1 |
12 |
dgisselq |
////////////////////////////////////////////////////////////////////////////////
|
2 |
|
|
//
|
3 |
|
|
// Filename: eqspiflashsim.cpp
|
4 |
|
|
//
|
5 |
|
|
// Project: OpenArty, an entirely open SoC based upon the Arty platform
|
6 |
|
|
//
|
7 |
|
|
// Purpose: This library simulates the operation of a Quad-SPI commanded
|
8 |
|
|
// flash, such as the Micron N25Q128A used on the Arty development
|
9 |
|
|
// board by Digilent. As such, it is defined by 16 MBytes of
|
10 |
|
|
// memory (4 MWord).
|
11 |
|
|
//
|
12 |
|
|
// This simulator is useful for testing in a Verilator/C++
|
13 |
|
|
// environment, where this simulator can be used in place of
|
14 |
|
|
// the actual hardware.
|
15 |
|
|
//
|
16 |
|
|
// Creator: Dan Gisselquist, Ph.D.
|
17 |
|
|
// Gisselquist Technology, LLC
|
18 |
|
|
//
|
19 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
20 |
|
|
//
|
21 |
|
|
// Copyright (C) 2015-2016, Gisselquist Technology, LLC
|
22 |
|
|
//
|
23 |
|
|
// This program is free software (firmware): you can redistribute it and/or
|
24 |
|
|
// modify it under the terms of the GNU General Public License as published
|
25 |
|
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
26 |
|
|
// your option) any later version.
|
27 |
|
|
//
|
28 |
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
29 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
30 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
31 |
|
|
// for more details.
|
32 |
|
|
//
|
33 |
|
|
// You should have received a copy of the GNU General Public License along
|
34 |
|
|
// with this program. (It's in the $(ROOT)/doc directory, run make with no
|
35 |
|
|
// target there if the PDF file isn't present.) If not, see
|
36 |
|
|
// <http://www.gnu.org/licenses/> for a copy.
|
37 |
|
|
//
|
38 |
|
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
39 |
|
|
// http://www.gnu.org/licenses/gpl.html
|
40 |
|
|
//
|
41 |
|
|
//
|
42 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
43 |
|
|
//
|
44 |
|
|
//
|
45 |
|
|
#include <stdio.h>
|
46 |
|
|
#include <string.h>
|
47 |
|
|
#include <assert.h>
|
48 |
|
|
#include <stdlib.h>
|
49 |
|
|
|
50 |
|
|
#include "eqspiflashsim.h"
|
51 |
|
|
|
52 |
|
|
#define MEMBYTES (1<<24)
|
53 |
|
|
|
54 |
|
|
static const unsigned
|
55 |
|
|
DEVESD = 0x014,
|
56 |
|
|
// MICROSECONDS = 200,
|
57 |
|
|
// MILLISECONDS = MICROSECONDS * 1000,
|
58 |
|
|
// SECONDS = MILLISECONDS * 1000,
|
59 |
|
|
MICROSECONDS = 20,
|
60 |
|
|
MILLISECONDS = MICROSECONDS * 10,
|
61 |
|
|
SECONDS = MILLISECONDS * 10,
|
62 |
|
|
tSHSL1 = 4, // S# deselect time after a read command
|
63 |
|
|
tSHSL2 = 10, // S# deselect time after a non-read command
|
64 |
|
|
tW = 1300 * MICROSECONDS, // write config cycle time
|
65 |
|
|
tWNVCR = 200 * MILLISECONDS, // write nonvolatile-config cycle time
|
66 |
|
|
tWVECR = 8, // write volatile enhanced config cycle time
|
67 |
|
|
tBE = 32 * SECONDS, // Bulk erase time
|
68 |
|
|
tDP = 10 * SECONDS, // Deep power down
|
69 |
|
|
tRES = 30 * SECONDS,
|
70 |
|
|
// Shall we artificially speed up this process?
|
71 |
|
|
// These numbers are the "typical" times
|
72 |
|
|
tPP = 500 * MICROSECONDS, // Page program time
|
73 |
|
|
tSE = 700 * MILLISECONDS, // Sector erase time
|
74 |
|
|
tSS = 250 * MILLISECONDS; // Subsector erase time
|
75 |
|
|
// These are the maximum times
|
76 |
|
|
// tW = 8300 * MICROSECONDS, // write config cycle time
|
77 |
|
|
// tWNVCR = 3000 * MILLISECONDS, // write nonvolatile-config cycle time
|
78 |
|
|
// tWVECR = 8, // write volatile enhanced config cycle time
|
79 |
|
|
// tPP = 5000 * MICROSECONDS,
|
80 |
|
|
// tSE = 3000 * MILLISECONDS;
|
81 |
|
|
// tSS = 800 * MILLISECONDS;
|
82 |
|
|
|
83 |
|
|
static const char IDSTR[20]= {
|
84 |
|
|
0x20, // Micron's ID, assigned by JEDEC
|
85 |
|
|
(char)0xba, (char)0x18, // Memory type and capacity
|
86 |
|
|
(char)0x10, // Length of data to follow
|
87 |
|
|
(char)0xfe, (char)0xfd, // Extended device ID and device config info
|
88 |
|
|
(char)0xfc, (char)0xfb, (char)0xfa, (char)0xf9,
|
89 |
|
|
(char)0xf8, (char)0xf7, (char)0xf6, (char)0xf5,
|
90 |
|
|
(char)0xf4, (char)0xf3, (char)0xf2, (char)0xf1,
|
91 |
|
|
(char)0xf0, (char)0xef
|
92 |
|
|
};
|
93 |
|
|
|
94 |
|
|
EQSPIFLASHSIM::EQSPIFLASHSIM(void) {
|
95 |
|
|
const int NSECTORS = MEMBYTES>>16;
|
96 |
|
|
