1 |
21 |
rameli |
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@//
|
2 |
|
|
// Design Name: Present Cipher Encryption Core //
|
3 |
|
|
// Module Name: present_encryptor_top //
|
4 |
|
|
// Language: Verilog //
|
5 |
|
|
// Date Created: 1/16/2011 //
|
6 |
|
|
// Author: Reza Ameli //
|
7 |
|
|
// Digital Systems Lab //
|
8 |
|
|
// Ferdowsi University of Mashhad, Iran //
|
9 |
|
|
// http://commeng.um.ac.ir/dslab //
|
10 |
|
|
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@//
|
11 |
|
|
// //
|
12 |
|
|
// This source file may be used and distributed without //
|
13 |
|
|
// restriction provided that this copyright statement is not //
|
14 |
|
|
// removed from the file and that any derivative work contains //
|
15 |
|
|
// the original copyright notice and the associated disclaimer. //
|
16 |
|
|
// //
|
17 |
|
|
// This source file is free software; you can redistribute it //
|
18 |
|
|
// and/or modify it under the terms of the GNU Lesser General //
|
19 |
|
|
// Public License as published by the Free Software Foundation; //
|
20 |
|
|
// either version 2.1 of the License, or (at your option) any //
|
21 |
|
|
// later version. //
|
22 |
|
|
// //
|
23 |
|
|
// This source is distributed in the hope that it will be //
|
24 |
|
|
// useful, but WITHOUT ANY WARRANTY; without even the implied //
|
25 |
|
|
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //
|
26 |
|
|
// PURPOSE. See the GNU Lesser General Public License for more //
|
27 |
|
|
// details. //
|
28 |
|
|
// //
|
29 |
|
|
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@//
|
30 |
|
|
|
31 |
|
|
module present_encryptor_top(data_o,data_i,data_load,key_load,clk_i);
|
32 |
|
|
//- Module IOs ----------------------------------------------------------------
|
33 |
|
|
|
34 |
|
|
output wire[63:0] data_o; // ciphertext will appear here
|
35 |
|
|
input wire[79:0] data_i; // plaintext and key must be fed here
|
36 |
|
|
input wire clk_i; // clock signal
|
37 |
|
|
input wire key_load; // when '1', data_i will loaded into key register
|
38 |
|
|
input wire data_load; // when '1', first 64 bits of data_i will be loaded into state register
|
39 |
|
|
|
40 |
|
|
//- Variables, Registers and Parameters ---------------------------------------
|
41 |
|
|
|
42 |
|
|
reg [63 : 0] state; // 64-bit state of the cipher
|
43 |
|
|
reg [4 : 0] round_counter; // 5-bit round-counter (from 1 to 31)
|
44 |
|
|
reg [79 : 0] key; // 80-bit register holding the key and updates of the key
|
45 |
|
|
|
46 |
|
|
wire [63 : 0] round_key; // 64-bit round-key. The round-keys are derived from the key register
|
47 |
|
|
wire [63 : 0] sub_per_input; // 64-bit input to the substitution-permutation network
|
48 |
|
|
wire [63 : 0] sub_per_output; // 64-bit output of the substitution-permutation network
|
49 |
|
|
wire [79 : 0] key_update_output; // 80-bit output of the keyupdate procedure. This value replaces the value of the key register
|
50 |
|
|
|
51 |
|
|
//- Instantiations ------------------------------------------------------------
|
52 |
|
|
|
53 |
|
|
sub_per present_cipher_sp(.data_o(sub_per_output),.data_i(sub_per_input));
|
54 |
|
|
// instantion of substitution and permutation module
|
55 |
|
|
// this module is used 31 times iteratively
|
56 |
|
|
|
57 |
|
|
key_update present_cipher_key_update(.data_o(key_update_output),.data_i(key),.round_counter(round_counter));
|
58 |
|
|
// instantiation of the key-update procedure
|
59 |
|
|
// this module is used 31 times iteratively
|
60 |
|
|
|
61 |
|
|
//- Continuous Assigments------------------------------------------------------
|
62 |
|
|
|
63 |
|
|
assign round_key = key[79:16]; // iurrent round-key is the 64 left most bits of the key register
|
64 |
|
|
|
65 |
|
|
assign sub_per_input = state^round_key; // input to the Substitution-Permutation network is the cipher state xored by the round key
|
66 |
|
|
|
67 |
|
|
assign data_o = sub_per_input; // the output of the cipher will finally be one of the inputs to the Substitution-Permutation network.
|
68 |
|
|
// output will be valid when round-counter is 31
|
69 |
|
|
|
70 |
|
|
//- Behavioral Statements -----------------------------------------------------
|
71 |
|
|
|
72 |
|
|
always @(posedge clk_i)
|
73 |
|
|
begin
|
74 |
|
|
if(key_load) // loading the key
|
75 |
|
|
begin
|
76 |
|
|
key <= data_i;
|
77 |
|
|
end
|
78 |
|
|
else if(!key_load) // not loading the key
|
79 |
|
|
begin
|
80 |
|
|
if(data_load) // loading plaintext
|
81 |
|
|
begin
|
82 |
|
|
state <= data_i[63:0];
|
83 |
|
|
round_counter <= 5'b00001; // round_counter starts from 1 and ends at 31
|
84 |
|
|
end
|
85 |
|
|
else if(!data_load) // normal operation (neither loading the key nor loading the plaitext)
|
86 |
|
|
begin
|
87 |
|
|
round_counter <= round_counter + 1'b1; // round counter is increased by one
|
88 |
|
|
state <= sub_per_output; // state is updated
|
89 |
|
|
key <= key_update_output; // key register is updated
|
90 |
|
|
end
|
91 |
|
|
end
|
92 |
|
|
end
|
93 |
|
|
//-----------------------------------------------------------------------------
|
94 |
|
|
endmodule
|