En el caso del diseños de sistemas digitales una excelente alternativa es el uso placas de evaluación basadas en dispositivos lógicos programables (PLDs). En función de los requerimientos y necesidades académicas que demandan recursos de hardware, y las oportunidades concretas de desarrollar una plataforma personalizada a las necesidades plateadas es que se presenta una plataforma reconfigurable con especificaciones abiertas. Este diseño cuenta con periféricos básicos con que se pueda interactuar en la implementación de sistemas digitales, pero además cuenta con una FPGA (Field Programmable Gate Array) que dispone de una gran cantidad de recursos internos para el uso en sistemas digitales avanzados que requieren gran capacidad de procesamiento. El proyecto se publica en forma libre (licencia GPL) buscando incentivar a otras grupos académicos en la  modificación y adaptación de este trabajo a sus necesidades como así también proponer mejoras en versiones futuras de la plataforma.
419 159 guanucolui
 
420 153 guanucolui
\end{abstract}
421 165 guanucolui
 
422 153 guanucolui
% IEEEtran.cls defaults to using nonbold math in the Abstract.
423
% This preserves the distinction between vectors and scalars. However,
424
% if the conference you are submitting to favors bold math in the abstract,
425
% then you can use LaTeX's standard command \boldmath at the very start
426
% of the abstract to achieve this. Many IEEE journals/conferences frown on
427
% math in the abstract anyway.
428
 
429
% no keywords
430
 
431
 
432
 
433
 
434
% For peer review papers, you can put extra information on the cover
435
% page as needed:
436
% \ifCLASSOPTIONpeerreview
437
% \begin{center} \bfseries EDICS Category: 3-BBND \end{center}
438
% \fi
439
%
440
% For peerreview papers, this IEEEtran command inserts a page break and
441
% creates the second title. It will be ignored for other modes.
442
\IEEEpeerreviewmaketitle
443
 
444 155 maximiq
\section{Introducción}
445 153 guanucolui
 
446 173 guanucolui
Las áreas académicas vinculadas a la electrónica y la computación se encuentran en constante demanda de recursos educativos de hardware y software en virtud de potenciar los conocimientos de los estudiantes. En el caso de las tecnologías con poca difusión o implementación en la industria regional, la principal opción en la importación de plataformas educativas adquiridas a empresas destinadas a la manufacturación de sistemas embebidos. Estas plataformas comerciales se clasifican según su implementación por lo que no siempre cubren los requerimientos académicos. Por ejemplo, en el área de las técnicas digitales, los requerimientos de hardware para las cátedras iniciales difieren de las cátedras avanzadas. Esta situación presenta la oportunidad de desarrollar una plataforma a la medida de las necesidades de las instituciones académicas. Si se dispone de las especificaciones por parte de los docentes, la articulación de otras unidades académicas como laboratorios y grupos de investigación, es posible obtener un desarrollo que cubra las expectativas y aliente a la producción regional de plataformas educativas en un marco de transferencia de tecnología.
447 165 guanucolui
 
448 173 guanucolui
En el proceso de aprendizaje de las denominadas Técnicas Digitales necesariamente se debe implementar los diseños digitales. Desde el Álgebra de Bool, con operaciones digitales simples, hasta la implementación de un microprocesador son prácticas comunes de los sistemas digitales lógicos y resulta fundamental su ejercitación para concluir el ciclo de enseñanza.
449 168 guanucolui
 