m_mem = new char[MEMBYTES];
|
97 |
|
|
m_pmem = new char[256];
|
98 |
|
|
m_otp = new char[65];
|
99 |
|
|
for(int i=0; i<65; i++)
|
100 |
|
|
m_otp[i] = 0x0ff;
|
101 |
|
|
m_otp[64] = 1;
|
102 |
|
|
m_otp_wp = false;
|
103 |
|
|
m_lockregs = new char[NSECTORS];
|
104 |
|
|
for(int i=0; i<NSECTORS; i++)
|
105 |
|
|
m_lockregs[i] = 0;
|
106 |
|
|
|
107 |
|
|
m_state = EQSPIF_IDLE;
|
108 |
|
|
m_last_sck = 1;
|
109 |
|
|
m_write_count = 0;
|
110 |
|
|
m_ireg = m_oreg = 0;
|
111 |
|
|
m_sreg = 0x01c;
|
112 |
|
|
m_creg = 0x001; // Initial creg on delivery
|
113 |
|
|
m_config = 0x7; // Volatile configuration register
|
114 |
|
|
m_nvconfig = 0x0fff; // Nonvolatile configuration register
|
115 |
|
|
m_quad_mode = false;
|
116 |
|
|
m_mode_byte = 0;
|
117 |
|
|
m_flagreg = 0x0a5;
|
118 |
|
|
|
119 |
|
|
m_debug = true;
|
120 |
|
|
|
121 |
|
|
memset(m_mem, 0x0ff, MEMBYTES);
|
122 |
|
|
}
|
123 |
|
|
|
124 |
|
|
void EQSPIFLASHSIM::load(const unsigned addr, const char *fname) {
|
125 |
|
|
FILE *fp;
|
126 |
|
|
size_t len;
|
127 |
|
|
|
128 |
|
|
if (addr >= MEMBYTES)
|
129 |
|
|
return; // return void
|
130 |
|
|
len = MEMBYTES-addr*4;
|
131 |
|
|
|
132 |
|
|
if (NULL != (fp = fopen(fname, "r"))) {
|
133 |
|
|
int nr = 0;
|
134 |
|
|
nr = fread(&m_mem[addr*4], sizeof(char), len, fp);
|
135 |
|
|
fclose(fp);
|
136 |
|
|
if (nr == 0) {
|
137 |
|
|
fprintf(stderr, "SPI-FLASH: Could not read %s\n", fname);
|
138 |
|
|
perror("O/S Err:");
|
139 |
|
|
}
|
140 |
|
|
} else {
|
141 |
|
|
fprintf(stderr, "SPI-FLASH: Could not open %s\n", fname);
|
142 |
|
|
perror("O/S Err:");
|
143 |
|
|
}
|
144 |
|
|
}
|
145 |
|
|
|
146 |
|
|
#define QOREG(A) m_oreg = ((m_oreg & (~0x0ff))|(A&0x0ff))
|
147 |
|
|
|
148 |
|
|
int EQSPIFLASHSIM::operator()(const int csn, const int sck, const int dat) {
|
149 |
|
|
// Keep track of a timer to determine when page program and erase
|
150 |
|
|
// cycles complete.
|
151 |
|
|
|
152 |
|
|
if (m_write_count > 0) {
|
153 |
|
|
if (0 == (--m_write_count)) {// When done with erase/page pgm,
|
154 |
|
|
// Clear the write in progress bit, together with the
|
155 |
|
|
// write enable bit.
|
156 |
|
|
m_sreg &= 0x0fc;
|
157 |
|
|
if (m_debug) printf("Write complete, clearing WIP (inside SIM)\n");
|
158 |
|
|
}
|
159 |
|
|
}
|
160 |
|
|
|
161 |
|
|
if (csn) {
|
162 |
|
|
m_last_sck = 1;
|
163 |
|
|
m_ireg = 0; m_oreg = 0;
|
164 |
|
|
|
165 |
|
|
if ((EQSPIF_PP == m_state)||(EQSPIF_QPP == m_state)) {
|
166 |
|
|
// Start a page program
|
167 |
|
|
if (m_debug) printf("EQSPI: Page Program write cycle begins\n");
|
168 |
|
|
if (m_debug) printf("CK = %d & 7 = %d\n", m_count, m_count & 0x07);
|
169 |
|
|
if (m_debug) printf("EQSPI: pmem = %08lx\n", (unsigned long)m_pmem);
|
170 |
|
|
assert((m_lockregs[(m_addr>>16)&0x0ff]&0x1)==0);
|
171 |
|
|
assert((m_count & 7)==0);
|
172 |
|
|
m_write_count = tPP;
|
173 |
|
|
m_state = EQSPIF_IDLE;
|
174 |
|
|
m_sreg &= (~EQSPIF_WEL_FLAG);
|
175 |
|
|
m_sreg |= (EQSPIF_WIP_FLAG);
|
176 |
|
|
for(int i=0; i<256; i++) {
|
177 |
|
|
/*
|
178 |
|
|
if (m_debug) printf("%02x: m_mem[%02x] = %02x &= %02x = %02x\n",
|
179 |
|
|
i, (m_addr&(~0x0ff))+i,
|
180 |
|
|
m_mem[(m_addr&(~0x0ff))+i]&0x0ff, m_pmem[i]&0x0ff,
|
181 |
|
|
m_mem[(m_addr&(~0x0ff))+i]& m_pmem[i]&0x0ff);
|
182 |
|
|
*/
|
183 |
|
|
m_mem[(m_addr&(~0x0ff))+i] &= m_pmem[i];
|
184 |
|
|
}
|
185 |
|
|
m_quad_mode = false;
|
186 |
|
|
} else if (EQSPIF_WRCR == m_state) {
|
187 |
|
|
if (m_debug) printf("Actually writing volatile config register\n");
|
188 |
|
|
if (m_debug) printf("CK = %d & 7 = %d\n", m_count, m_count & 0x07);
|
189 |
|
|
m_state = EQSPIF_IDLE;
|
190 |
|
|
} else if (EQSPIF_WRNVCONFIG == m_state) {
|
191 |
|
|
if (m_debug) printf("Actually writing nonvolatile config register\n");
|
192 |
|
|
m_write_count = tWNVCR;
|
193 |
|
|
m_state = EQSPIF_IDLE;
|
194 |
|
|
} else if (EQSPIF_WREVCONFIG == m_state) {
|
195 |
|
|
if (m_debug) printf("Actually writing Enhanced volatile config register\n");
|
196 |
|
|
m_state = EQSPIF_IDLE;
|
197 |
|
|
} else if (EQSPIF_WRSR == m_state) {
|
198 |
|
|
if (m_debug) printf("Actually writing status register\n");
|
199 |
|
|
m_write_count = tW;
|
200 |
|
|
m_state = EQSPIF_IDLE;
|
201 |
|
|
m_sreg &= (~EQSPIF_WEL_FLAG);
|
202 |
|
|
m_sreg |= (EQSPIF_WIP_FLAG);
|
203 |
|
|
} else if (EQSPIF_WRLOCK == m_state) {
|
204 |
|
|
