OpenCores
URL https://opencores.org/ocsvn/raytrac/raytrac/trunk

Subversion Repositories raytrac

[/] [raytrac/] [branches/] [fp_sgdma/] [deprecated/] [fadd32.vhd] - Blame information for rev 119

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 118 jguarin200
------------------------------------------------
2 119 jguarin200
--! @file fadd32.vhd
3 118 jguarin200
--! @brief RayTrac Floating Point Adder  
4
--! @author Julián Andrés Guarín Reyes
5
--------------------------------------------------
6
 
7
 
8
-- RAYTRAC (FP BRANCH)
9
-- Author Julian Andres Guarin
10 119 jguarin200
-- fadd32.vhd
11 118 jguarin200
-- This file is part of raytrac.
12
-- 
13
--     raytrac is free software: you can redistribute it and/or modify
14
--     it under the terms of the GNU General Public License as published by
15
--     the Free Software Foundation, either version 3 of the License, or
16
--     (at your option) any later version.
17
-- 
18
--     raytrac is distributed in the hope that it will be useful,
19
--     but WITHOUT ANY WARRANTY; without even the implied warranty of
20
--     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21
--     GNU General Public License for more details.
22
-- 
23
--     You should have received a copy of the GNU General Public License
24
--     along with raytrac.  If not, see <http://www.gnu.org/licenses/>
25
 
26
library ieee;
27
use ieee.std_logic_1164.all;
28
use ieee.std_logic_unsigned.all;
29
use ieee.std_logic_arith.all;
30 119 jguarin200
library lpm;
31
use lpm.all;
32 118 jguarin200
 
33
--! Esta entidad recibe dos n&uacutemeros en formato punto flotante IEEE 754, de precision simple y devuelve las mantissas signadas y corridas, y el exponente correspondiente al resultado antes de normalizarlo al formato float. 
34
--!\nLas 2 mantissas y el exponente entran despues a la entidad add2 que suma las mantissas y entrega el resultado en formato IEEE 754.
35 119 jguarin200
entity fadd32 is
36 118 jguarin200
        port (
37
                clk,dpc         : in std_logic;
38
                a32,b32         : in std_logic_vector (31 downto 0);
39
                c32                     : out std_logic_vector(31 downto 0)
40
        );
41 119 jguarin200
end fadd32;
42 118 jguarin200
 
43 119 jguarin200
architecture fadd32_arch of fadd32 is
44 118 jguarin200
 
45
        component lpm_mult
46
        generic (
47
                lpm_hint                        : string;
48
                lpm_representation      : string;
49
                lpm_type                        : string;
50
                lpm_widtha                      : natural;
51
                lpm_widthb                      : natural;
52
                lpm_widthp                      : natural
53
        );
54
        port (
55
                dataa   : in std_logic_vector ( lpm_widtha-1 downto 0 );
56
                datab   : in std_logic_vector ( lpm_widthb-1 downto 0 );
57
                result  : out std_logic_vector( lpm_widthp-1 downto 0 )
58
        );
59
        end component;
60
 
61 119 jguarin200
        signal s1zero                                                                                                                                           : std_logic;
62
        signal s1delta                                                                                                                                          : std_logic_vector(5 downto 0);
63
        signal s0delta,s1exp,s2exp,s3exp,s4exp,s5exp,s6exp,s5factor,s6factor,s7exp,s7factor     : std_logic_vector(7 downto 0);
64
        signal s1shifter,s5factorhot9,s6factorhot9                                                                                      : std_logic_vector(8 downto 0);
65
        signal s1pl,s6pl                                                                                                                                        : std_logic_vector(17 downto 0);
66
        signal s6postshift,s7postshift                                                                                                          : std_logic_vector(22 downto 0);
67
        signal s1umantshift,s1umantfixed,s1postshift,s1xorslab,s2xorslab                                        : std_logic_vector(23 downto 0);
68
        signal s2umantshift,s2mantfixed,s3mantfixed,s3mantshift,s4xorslab                                       : std_logic_vector(24 downto 0);
69
        signal s5factorhot25                                                                                                                            : std_logic_vector(24 downto 0);
70
        signal s4sresult,s5result,s6result,s7result                                                                                     : std_logic_vector(25 downto 0); -- Signed mantissa result
71
        signal s1ph,s6ph                                                                                                                                        : std_logic_vector(26 downto 0);
72
        signal s0a,s0b                                                                                                                                          : std_logic_vector(31 downto 0); -- Float 32 bit 
73 118 jguarin200
 
74
begin
75
 
76
        process (clk)
77
        begin
78
                if clk'event and clk='1' then
79
 
80
                        --!Registro de entrada
81
                        s0a <= a32;
82
                        s0b(31) <= dpc xor b32(31);     --! Importante: Integrar el signo en el operando B
83
                        s0b(30 downto 0) <= b32(30 downto 0);
84
 
85
                        --!Etapa 0,Escoger el mayor exponente que sera el resultado desnormalizado, calcula cuanto debe ser el corrimiento de la mantissa con menor exponente y reorganiza los operandos, si el mayor es b, intercambia las posici&oacute;n si el mayor es a las posiciones la mantiene. Zero check.
86
                        --!signo,exponente,mantissa
87
                        if (s0b(30 downto 23)&s0a(30 downto 23))=x"0000" then
88
                                s1zero <= '0';
89
                        else
90
                                s1zero <= '1';
91
                        end if;
92 119 jguarin200
                        s1delta <= s0delta(7) & (s0delta(7) xor s0delta(4))&(s0delta(7) xor s0delta(3)) & s0delta(2 downto 0);
93 118 jguarin200
                        case s0delta(7) is
94
                                when '1'  =>
95
                                        s1exp <= s0b(30 downto 23);
96
                                        s1umantshift <= s0a(31)&s0a(22 downto 0);
97
                                        s1umantfixed <= s0b(31)&s0b(22 downto 0);
98
                                when others =>
99
                                        s1exp <= s0a(30 downto 23);
100
                                        s1umantshift <= s0b(31)&s0b(22 downto 0);
101
                                        s1umantfixed <= s0a(31)&s0a(22 downto 0);
102
                        end case;
103
 