450 173 guanucolui
Al comienzo de la década de los 90s surgieron varios trabajos donde se planteaba la necesidad de una plataforma educativa orientada a la implementación de diseños lógicos digitales basados en PLDs. Los principales demandantes de estas plataformas eran diseñadores de arquitecturas de microprocesadores \cite{ASArev.1}, desarrollos que años anteriores resultaban imposibles por el costo de la implementación en hardware. El avance en el proceso de integración de los circuitos integrados han llevado a que se desarrollen plataformas más complejas que ofrecen una gran cantidad de recursos de hardware. Al día de hoy se han generado varios proyectos desarrollados por instituciones académicas \cite{FPGA-platform-CPU-design}\cite{Low-Cost-Interactive-Rapid-Prototyping}\cite{FPGA-Based-Experiment-Platform-for-Multi-Core-System}, otras con especificaciones abiertas \cite{Building-an-Evolvable-Low-Cost-HWSW-Platform}\cite{NetFPGA} y también con fines comerciales \cite{Port-Emb-Linux-XUP-Virtex-II.Dev-Board}. Todos estos trabajos tienen algunas características en común:
451
\begin{itemize}
452
\item El dispositivo lógico programable base es una FPGA
453
\item Memoria de programación de la FPGA
454
\item Acceso de programación JTAG
455
\item Software para interactuar con la plataforma desde una computadora
456
\item Dos perfiles de diseño:
457
  \begin{itemize}
458
  \item Para la implementación de sistemas lógicos generales
459
  \item Orientado a un área específica
460
  \end{itemize}
461
\end{itemize}
462
La caracterización anterior no es un intento de generalizar a todas las plataformas educativas basadas en PLDs, pero sí resulta útil para definir el perfil de la plataforma que se describe en este trabajo. Sin la especificación de a que usuarios se destina una plataforma, no se puede comenzar con el estudio de los diferentes dispositivos que se utilizarán. La Figura \ref{fig:rec-plataforma} ilustra una clasificación en bloques de los recursos que ofrecen diferentes plataformas basada en dispositivos PLDs. Donde a niveles iniciales en el estudio de la lógica digital se requieren periféricos básicos como ser llaves conmutadoras de los estados lógicos, dispositivos indicadores como diodos LED, etc. Mientras que a estudios más avanzados se requieren otros tipos de dispositivos como ser a un nivel medio controladores para display gráficos LCD/LED, comunicaciones entre varios dispositivos mediante SPI, I2C, etc. Y por últimos, en la formación de especialistas de sistemas embebidos, requieren recursos como interfaces físicos para ethernet, controladores HDMI, PS2, USB, etc.
463
\begin{figure}[!t]
464
\centering
465
\includegraphics[width=5cm]{img/recursos-plataformas}
466
\caption{Recursos de hardware en función de los niveles de aprendizaje.}
467
\label{fig:rec-plataforma}
468
\end{figure}
469 169 guanucolui
 
470 159 guanucolui
La mayoría de las plataformas de evaluación comerciales son fabricadas en el exterior del país. Se han encontrado desarrollos nacionales pero no son comercializados sino usados en laboratorios universitarios. Entre las empresas fabricantes de sistemas embebidos basados en dispositivos PLDs, se destacan: Xilix, Altera y Digilent. Los principales perfiles de sus desarrollos se encuentran orientados a,
471
\begin{itemize}
472
\item Sistemas de comunicaciones
473
\item Procesamiento de Señales Digitales (DSP)
474
\item Automovilismo
475
\end{itemize}
476 173 guanucolui
 
477 180 guanucolui
En la Figura \ref{fig:board-fpga} se pueden ver tres diferentes plataformas orientadas al diseño de sistemas digitales\footnote{Alguna de estas plataformas disponen de módulos conversores ADC y DAC, por lo que se podría decir que también permiten la implementación de sistemas analógicos en dominio discreto.}. Los recursos de hardware que ofrecen estos desarrollos son:
478 165 guanucolui
\begin{itemize}
479 173 guanucolui
\item FPGA
480
\item Memoria de programación de la FPGA
481
\item Periféricos básicos (LEDs, display, pulsadores, llaves, etc.)
482 165 guanucolui
\item Puerto USB
483 173 guanucolui
\item Puerto para módulos externos
484
\item Puerto para propósitos generales
485
\item Varias señales de reloj (clok)
486
\item VGA y PS/2
487
\item Memorias ROM/RAM
488
\item ADC/DAC
489 165 guanucolui
\end{itemize}
490 159 guanucolui
 
491 174 guanucolui
\begin{figure}[t]
492
  \centering
493
  \subfloat[BASYS2 (Digilent)]{\includegraphics[width=0.2\textwidth]{img/BASYS2-top-400}%
494
    \label{fig:digilent-board}}
495
  \hfil
496
  \subfloat[DE0-Nano (Altera)]{\includegraphics[width=0.2\textwidth]{img/de0-nano}%
497
    \label{fig:altera-board}}
498
  \hfil
499
  \subfloat[Avnet Spartan-6 LX150T (Xilinx/Avnet)]{\includegraphics[width=0.2\textwidth]{img/Avnet-Spartan-6-lx9-MicroBoard}%
500
    \label{fig:xilinx-board}}
501 175 guanucolui
  \caption{Plataformas comerciales de desarrollo educativas basadas en FPGAs.}
502 174 guanucolui
  \label{fig:board-fpga}
503
\end{figure}
504 165 guanucolui
 