if (m_debug) printf("Actually writing lock register\n");
|
205 |
|
|
m_write_count = tW;
|
206 |
|
|
m_state = EQSPIF_IDLE;
|
207 |
|
|
} else if (EQSPIF_CLRFLAGS == m_state) {
|
208 |
|
|
if (m_debug) printf("Actually clearing the flags register bits\n");
|
209 |
|
|
m_state = EQSPIF_IDLE;
|
210 |
|
|
m_flagreg &= 0x09f;
|
211 |
|
|
} else if (m_state == EQSPIF_SUBSECTOR_ERASE) {
|
212 |
|
|
if (m_debug) printf("Actually Erasing subsector, from %08x\n", m_addr);
|
213 |
|
|
if (m_debug) printf("CK = %d & 7 = %d\n", m_count, m_count & 0x07);
|
214 |
|
|
assert(((m_count & 7)==0)&&(m_count == 32));
|
215 |
|
|
assert((m_lockregs[(m_addr>>16)&0x0ff]&0x1)==0);
|
216 |
|
|
m_write_count = tSS;
|
217 |
|
|
m_state = EQSPIF_IDLE;
|
218 |
|
|
m_sreg &= (~EQSPIF_WEL_FLAG);
|
219 |
|
|
m_sreg |= (EQSPIF_WIP_FLAG);
|
220 |
|
|
m_addr &= (-1<<12);
|
221 |
|
|
for(int i=0; i<(1<<12); i++)
|
222 |
|
|
m_mem[m_addr + i] = 0x0ff;
|
223 |
|
|
if (m_debug) printf("Now waiting %d ticks delay\n", m_write_count);
|
224 |
|
|
} else if (m_state == EQSPIF_SECTOR_ERASE) {
|
225 |
|
|
if (m_debug) printf("Actually Erasing sector, from %08x\n", m_addr);
|
226 |
|
|
m_write_count = tSE;
|
227 |
|
|
if (m_debug) printf("CK = %d & 7 = %d\n", m_count, m_count & 0x07);
|
228 |
|
|
assert(((m_count & 7)==0)&&(m_count == 32));
|
229 |
|
|
assert((m_lockregs[(m_addr>>16)&0x0ff]&0x1)==0);
|
230 |
|
|
m_state = EQSPIF_IDLE;
|
231 |
|
|
m_sreg &= (~EQSPIF_WEL_FLAG);
|
232 |
|
|
m_sreg |= (EQSPIF_WIP_FLAG);
|
233 |
|
|
m_addr &= (-1<<16);
|
234 |
|
|
for(int i=0; i<(1<<16); i++)
|
235 |
|
|
m_mem[m_addr + i] = 0x0ff;
|
236 |
|
|
if (m_debug) printf("Now waiting %d ticks delay\n", m_write_count);
|
237 |
|
|
} else if (m_state == EQSPIF_BULK_ERASE) {
|
238 |
|
|
m_write_count = tBE;
|
239 |
|
|
m_state = EQSPIF_IDLE;
|
240 |
|
|
m_sreg &= (~EQSPIF_WEL_FLAG);
|
241 |
|
|
m_sreg |= (EQSPIF_WIP_FLAG);
|
242 |
|
|
// Should I be checking the lock register(s) here?
|
243 |
|
|
for(int i=0; i<MEMBYTES; i++)
|
244 |
|
|
m_mem[i] = 0x0ff;
|
245 |
|
|
} else if (m_state == EQSPIF_PROGRAM_OTP) {
|
246 |
|
|
// Program the One-Time Programmable (OTP memory
|
247 |
|
|
if (m_debug) printf("EQSPI: OTP Program write cycle begins\n");
|
248 |
|
|
if (m_debug) printf("CK = %d & 7 = %d\n", m_count, m_count & 0x07);
|
249 |
|
|
// assert((m_lockregs[(m_addr>>16)&0x0ff]&0x1)==0);
|
250 |
|
|
assert((m_count & 7)==0);
|
251 |
|
|
m_write_count = tPP; // OTP cycle time as well
|
252 |
|
|
m_state = EQSPIF_IDLE;
|
253 |
|
|
m_sreg &= (~EQSPIF_WEL_FLAG);
|
254 |
|
|
m_sreg |= (EQSPIF_WIP_FLAG);
|
255 |
|
|
for(int i=0; i<65; i++)
|
256 |
|
|
m_otp[i] &= m_pmem[i];
|
257 |
|
|
m_otp_wp = ((m_otp[64]&1)==0);
|
258 |
|
|
/*
|
259 |
|
|
} else if (m_state == EQSPIF_DEEP_POWER_DOWN) {
|
260 |
|
|
m_write_count = tDP;
|
261 |
|
|
m_state = EQSPIF_IDLE;
|
262 |
|
|
} else if (m_state == EQSPIF_RELEASE) {
|
263 |
|
|
m_write_count = tRES;
|
264 |
|
|
m_state = EQSPIF_IDLE;
|
265 |
|
|
*/
|
266 |
|
|
} else if (m_state == EQSPIF_QUAD_READ_CMD) {
|
267 |
|
|
m_state = EQSPIF_IDLE;
|
268 |
|
|
if (m_mode_byte!=0)
|
269 |
|
|
m_quad_mode = false;
|
270 |
|
|
else
|
271 |
|
|
m_state = EQSPIF_XIP;
|
272 |
|
|
} else if (m_state == EQSPIF_QUAD_READ) {
|
273 |
|
|
m_state = EQSPIF_IDLE;
|
274 |
|
|
if (m_mode_byte!=0)
|
275 |
|
|
m_quad_mode = false;
|
276 |
|
|
else
|
277 |
|
|
m_state = EQSPIF_XIP;
|
278 |
|
|
// } else if (m_state == EQSPIF_XIP) {
|
279 |
|
|
}
|
280 |
|
|
|
281 |
|
|
m_oreg = 0x0fe;
|
282 |
|
|
m_count= 0;
|
283 |
|
|
int out = m_nxtout[3];
|
284 |
|
|
m_nxtout[3] = m_nxtout[2];
|
285 |
|
|
m_nxtout[2] = m_nxtout[1];
|
286 |
|
|
m_nxtout[1] = m_nxtout[0];
|
287 |
|
|
m_nxtout[0] = dat;
|
288 |
|
|
return out;
|
289 |
|
|
} else if ((!m_last_sck)||(sck == m_last_sck)) {
|
290 |
|
|
// Only change on the falling clock edge
|
291 |
|
|
// printf("SFLASH-SKIP, CLK=%d -> %d\n", m_last_sck, sck);
|
292 |
|
|
m_last_sck = sck;
|
293 |
|
|
int out = m_nxtout[3];
|
294 |
|
|
m_nxtout[3] = m_nxtout[2];
|
295 |
|
|
m_nxtout[2] = m_nxtout[1];
|
296 |
|
|
m_nxtout[1] = m_nxtout[0];
|
297 |
|
|
if (m_quad_mode)
|
298 |
|
|
m_nxtout[0] = (m_oreg>>8)&0x0f;
|
299 |
|
|
else
|
300 |
|
|
// return ((m_oreg & 0x0100)?2:0) | (dat & 0x0d);
|
301 |
|
|
m_nxtout[0] = (m_oreg & 0x0100)?2:0;
|
302 |
|
|
return out;
|
303 |
|
|
}
|
304 |
|
|
|
305 |
|
|
// We'll only get here if ...