505 174 guanucolui
En nuestra región la tecnología PLDs se encuentra en su auge hace unos años. Instituciones gubernamentales de defensa \cite{citedef-ref}, aeroespaciales, comunicaciones \cite{paper-dta-conae} están implementando dispositivos como FPGAs y CPLDs en sus diseños. Además existe una constante actualización por parte de las instituciones académicas en los programas analíticos de las carreras relacionadas a los sistemas embebidos \cite{act-curricula}.
506 165 guanucolui
 
507 175 guanucolui
Considerando la situación expuesta es que se impulsa el desarrollo de la Plataforma de Hardware Reconfigurable (PHR). Esta plataforma es un proyecto a medida de las necesidades en la  enseñanza de los sistemas digitales lógicos en las cátedras iniciales. Ofrece recursos básicos para que los estudiantes interactúen con la tecnología de los dispositivos PLDs, pero también dispone de puertos para conectar otros recursos físicos permitiendo que estudiantes avanzados puedan hacer uso de ellas sin limitaciones. Además al ser publicado bajo licencia libre/abierta permitirá a que el diseño, o parte de él, sirva como referencias a otras instituciones académicas que se encuentren en búsqueda de una plataforma para implementar en sus diferentes cátedras.
508 159 guanucolui
 
509 175 guanucolui
\section{Dispositivos principales}
510 153 guanucolui
 
511 176 guanucolui
Son varios los dispositivos principales que se deben definir antes de comenzar a conectar algún componente electrónico. Y es que en función de estos dispositivos es que se debe seleccionar los restantes. Se podrían listar estos como:
512
\begin{itemize}
513
\item FPGA
514
  \begin{itemize}
515
  \item Memoria de programación
516
  \item Interfaz de programación
517
  \end{itemize}
518
\item Periféricos
519
\item Sistema de potencia
520
\end{itemize}
521 180 guanucolui
 
522
\subsection{FPGA}
523
\label{sec:fpga}
524 178 guanucolui
La FPGA que se utiliza pertenece a la familia Spartan-3 de Xilinx Inc. Esta familia a la vez se clasifican en
525
\begin{itemize}
526
\item Familia Spartan-3A extendida:
527
  \begin{itemize}
528
  \item Bajo costo
529
    \begin{itemize}
530
    \item Spartan-3A
531
      \begin{itemize}
532
      \item Ideal para uso de interfaz entre dispositivos.
533
      \end{itemize}
534
    \item Spartan-3A DSP
535
      \begin{itemize}
536
      \item Mayor densidad de recursos en comparación que la familia Spartan-3A
537
      \item Dispone de un dispositivo DPS (DSP48A) para el procesamiento de señales digitales
538
      \end{itemize}
539
    \item Spartan-3AN
540
      \begin{itemize}
541
      \item Dispositivos no volátiles
542
      \item Ideal para aplicaciones con restricciones de espacio
543
      \end{itemize}
544
    \end{itemize}
545
  \end{itemize}
546
\item Familia Spartan-3E
547
\item Familia Spartan-3
548
\end{itemize}
549 180 guanucolui
Altara, Atmel y otros fabricantes de FPGAs también presentan familias similares a las Spartan-3. Aquí se optó por Xilinx Inc. debido a la experiencia en software/hardware con que cuenta el Centro de Investigación\footnote{CUDAR -- Centro Universitario de Desarrollo en Automoción y Robótica.} donde se desarrolla el proyecto. La familia extendida Spartan-3A es la que se utiliza en el diseño de la PHR. En la comparación de recursos de hardware y precio del dispositivo FPGA, las FPGAs Spartan-3A presentan un valor aceptable. En un extremo, las Spartan-3A, permiten una gran variedad de modos de programación en contraste con la familia Spartan-3. Por otro lado, no es necesario gran capacidad de procesamiento que justifique la inclusión de un DSP, debido al perfil del usuario de la plataforma que se desarrolla. Se recuerda que la plataforma PHR se destina a la enseñanza de la tecnología descriptiva de hardware. Las principales características de las FPGAs Spartan-3A se describen en la Tabla \ref{tab:char-fpga}.
550 177 guanucolui
\begin{table}[!t]
551
%increase table row spacing, adjust to taste
552
\renewcommand{\arraystretch}{1.3}
553
% if using array.sty, it might be a good idea to tweak the value of
554
% \extrarowheight as needed to properly center the text within the cells
555 180 guanucolui
\caption{Característica de la familia Spartan-3A}
556 177 guanucolui
\label{tab:char-fpga}
557
\centering
558
% Some packages, such as MDW tools, offer better commands for making tables
559
% than the plain LaTeX2e tabular which is used here.
560 178 guanucolui
\begin{tabular}{|l|c|c|c|c|}
561 177 guanucolui
\hline
562 178 guanucolui
\multirow{2}{*}{\textbf{Devices}} & \textbf{System} & \textbf{Block RAM} & \textbf{Dedicated} &  \textbf{Maximum} \\
563
 & \textbf{Gates} & \textbf{bits} & \textbf{Multipliers} & \textbf{User I/O} \\
564 177 guanucolui
\hline
565 178 guanucolui
XC3S50A & 50K & 54K & 3 & 144 \\
566 177 guanucolui
\hline
567 178 guanucolui
\textbf{XC3S200A} & \textbf{200K} & \textbf{288K} & \textbf{16} & \textbf{248} \\
568
\hline
569
XC3S400A & 400K & 360K & 20 & 311 \\
570
\hline
571
XC3S700A & 700K & 360K & 20 & 372 \\
572
\hline
573
XC3S1400A & 1400K & 576K & 32 & 502 \\
574
\hline
575 177 guanucolui
\end{tabular}
576
\end{table}
577 180 guanucolui
El dispositivo seleccionado, como se puede ver en la Tabla \ref{tab:char-fpga}, es el XC3S200A. Éste cuenta con una gran densidad de recursos de hardware (200K compuertas lógicas) a la vez que se puede encontrar a esta FPGA en un encapsulado de pequeñas dimensiones (VQ100) que facilita el diseño del PCB. En este encapsulado se puede contar con 68 puertos de entrada/salida (I/O) para ser utilizados externamente a diferentes tecnologías programables (LVTTL, LVCMOS33/25/18, entre otros). El perfil del diseño de la PHR no requiere de una gran cantidad de puertos de I/O debido a las aplicaciones para las que se lo diseña.
578 177 guanucolui
 
579 180 guanucolui
\subsection{Memoria de programación}
580
\label{sec:mem-prog}
581
La tecnología utilizada en las FPGAs Spartan-3A requieren de una memoria externa que configure al dispositivo ya que es volátil. Esta familia permite la utilización de varios tipos de memorias como modos de configuración para embeber el diseño digital en la FPGA. Xilinx comercializa memorias Flash PROM para todas sus familias de FPGA. Hay una relación directa entre la capacidad lógica de una FPGA con el tamaño de la memoria de programación, en la Tabla xxx se puede apreciar esta relación para el caso de la familia Spartan-3A.
582
\begin{table}[!t]
583
\renewcommand{\arraystretch}{1.3}
584
\caption{Tipo de memoria para la familia Spartan-3A}
585
\label{tab:mem-fpga}
586
\centering
587
\begin{tabular}{|l|c|c|}
588
\hline
589
\multirow{2}{*}{\textbf{Devices}} & \textbf{Configuration} & \textbf{ISP PROM} \\
590
 & \textbf{Bits} & \textbf{Solution} \\
591
\hline
592
XC3S50A   & 437,312   & XCF01S \\
593
\hline
594
\textbf{XC3S200A}  & \textbf{1,196,128} & \textbf{XCF02S} \\
595
\hline
596
XC3S400A  & 1,886,560 & XCF02S \\
597
\hline
598
XC3S700A  & 2,732,640 & XCF04S \\
599
\hline
600
XC3S1400A & 4,755,296 & XCF08P     \\
601
\hline
602
\end{tabular}
603
\end{table}
604
Tanto la FPGA como la memoria de programación Flash PROM se encuentran conectadas en cadena a través de un interfaz denominado JTAG Boundary-Scan. Xilinx Inc. implementa el estándar IEEE 1149.1 (comúnmente llamado JTAG) en sus dispositivos FPGAs, CPLDs y memorias Flash PROM para la programación mediante un software, y de esta forma transferir el diseños sintetizados en sus dispositivos.
605 155 maximiq
 