|
306 |
|
|
// last_sck = 1, and sck = 0, thus transitioning on the
|
307 |
|
|
// negative edge as with everything else in this interface
|
308 |
|
|
if (m_quad_mode) {
|
309 |
|
|
m_ireg = (m_ireg << 4) | (dat & 0x0f);
|
310 |
|
|
m_count+=4;
|
311 |
|
|
m_oreg <<= 4;
|
312 |
|
|
} else {
|
313 |
|
|
m_ireg = (m_ireg << 1) | (dat & 1);
|
314 |
|
|
m_count++;
|
315 |
|
|
m_oreg <<= 1;
|
316 |
|
|
}
|
317 |
|
|
|
318 |
|
|
|
319 |
|
|
// printf("PROCESS, COUNT = %d, IREG = %02x\n", m_count, m_ireg);
|
320 |
|
|
if (m_state == EQSPIF_XIP) {
|
321 |
|
|
assert(m_quad_mode);
|
322 |
|
|
if (m_count == 24) {
|
323 |
|
|
if (m_debug) printf("EQSPI: Entering from Quad-Read Idle to Quad-Read\n");
|
324 |
|
|
if (m_debug) printf("EQSPI: QI/O Idle Addr = %02x\n", m_ireg&0x0ffffff);
|
325 |
|
|
m_addr = (m_ireg) & 0x0ffffff;
|
326 |
|
|
assert((m_addr & 0xfc00000)==0);
|
327 |
|
|
m_state = EQSPIF_QUAD_READ;
|
328 |
|
|
} m_oreg = 0;
|
329 |
|
|
} else if (m_count == 8) {
|
330 |
|
|
QOREG(0x0a5);
|
331 |
|
|
// printf("SFLASH-CMD = %02x\n", m_ireg & 0x0ff);
|
332 |
|
|
// Figure out what command we've been given
|
333 |
|
|
if (m_debug) printf("SPI FLASH CMD %02x\n", m_ireg&0x0ff);
|
334 |
|
|
switch(m_ireg & 0x0ff) {
|
335 |
|
|
case 0x01: // Write status register
|
336 |
|
|
if (2 !=(m_sreg & 0x203)) {
|
337 |
|
|
if (m_debug) printf("EQSPI: WEL not set, cannot write status reg\n");
|
338 |
|
|
m_state = EQSPIF_INVALID;
|
339 |
|
|
} else
|
340 |
|
|
m_state = EQSPIF_WRSR;
|
341 |
|
|
break;
|
342 |
|
|
case 0x02: // Normal speed (normal SPI, 1wire MOSI) Page program
|
343 |
|
|
if (2 != (m_sreg & 0x203)) {
|
344 |
|
|
if (m_debug) printf("EQSPI: Cannot program at this time, SREG = %x\n", m_sreg);
|
345 |
|
|
m_state = EQSPIF_INVALID;
|
346 |
|
|
} else {
|
347 |
|
|
m_state = EQSPIF_PP;
|
348 |
|
|
if (m_debug) printf("PAGE-PROGRAM COMMAND ACCEPTED\n");
|
349 |
|
|
}
|
350 |
|
|
break;
|
351 |
|
|
case 0x03: // Read data bytes
|
352 |
|
|
// Our clock won't support this command, so go
|
353 |
|
|
// to an invalid state
|
354 |
|
|
if (m_debug) printf("EQSPI INVALID: This sim does not support slow reading\n");
|
355 |
|
|
m_state = EQSPIF_INVALID;
|
356 |
|
|
break;
|
357 |
|
|
case 0x04: // Write disable
|
358 |
|
|
m_state = EQSPIF_IDLE;
|
359 |
|
|
m_sreg &= (~EQSPIF_WEL_FLAG);
|
360 |
|
|
break;
|
361 |
|
|
case 0x05: // Read status register
|
362 |
|
|
m_state = EQSPIF_RDSR;
|
363 |
|
|
if (m_debug) printf("EQSPI: READING STATUS REGISTER: %02x\n", m_sreg);
|
364 |
|
|
QOREG(m_sreg);
|
365 |
|
|
break;
|
366 |
|
|
case 0x06: // Write enable
|
367 |
|
|
m_state = EQSPIF_IDLE;
|
368 |
|
|
m_sreg |= EQSPIF_WEL_FLAG;
|
369 |
|
|
if (m_debug) printf("EQSPI: WRITE-ENABLE COMMAND ACCEPTED\n");
|
370 |
|
|
break;
|
371 |
|
|
case 0x0b: // Here's the read that we support
|
372 |
|
|
if (m_debug) printf("EQSPI: FAST-READ (single-bit)\n");
|
373 |
|
|
m_state = EQSPIF_FAST_READ;
|
374 |
|
|
break;
|
375 |
|
|
case 0x20: // Subsector Erase
|
376 |
|
|
if (2 != (m_sreg & 0x203)) {
|
377 |
|
|
if (m_debug) printf("EQSPI: WEL not set, cannot do a subsector erase\n");
|
378 |
|
|
m_state = EQSPIF_INVALID;
|
379 |
|
|
assert(0&&"WEL not set");
|
380 |
|
|
} else
|
381 |
|
|
m_state = EQSPIF_SUBSECTOR_ERASE;
|
382 |
|
|
break;
|
383 |
|
|
case 0x32: // QUAD Page program, 4 bits at a time
|
384 |
|
|
if (2 != (m_sreg & 0x203)) {
|
385 |
|
|
if (m_debug) printf("EQSPI: Cannot program at this time, SREG = %x\n", m_sreg);
|
386 |
|
|
m_state = EQSPIF_INVALID;
|
387 |
|
|
assert(0&&"WEL not set");
|
388 |
|
|
} else {
|
389 |
|
|
m_state = EQSPIF_QPP;