606 180 guanucolui
\subsection{Periféricos}
607
\label{sec:perifericos}
608
Los periféricos que se implementan en este diseño permiten a los usuarios iniciales realizar prácticas sencillas. Pero también los usuarios avanzados requieren de indicadores de señales lógicas, pulsadores, etc. (Figura \ref{fig:rec-plataforma}). Los periféricos que ofrece la plataforma PHR son:
609
\begin{itemize}
610
\item Salidas
611
  \begin{itemize}
612
  \item 8 LEDs indicadores
613
  \item Display de 7-segmentos de 4 dígitos
614
  \end{itemize}
615
\item Entradas
616
  \begin{itemize}
617
  \item 8 Llaves (DIP switch)
618
  \item 4 Pulsadores
619
  \item Relojes (Clocks) 50Mhz
620
  \item Divisor de reloj de 16Mhz a $\sim$1Mhz
621
  \end{itemize}
622
\item Entrada/Salida
623
  \begin{itemize}
624
  \item Puerto Serie (RS-232)
625
  \item Puerto con I/O para propósitos generales (conectores IDE)
626
  \end{itemize}
627
\end{itemize}
628
 
629
\subsection{Sistema de alimentación}
630
\label{sec:sist-power}
631 181 guanucolui
Seleccionar el sistema de alimentación apropiado para la alimentación podría parecer una tarea sencilla.
632 180 guanucolui
 
633
\section{Placa PHR}
634
\label{sec:placa-phr}
635
 
636
 
637
\section{Interfaz JTAG}
638
\label{sec:jtag}
639
La plataforma PHR requiere interactuar con una computadora personal. Sobre esta computadora el usuario realizará el diseño lógico mediante un lenguaje descriptivo (HDL). La síntesis del diseño se realiza con la herramienta de software proporcionada por el fabricante de la FPGA y luego debe transferirse este diseño y reconfigurar el dispositivo (ya sea directamente sobre la FPGA o almacenando la información sobre la memoria Flash PROM).
640
Actualmente el puerto serie y paralelo, muy utilizados antiguamente, están quedando obsoletos. Otra situación presenta el puerto USB, el cual actualmente es el interfaz cableado más utilizado para la comunicación entre una computadora y dispositivos externos.
641
Los requerimientos planteados para el interfaz JTAG son:
642
\begin{description}
643
\item[JTAG] Comunicarse con la plataforma PHR utilizando un dispositivo externo que implemente el estándar IEEE 1149.1.
644
\item[USB] Comunicarse con una computadora personal a través de este puerto sin restricción al sistema operativo a utilizar (GNU/Linux, Mac OS y Microsoft Windows).
645
\end{description}
646
Uno de los dispositivo comerciales que presenta las características anteriormente definidas es el FT2232D fabricado por Future Technology Devices International (FTDI).
647 155 maximiq
\section{Características}
648
\subsection{Perifericos}
649
\subsection{Potencia}
650
 
651 175 guanucolui
\section{Interfaz JTAG}
652
 
653 155 maximiq
\section{Software}
654 175 guanucolui
\subsection{Xc3srog}
655 155 maximiq
\subsection{OpenOCD}
656
 
657
\section{Implementación}
658
 
659
\section{Código abierto}
660
 
661 165 guanucolui
\section{Discusión}
662
Existen dos formas de solventar esta demanda, la primera opción es la adquisición de estos recursos a empresas que ofrecen plataformas educativas que cumplan con las especificaciones, pero aquí se presenta una segunda opción que es generar estas plataformas personalizadas a las necesidades de la región. Actualmente se dispone de los conocimientos necesarios para emprender un ciclo de trabajo donde las mismas unidades académicas cubren sus demandas a través de diferentes espacios como son los grupos de investigación y laboratorios
663
 
664 155 maximiq
 
665 169 guanucolui
\section{Conclusiones}
666 155 maximiq
 
667 169 guanucolui
% use section* for acknowledgement
668
\section*{Acknowledgment}
669 153 guanucolui
 
670
 
671 169 guanucolui
The authors would like to thank...
672 153 guanucolui
 
673
 
674
% An example of a floating figure using the graphicx package.
675
% Note that \label must occur AFTER (or within) \caption.
676
% For figures, \caption should occur after the \includegraphics.
677
% Note that IEEEtran v1.7 and later has special internal code that
678
% is designed to preserve the operation of \label within \caption
679
% even when the captionsoff option is in effect. However, because
680
% of issues like this, it may be the safest practice to put all your
681
% \label just after \caption rather than within \caption{}.
682
%
683
% Reminder: the "draftcls" or "draftclsnofoot", not "draft", class
684
% option should be used if it is desired that the figures are to be
685
% displayed while in draft mode.
686
%
687
%\begin{figure}[!t]
688
%\centering
689
%\includegraphics[width=2.5in]{myfigure}
690
% where an .eps filename suffix will be assumed under latex,
691
% and a .pdf suffix will be assumed for pdflatex; or what has been declared
692
% via \DeclareGraphicsExtensions.
693
%\caption{Simulation Results}
694
%\label{fig_sim}
695
%\end{figure}
696
 
697
% Note that IEEE typically puts floats only at the top, even when this
698
% results in a large percentage of a column being occupied by floats.
699
 
700
 
701
% An example of a double column floating figure using two subfigures.
702
% (The subfig.sty package must be loaded for this to work.)
703
% The subfigure \label commands are set within each subfloat command, the
704
% \label for the overall figure must come after \caption.
705
% \hfil must be used as a separator to get equal spacing.
706
% The subfigure.sty package works much the same way, except \subfigure is
707
% used instead of \subfloat.
708
%
709
%\begin{figure*}[!t]
710
%\centerline{\subfloat[Case I]\includegraphics[width=2.5in]{subfigcase1}%
711
%\label{fig_first_case}}
712
%\hfil
713
%\subfloat[Case II]{\includegraphics[width=2.5in]{subfigcase2}%
714
%\label{fig_second_case}}}
715
%\caption{Simulation results}
716
%\label{fig_sim}
717
%\end{figure*}
718
%
719
% Note that often IEEE papers with subfigures do not employ subfigure
720
% captions (using the optional argument to \subfloat), but instead will
721
% reference/describe all of them (a), (b), etc., within the main caption.
722
 
723
 
724
% An example of a floating table. Note that, for IEEE style tables, the
725
% \caption command should come BEFORE the table. Table text will default to
726
% \footnotesize as IEEE normally uses this smaller font for tables.
727
% The \label must come after \caption as always.
728
%
729
%\begin{table}[!t]
730
%% increase table row spacing, adjust to taste
731
%\renewcommand{\arraystretch}{1.3}
732
% if using array.sty, it might be a good idea to tweak the value of
733
% \extrarowheight as needed to properly center the text within the cells
734
%\caption{An Example of a Table}
735
%\label{table_example}
736
%\centering
737
%% Some packages, such as MDW tools, offer better commands for making tables
738
%% than the plain LaTeX2e tabular which is used here.
739
%\begin{tabular}{|c||c|}
740
%\hline
741
%One & Two\\
742
%\hline
743
%Three & Four\\
744
%\hline
745
%\end{tabular}
746
%\end{table}
747
 
748
 
749
% Note that IEEE does not put floats in the very first column - or typically
750
% anywhere on the first page for that matter. Also, in-text middle ("here")
751
% positioning is not used. Most IEEE journals/conferences use top floats
752
% exclusively. Note that, LaTeX2e, unlike IEEE journals/conferences, places
753
% footnotes above bottom floats. This can be corrected via the \fnbelowfloat
754
% command of the stfloats package.
755
 
756
 
757
 
758
% trigger a \newpage just before the given reference
759
% number - used to balance the columns on the last page
760
% adjust value as needed - may need to be readjusted if
761
% the document is modified later
762
%\IEEEtriggeratref{8}
763
% The "triggered" command can be changed if desired:
764
%\IEEEtriggercmd{\enlargethispage{-5in}}
765
 
766
% references section
767
 
768
% can use a bibliography generated by BibTeX as a .bbl file
769
% BibTeX documentation can be easily obtained at:
770
% http://www.ctan.org/tex-archive/biblio/bibtex/contrib/doc/
771
% The IEEEtran BibTeX style support page is at:
772
% http://www.michaelshell.org/tex/ieeetran/bibtex/
773
%\bibliographystyle{IEEEtran}
774
% argument is your BibTeX string definitions and bibliography database(s)
775
%\bibliography{IEEEabrv,../bib/paper}
776
%
777
% <OR> manually copy in the resultant .bbl file
778
% set second argument of \begin to the number of references
779
% (used to reserve space for the reference number labels box)
780
\begin{thebibliography}{1}
781
 