|
390 |
|
|
if (m_debug) printf("EQSPI: QUAD-PAGE-PROGRAM COMMAND ACCEPTED\n");
|
391 |
|
|
if (m_debug) printf("EQSPI: pmem = %08lx\n", (unsigned long)m_pmem);
|
392 |
|
|
}
|
393 |
|
|
break;
|
394 |
|
|
case 0x42: // Program OTP array
|
395 |
|
|
if (2 != (m_sreg & 0x203)) {
|
396 |
|
|
if (m_debug) printf("EQSPI: WEL not set, cannot program OTP\n");
|
397 |
|
|
m_state = EQSPIF_INVALID;
|
398 |
|
|
} else if (m_otp_wp) {
|
399 |
|
|
if (m_debug) printf("EQSPI: OTP Write protect is set, cannot program OTP ever again\n");
|
400 |
|
|
m_state = EQSPIF_INVALID;
|
401 |
|
|
} else
|
402 |
|
|
m_state = EQSPIF_PROGRAM_OTP;
|
403 |
|
|
break;
|
404 |
|
|
case 0x4b: // Read OTP array
|
405 |
|
|
m_state = EQSPIF_READ_OTP;
|
406 |
|
|
QOREG(0);
|
407 |
|
|
if (m_debug) printf("EQSPI: Read OTP array command\n");
|
408 |
|
|
break;
|
409 |
|
|
case 0x50: // Clear flag status register
|
410 |
|
|
m_state = EQSPIF_CLRFLAGS;
|
411 |
|
|
if (m_debug) printf("EQSPI: Clearing FLAGSTATUS REGISTER: %02x\n", m_flagreg);
|
412 |
|
|
QOREG(m_flagreg);
|
413 |
|
|
break;
|
414 |
|
|
case 0x61: // WRITE Enhanced volatile config register
|
415 |
|
|
m_state = EQSPIF_WREVCONFIG;
|
416 |
|
|
if (m_debug) printf("EQSPI: WRITING EVCONFIG REGISTER\n");
|
417 |
|
|
break;
|
418 |
|
|
case 0x65: // Read Enhanced volatile config register
|
419 |
|
|
m_state = EQSPIF_RDEVCONFIG;
|
420 |
|
|
if (m_debug) printf("EQSPI: READING EVCONFIG REGISTER: %02x\n", m_evconfig);
|
421 |
|
|
QOREG(m_evconfig);
|
422 |
|
|
break;
|
423 |
|
|
case 0x06b:
|
424 |
|
|
m_state = EQSPIF_QUAD_READ_CMD;
|
425 |
|
|
// m_quad_mode = true; // Not yet, need to wait past dummy registers
|
426 |
|
|
break;
|
427 |
|
|
case 0x70: // Read flag status register
|
428 |
|
|
m_state = EQSPIF_RDFLAGS;
|
429 |
|
|
if (m_debug) printf("EQSPI: READING FLAGSTATUS REGISTER: %02x\n", m_flagreg);
|
430 |
|
|
QOREG(m_flagreg);
|
431 |
|
|
break;
|
432 |
|
|
case 0x81: // Write volatile config register
|
433 |
|
|
m_state = EQSPIF_WRCR;
|
434 |
|
|
if (m_debug) printf("EQSPI: WRITING CONFIG REGISTER: %02x\n", m_config);
|
435 |
|
|
break;
|
436 |
|
|
case 0x85: // Read volatile config register
|
437 |
|
|
m_state = EQSPIF_RDCR;
|
438 |
|
|
if (m_debug) printf("EQSPI: READING CONFIG REGISTER: %02x\n", m_config);
|
439 |
|
|
QOREG(m_config>>8);
|
440 |
|
|
break;
|
441 |
|
|
case 0x9e: // Read ID (fall through)
|
442 |
|
|
case 0x9f: // Read ID
|
443 |
|
|
m_state = EQSPIF_RDID; m_addr = 0;
|
444 |
|
|
if (m_debug) printf("EQSPI: READING ID\n");
|
445 |
|
|
QOREG(IDSTR[0]);
|
446 |
|
|
break;
|
447 |
|
|
case 0xb1: // Write nonvolatile config register
|
448 |
|
|
m_state = EQSPIF_WRNVCONFIG;
|
449 |
|
|
if (m_debug) printf("EQSPI: WRITING NVCONFIG REGISTER: %02x\n", m_nvconfig);
|
450 |
|
|
break;
|
451 |
|
|
case 0xb5: // Read nonvolatile config register
|
452 |
|
|
m_state = EQSPIF_RDNVCONFIG;
|
453 |
|
|
if (m_debug) printf("EQSPI: READING NVCONFIG REGISTER: %02x\n", m_nvconfig);
|
454 |
|
|
QOREG(m_nvconfig>>8);
|
455 |
|
|
break;
|
456 |
|
|
case 0xc7: // Bulk Erase
|
457 |
|
|
if (2 != (m_sreg & 0x203)) {
|
458 |
|
|
if (m_debug) printf("EQSPI: WEL not set, cannot erase device\n");
|
459 |
|
|
m_state = EQSPIF_INVALID;
|
460 |
|
|
} else
|
461 |
|
|
m_state = EQSPIF_BULK_ERASE;
|
462 |
|
|
break;
|
463 |
|
|
case 0xd8: // Sector Erase
|
464 |
|
|
if (2 != (m_sreg & 0x203)) {
|
465 |
|
|
if (m_debug) printf("EQSPI: WEL not set, cannot erase sector\n");
|
466 |
|
|
m_state = EQSPIF_INVALID;
|
467 |
|
|
assert(0&&"WEL not set");
|
468 |
|
|
} else {
|
469 |
|
|
m_state = EQSPIF_SECTOR_ERASE;
|
470 |
|
|
if (m_debug) printf("EQSPI: SECTOR_ERASE COMMAND\n");
|
471 |
|
|
}
|
472 |
|
|
break;
|
473 |
|
|
case 0xe5: // Write lock register
|
474 |
|
|
m_state = EQSPIF_WRLOCK;
|
475 |
|
|
if (m_debug) printf("EQSPI: WRITING LOCK REGISTER\n");
|
476 |
|
|
break;
|
477 |
|
|
case 0xe8: // Read lock register
|
478 |
|
|
m_state = EQSPIF_RDLOCK;
|
479 |
|
|
if (m_debug) printf("EQSPI: READ LOCK REGISTER (Waiting on address)\n");
|
480 |
|
|
break;
|
481 |
|
|
case 0x0eb: // Here's the (other) read that we support
|
482 |
|
|
// printf("EQSPI: QUAD-I/O-READ\n");
|
483 |
|
|
// m_state = EQSPIF_QUAD_READ_CMD;
|
484 |
|
|
// m_quad_mode = true;
|
485 |
|
|
assert(0 && "Quad Input/Output fast read not supported");
|
486 |
|
|
break;
|
487 |
|
|
default:
|
488 |
|
|
printf("EQSPI: UNRECOGNIZED SPI FLASH CMD: %02x\n", m_ireg&0x0ff);
|
489 |
|
|
m_state = EQSPIF_INVALID;
|
490 |
|
|
assert(0 && "Unrecognized command\n");
|
491 |
|
|
break;
|
492 |
|
|
}
|
493 |
|
|
} else if ((0 == (m_count&0x07))&&(m_count != 0)) {
|
494 |
|
|
QOREG(0);
|
495 |
|
|
switch(m_state) {
|
496 |
|
|
case EQSPIF_IDLE:
|
497 |
|
|
printf("TOO MANY CLOCKS, SPIF in IDLE\n");
|
498 |
|
|
break;
|
499 |
|
|
case EQSPIF_WRSR:
|
500 |
|
|
if (m_count == 16) {
|
501 |
|
|
m_sreg = (m_sreg & 0x07c) | (m_ireg & 0x07c);
|
502 |
|
|
if (m_debug) printf("Request to set sreg to 0x%02x\n",
|
503 |
|
|
m_ireg&0x0ff);
|
504 |
|
|
} else {
|
505 |
|
|
printf("TOO MANY CLOCKS FOR WRR!!!\n");
|
506 |
|
|
exit(-2);
|
507 |
|
|
m_state = EQSPIF_IDLE;
|
508 |
|
|
}
|
509 |
|
|
break;
|
510 |
|
|
case EQSPIF_WRCR: // Write volatile config register, 0x81
|
511 |
|
|
if (m_count == 8) {
|
512 |
|
|
m_config = m_ireg & 0x0ff;
|
513 |
|
|
printf("Setting volatile config register to %08x\n", m_config);
|
514 |
|
|
assert((m_config & 0xfb)==0x8b);
|
515 |
|
|
} break;
|
516 |
|
|
case EQSPIF_WRNVCONFIG: // Write nonvolatile config register
|
517 |
|
|
if (m_count == 8) {
|
518 |
|
|
m_nvconfig = m_ireg & 0x0ffdf;
|
519 |
|
|
printf("Setting nonvolatile config register to %08x\n", m_config);
|
520 |
|
|
assert((m_nvconfig & 0xffc5)==0x8fc5);
|
521 |
|
|
} break;
|
522 |
|
|
case EQSPIF_WREVCONFIG: // Write enhanced volatile config reg
|
523 |
|
|
if (m_count == 8) {
|
524 |
|
|
m_evconfig = m_ireg & 0x0ff;
|
525 |
|
|
printf("Setting enhanced volatile config register to %08x\n", m_evconfig);
|
526 |
|
|
assert((m_evconfig & 0x0d7)==0xd7);
|
527 |
|
|
} break;
|
528 |
|
|
case EQSPIF_WRLOCK:
|
529 |
|
|
if (m_count == 32) {
|
530 |
|
|
m_addr = (m_ireg>>24)&0x0ff;
|
531 |
|
|
if ((m_lockregs[m_addr]&2)==0)
|
532 |
|
|
m_lockregs[m_addr] = m_ireg&3;
|
533 |
|
|
printf("Setting lock register[%02x] to %d\n", m_addr, m_lockregs[m_addr]);
|
534 |
|
|
assert((m_config & 0xfb)==0x8b);
|
535 |
|
|
} break;
|
536 |
|
|
case EQSPIF_RDLOCK:
|
537 |
|
|
if (m_count == 24) {
|
538 |
|
|
m_addr = (m_ireg>>16)&0x0ff;
|
539 |
|
|
QOREG(m_lockregs[m_addr]);
|
540 |
|
|
printf("Reading lock register[%02x]: %d\n", m_addr, m_lockregs[m_addr]);
|
541 |
|
|
} else
|
542 |
|
|
QOREG(m_lockregs[m_addr]);
|
543 |
|
|
break;
|
544 |
|
|
case EQSPIF_CLRFLAGS:
|
545 |
|
|
assert(0 && "Too many clocks for CLSR command!!\n");
|
546 |
|
|
break;
|
547 |
|
|
case EQSPIF_READ_OTP:
|
548 |
|
|
if (m_count == 32) {
|
549 |
|
|
m_addr = m_ireg & 0x0ffffff;
|
550 |
|
|
assert(m_addr < 65);
|
551 |
|
|
m_otp[64] = (m_otp_wp)?0:1;
|
552 |
|
|
|
553 |
|
|
if (m_debug) printf("READOTP, SETTING ADDR = %08x (%02x:%02x:%02x:%02x)\n", m_addr,
|
554 |
|
|
((m_addr<65)?m_otp[m_addr]:0)&0x0ff,
|
555 |
|
|
((m_addr<64)?m_otp[m_addr+1]:0)&0x0ff,