782 169 guanucolui
% \bibitem{IEEEhowto:kopka}
783
% H.~Kopka and P.~W. Daly, \emph{A Guide to \LaTeX}, 3rd~ed.\hskip 1em plus
784
%   0.5em minus 0.4em\relax Harlow, England: Addison-Wesley, 1999.
785 153 guanucolui
 
786 169 guanucolui
\bibitem{ASArev.1}
787
Hiroyuki~Ochi, \emph{ASAver.1: An FPGA-Based Education Board for Computer Architecture/system Design}, Design Automation Conference 1997. Proceeding of the ASP-DAC'97. Asia and South Pacific. January 1997.
788
 
789
\bibitem{FPGA-platform-CPU-design}
790
C.~Chang, C.~Huang, Y.~Lin, Z.~Huang and T.~Hu, \emph{FPGA Platform for CPU Design and Applications},  5th. IEEE Conference on Nanotechnology. Nagoya, Japan. July 2005.
791
 
792 174 guanucolui
\bibitem{Low-Cost-Interactive-Rapid-Prototyping}
793
D.~Kang, S.~Hwang, K.~Jhang, K.~Yi, \emph{A Low Cost and Interactive Rapid Prototyping Platform For Digital System Design Education}, IEEE International Conference on Microelectronic Systems Education, MSE'07. 2007.
794
 
795
\bibitem{FPGA-Based-Experiment-Platform-for-Multi-Core-System}
796
J.~Xing, W.~Zhao and H.~Hu, \emph{An FPGA-Based Experiment Platform for Multi-Cores System}, 9th. International Conference for Young Computer Scientistis, ICYCS'08. 2008.
797
 
798 169 guanucolui
\bibitem{Building-an-Evolvable-Low-Cost-HWSW-Platform}
799 171 guanucolui
A.~Cicuttin, M.~Crespo, A.~Shapiro, N.~Abdallah, \emph{Building an Evolvable Low-Cost HW/SW Educational Platform -- Application to Virtual Instrumentation},  IEEE International Conference on Microelectronic Systems Education, MSE'07. 2007.
800 169 guanucolui
 
801 171 guanucolui
\bibitem{NetFPGA}
802
J.~Lockwood, N.~McKeown, G.~Watson, G.~Gibb, P.~Hartke, J.~Naous, R.~Raghuraman and J.~Luo, \emph{NetFPGA - An Open Platform for Gigabit-rate Network Switching and Routing}, IEEE International Conference on Microelectronic Systems Education, MSE'07. 2007.
803
 
804
\bibitem{Port-Emb-Linux-XUP-Virtex-II.Dev-Board}
805
Z.~Qingguo, Y.~Qi, L.~Chanjuan, H.~Bin, \emph{Port Embedded Linux to XUP Virtex-II Por Development Board}, IEEE. 2009.
806
 
807
 
808 174 guanucolui
\bibitem{citedef-ref}
809
Instituto de Investigación Científica y Técnicas para al defensa (CITEDEF), \emph{Radar Láser}, url: \texttt{http://www.citedef.gob.ar/i-d/laser/}.
810 171 guanucolui
 
811 174 guanucolui
\bibitem{paper-dta-conae}
812
J.~Siman, G.~Jaquenod and H.~Mascialino, \emph{Fpga-Based Transmit/Receive Distributed Controller for the TR Modules of an L Band Antenna (SAR)}, 4th. Southern Conference on Programmable Logic, 2008.
813 171 guanucolui
 
814 174 guanucolui
\bibitem{act-curricula}
815
P.~Cayuela, \emph{Actualización de la currícula -- Incorporación de la lógica programable en ingeniería}, Jornada de Investigación y Desarrollo en Ingeniería de Software (JIDIS'07). Córdoba Argentina. 2007.
816 171 guanucolui
 
817
 
818 169 guanucolui
 
819 153 guanucolui
\end{thebibliography}
820
 
821
 
822
 
823
 
824
% that's all folks
825
\end{document}
826
 
827
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.