|
556 |
|
|
((m_addr<63)?m_otp[m_addr+2]:0)&0x0ff,
|
557 |
|
|
((m_addr<62)?m_otp[m_addr+3]:0)&0x0ff);
|
558 |
|
|
if (m_debug) printf("READOTP, Array is %s, m_otp[64] = %d\n",
|
559 |
|
|
(m_otp_wp)?"Locked":"Unlocked",
|
560 |
|
|
m_otp[64]);
|
561 |
|
|
QOREG(m_otp[m_addr]);
|
562 |
|
|
} else if (m_count < 40) {
|
563 |
|
|
} // else if (m_count == 40)
|
564 |
|
|
else if ((m_count&7)==0) {
|
565 |
|
|
if (m_debug) printf("READOTP, ADDR = %08x\n", m_addr);
|
566 |
|
|
if (m_addr < 65)
|
567 |
|
|
QOREG(m_otp[m_addr]);
|
568 |
|
|
else
|
569 |
|
|
QOREG(0);
|
570 |
|
|
if (m_debug) printf("EQSPI: READING OTP, %02x%s\n",
|
571 |
|
|
(m_addr<65)?m_otp[m_addr]&0x0ff:0xfff,
|
572 |
|
|
(m_addr > 65)?"-- PAST OTP LENGTH!":"");
|
573 |
|
|
m_addr++;
|
574 |
|
|
}
|
575 |
|
|
break;
|
576 |
|
|
case EQSPIF_RDID:
|
577 |
|
|
if ((m_count&7)==0) {
|
578 |
|
|
m_addr++;
|
579 |
|
|
if (m_debug) printf("READID, ADDR = %08x\n", m_addr);
|
580 |
|
|
if (m_addr < sizeof(IDSTR))
|
581 |
|
|
QOREG(IDSTR[m_addr]);
|
582 |
|
|
else
|
583 |
|
|
QOREG(0);
|
584 |
|
|
if (m_debug) printf("EQSPI: READING ID, %02x%s\n",
|
585 |
|
|
IDSTR[m_addr]&0x0ff,
|
586 |
|
|
(m_addr >= sizeof(IDSTR))?"-- PAST ID LENGTH!":"");
|
587 |
|
|
}
|
588 |
|
|
break;
|
589 |
|
|
case EQSPIF_RDSR:
|
590 |
|
|
// printf("Read SREG = %02x, wait = %08x\n", m_sreg,
|
591 |
|
|
// m_write_count);
|
592 |
|
|
QOREG(m_sreg);
|
593 |
|
|
break;
|
594 |
|
|
case EQSPIF_RDCR:
|
595 |
|
|
if (m_debug) printf("Read CREG = %02x\n", m_creg);
|
596 |
|
|
QOREG(m_creg);
|
597 |
|
|
break;
|
598 |
|
|
case EQSPIF_FAST_READ:
|
599 |
|
|
if (m_count < 32) {
|
600 |
|
|
if (m_debug) printf("FAST READ, WAITING FOR FULL COMMAND (count = %d)\n", m_count);
|
601 |
|
|
QOREG(0x0c3);
|
602 |
|
|
} else if (m_count == 32) {
|
603 |
|
|
m_addr = m_ireg & 0x0ffffff;
|
604 |
|
|
if (m_debug) printf("FAST READ, ADDR = %08x\n", m_addr);
|
605 |
|
|
QOREG(0x0c3);
|
606 |
|
|
assert((m_addr & 0xf000003)==0);
|
607 |
|
|
} else if ((m_count >= 40)&&(0 == (m_sreg&0x01))) {
|
608 |
|
|
if (m_count == 40)
|
609 |
|
|
printf("DUMMY BYTE COMPLETE ...\n");
|
610 |
|
|
QOREG(m_mem[m_addr++]);
|
611 |
|
|
if (m_debug) printf("SPIF[%08x] = %02x -> %02x\n", m_addr-1, m_mem[m_addr-1]&0x0ff, m_oreg);
|
612 |
|
|
} else if (0 != (m_sreg&0x01)) {
|
613 |
|
|
m_oreg = 0;
|
614 |
|
|
if (m_debug) printf("CANNOT READ WHEN WRITE IN PROGRESS, m_sreg = %02x\n", m_sreg);
|
615 |
|
|
} else printf("How did I get here, m_count = %d\n", m_count);
|
616 |
|
|
break;
|
617 |
|
|
case EQSPIF_QUAD_READ_CMD:
|
618 |
|
|
// The command to go into quad read mode took 8 bits
|
619 |
|
|
// that changes the timings, else we'd use quad_Read
|
620 |
|
|
// below
|
621 |
|
|
if (m_count == 32) {
|
622 |
|
|
m_addr = m_ireg & 0x0ffffff;
|
623 |
|
|
// printf("FAST READ, ADDR = %08x\n", m_addr);
|
624 |
|
|
printf("EQSPI: QUAD READ, ADDR = %06x (%02x:%02x:%02x:%02x)\n", m_addr,
|
625 |
|
|
(m_addr<0x1000000)?(m_mem[m_addr]&0x0ff):0,
|
626 |
|
|
(m_addr<0x0ffffff)?(m_mem[m_addr+1]&0x0ff):0,
|
627 |
|
|
(m_addr<0x0fffffe)?(m_mem[m_addr+2]&0x0ff):0,
|
628 |
|
|
(m_addr<0x0fffffd)?(m_mem[m_addr+3]&0x0ff):0);
|
629 |
|
|
assert((m_addr & (~(MEMBYTES-1)))==0);
|
630 |
|
|
} else if (m_count == 32+8) {
|
631 |
|
|
QOREG(m_mem[m_addr++]);
|
632 |
|
|
m_quad_mode = true;
|
633 |
|
|
m_mode_byte = (m_ireg & 0x080);
|
634 |
|
|
printf("EQSPI: (QUAD) MODE BYTE = %02x\n", m_mode_byte);
|
635 |
|
|
} else if ((m_count > 32+8)&&(0 == (m_sreg&0x01))) {
|
636 |
|
|
QOREG(m_mem[m_addr++]);
|
637 |
|
|
// printf("EQSPIF[%08x]/QR = %02x\n",
|
638 |
|
|
// m_addr-1, m_oreg);
|
639 |
|
|
} else {
|
640 |
|
|
printf("ERR: EQSPIF--TRYING TO READ WHILE BUSY! (count = %d)\n", m_count);
|
641 |
|
|
m_oreg = 0;
|
642 |
|
|
}
|
643 |
|
|
break;
|
644 |
|
|
case EQSPIF_QUAD_READ:
|
645 |
|
|
if (m_count == 24+8*4) {// Requires 8 QUAD clocks
|
646 |
|
|
m_mode_byte = (m_ireg>>24) & 0x10;
|
647 |
|
|
printf("EQSPI/QR: MODE BYTE = %02x\n", m_mode_byte);
|
648 |
|
|
QOREG(m_mem[m_addr++]);
|
649 |
|
|
} else if ((m_count >= 64)&&(0 == (m_sreg&0x01))) {
|
650 |
|
|
QOREG(m_mem[m_addr++]);
|
651 |
|
|
printf("EQSPIF[%08x]/QR = %02x\n", m_addr-1, m_oreg & 0x0ff);
|
652 |
|
|
} else {
|
653 |
|
|
m_oreg = 0;
|
654 |
|
|
printf("EQSPI/QR ... m_count = %d\n", m_count);
|
655 |
|
|
}
|
656 |
|
|
break;
|
657 |
|
|
case EQSPIF_PP:
|
658 |
|
|
if (m_count == 32) {
|
659 |
|
|
m_addr = m_ireg & 0x0ffffff;
|
660 |
|
|
if (m_debug) printf("EQSPI: PAGE-PROGRAM ADDR = %06x\n", m_addr);
|
661 |
|
|
assert((m_addr & 0xfc00000)==0);
|
662 |
|
|
// m_page = m_addr >> 8;
|
663 |
|
|
for(int i=0; i<256; i++)
|
664 |
|
|
m_pmem[i] = 0x0ff;
|
665 |
|
|
} else if (m_count >= 40) {
|
666 |
|
|
m_pmem[m_addr & 0x0ff] = m_ireg & 0x0ff;
|
667 |
|
|
// printf("EQSPI: PMEM[%02x] = 0x%02x -> %02x\n", m_addr & 0x0ff, m_ireg & 0x0ff, (m_pmem[(m_addr & 0x0ff)]&0x0ff));
|
668 |
|
|
m_addr = (m_addr & (~0x0ff)) | ((m_addr+1)&0x0ff);
|
669 |
|
|
} break;
|
670 |
|
|
case EQSPIF_QPP:
|
671 |
|
|
if (m_count == 32) {
|
672 |
|
|
m_addr = m_ireg & 0x0ffffff;
|
673 |
|
|
m_quad_mode = true;
|
674 |
|
|
if (m_debug) printf("EQSPI/QR: PAGE-PROGRAM ADDR = %06x\n", m_addr);
|
675 |
|
|
assert((m_addr & 0xfc00000)==0);
|
676 |
|
|
// m_page = m_addr >> 8;
|
677 |
|
|
for(int i=0; i<256; i++)
|
678 |
|
|
m_pmem[i] = 0x0ff;
|
679 |
|
|
} else if (m_count >= 40) {
|
680 |
|
|
m_pmem[m_addr & 0x0ff] = m_ireg & 0x0ff;
|
681 |
|
|
// printf("EQSPI/QR: PMEM[%02x] = 0x%02x -> %02x\n", m_addr & 0x0ff, m_ireg & 0x0ff, (m_pmem[(m_addr & 0x0ff)]&0x0ff));
|
682 |
|
|
m_addr = (m_addr & (~0x0ff)) | ((m_addr+1)&0x0ff);
|
683 |
|
|
} break;
|
684 |
|
|
case EQSPIF_SUBSECTOR_ERASE:
|
685 |
|
|
if (m_count == 32) {
|
686 |
|
|
m_addr = m_ireg & 0x0fff000;
|
687 |
|
|
if (m_debug) printf("SUBSECTOR_ERASE ADDRESS = %08x\n", m_addr);
|
688 |
|
|
assert((m_addr & 0xff000000)==0);
|
689 |
|
|
} break;
|
690 |
|
|
case EQSPIF_SECTOR_ERASE:
|
691 |
|
|
if (m_count == 32) {
|
692 |
|
|
m_addr = m_ireg & 0x0ff0000;
|
693 |
|
|
if (m_debug) printf("SECTOR_ERASE ADDRESS = %08x\n", m_addr);
|
694 |
|
|
assert((m_addr & 0xf000000)==0);
|
695 |
|
|
} break;
|
696 |
|
|
case EQSPIF_PROGRAM_OTP:
|
697 |
|
|
if (m_count == 32) {
|
698 |
|
|
m_addr = m_ireg & 0x0ff;
|
699 |
|
|
for(int i=0; i<65; i++)
|
700 |
|
|
m_pmem[i] = 0x0ff;
|
701 |
|
|
} else if ((m_count >= 40)&&(m_addr < 65)) {
|
702 |
|
|
m_pmem[m_addr++] = m_ireg & 0x0ff;
|
703 |
|
|
} break;
|
704 |
|
|
/*
|
705 |
|
|
case EQSPIF_RELEASE:
|
706 |
|
|
if (m_count >= 32) {
|
707 |
|
|
QOREG(DEVESD);
|
708 |
|
|
} break;
|
709 |
|
|
*/
|
710 |
|
|
default:
|
711 |
|
|
printf("EQSPI ... DEFAULT OP???\n");
|
712 |
|
|
QOREG(0xff);
|
713 |
|
|
break;
|
714 |
|
|
}
|
715 |
|
|
} // else printf("SFLASH->count = %d\n", m_count);
|
716 |
|
|
|
717 |
|
|
m_last_sck = sck;
|
718 |
|
|
int out = m_nxtout[3];
|
719 |
|
|
m_nxtout[3] = m_nxtout[2];
|
720 |
|
|
m_nxtout[2] = m_nxtout[1];
|
721 |
|
|
m_nxtout[1] = m_nxtout[0];
|
722 |
|
|
if (m_quad_mode)
|
723 |
|
|
m_nxtout[0] = (m_oreg>>8)&0x0f;
|
724 |
|
|
else
|
725 |
|
|
m_nxtout[0] = (m_oreg & 0x0100)?2:0;
|
726 |
|
|
return out;
|
727 |
|
|
}
|
728 |
|
|
|