104
                        --! Etapa 1: Denormalizaci&oacute;n de la mantissas.  
105
                        case s1delta(4 downto 3) is
106
                                when "00" =>    s2umantshift <= s1umantshift(23)&s1postshift(23 downto 0);
107
                                when "01" =>    s2umantshift <= s1umantshift(23)&x"00"&s1postshift(23 downto 8);
108
                                when "10" =>    s2umantshift <= s1umantshift(23)&x"0000"&s1postshift(23 downto 16);
109
                                when others =>  s2umantshift <= (others => '0');
110
                        end case;
111
                        s2mantfixed <= s1umantfixed(23) &         ( ( ('1'&s1umantfixed(22 downto 0)) xor s1xorslab)   + ( x"00000"&"000"&s1umantfixed(23)  )   );
112
                        s2exp  <= s1exp;
113
 
114
                        --! Etapa2: Signar la mantissa denormalizada.
115
                        s3mantfixed <= s2mantfixed;
116
                        s3mantshift <= s2umantshift(24)&         (  (      s2umantshift(23 downto 0)  xor s2xorslab)   + ( x"00000"&"000"&s2umantshift(24)  )   );
117
                        s3exp           <= s2exp;
118
 
119 119 jguarin200
                        --! Etapa 3: Etapa 3 Realizar la suma, entre la mantissa corrida y la fija.
120 118 jguarin200
                        s4sresult       <= (s3mantshift(24)&s3mantshift)+(s3mantfixed(24)&s3mantfixed);
121
                        s4exp           <= s3exp;
122
 
123
                        --! Etapa 4: Quitar el signo a la mantissa resultante.
124
                        s5result        <= s4sresult(25)&((s4sresult(24 downto 0) xor s4xorslab)  +(x"000000"&s4sresult(25)));
125
                        s5exp           <= s4exp;
126
 
127
 
128
                        --! Etapa 5: Codificar el corrimiento para la normalizacion de la mantissa resultante.
129 119 jguarin200
                        s6result                <= s5result;
130
                        s6exp                   <= s5exp;
131 118 jguarin200
                        s6factor                <= s5factor;
132 119 jguarin200
                        s6factorhot9    <= s5factorhot9;
133 118 jguarin200
 
134 119 jguarin200
                        --! Etapa 6: Ejecutar el corrimiento de la mantissa.
135
                        s7result                <= s6result;
136
                        s7exp                   <= s6exp;
137
                        s7factor                <= s6factor+x"ff";
138
                        s7postshift             <= s6postshift;
139
 
140
                        --! Etapa 7: Entregar el resultado.
141
                        c32(31)                         <= s7result(25);
142
                        c32(30 downto 23)       <= s7exp+s7factor;
143
                        case s7factor(4 downto 3) is
144
                                when "01"       => c32(22 downto 0) <= s7postshift(14 downto 00)&x"00";
145
                                when "10"       => c32(22 downto 0) <= s7postshift(06 downto 00)&x"0000";
146
                                when others => c32(22 downto 0)  <= s7postshift;
147 118 jguarin200
                        end case;
148
                end if;
149
        end process;
150
        --! Combinatorial gremlin, Etapa 0 el corrimiento de la mantissa con menor exponente y reorganiza los operandos,\n
151
        --! si el mayor es b, intercambia las posici&oacute;n si el mayor es a las posiciones la mantiene. 
152
        s0delta <=  s0a(30 downto 23)-s0b(30 downto 23);
153
        --! Combinatorial Gremlin, Etapa 1 Codificar el factor de corrimiento de denormalizacion y denormalizar la mantissa no fija. Signar la mantissa que se queda fija.
154
        decodeshiftfactor:
155
        process (s1delta(2 downto 0))
156
        begin
157
                case s1delta(2 downto 0) is
158
                        when "111" =>  s1shifter(8 downto 0) <= '0'&s1delta(5)&"00000"&not(s1delta(5))&'0';
159
                        when "110" =>  s1shifter(8 downto 0) <= "00"&s1delta(5)&"000"&not(s1delta(5))&"00";
160
                        when "101" =>  s1shifter(8 downto 0) <= "000"&s1delta(5)&'0'&not(s1delta(5))&"000";
161
                        when "100" =>  s1shifter(8 downto 0) <= '0'&x"10";
162
                        when "011" =>  s1shifter(8 downto 0) <= "000"&not(s1delta(5))&'0'&s1delta(5)&"000";
163
                        when "010" =>  s1shifter(8 downto 0) <= "00"&not(s1delta(5))&"000"&s1delta(5)&"00";
164
                        when "001" =>  s1shifter(8 downto 0) <= '0'&not(s1delta(5))&"00000"&s1delta(5)&'0';
165
                        when others => s1shifter(8 downto 0) <=    not(s1delta(5))&"0000000"&s1delta(5);
166
                end case;
167
        end process;
168
        denormhighshiftermult:lpm_mult
169
        generic map ("DEDICATED_MULTIPLIER_CIRCUITRY=YES,MAXIMIZE_SPEED=9","UNSIGNED","LPM_MULT",9,18,27)
170
        port    map (s1shifter,s1zero&s1umantshift(22 downto 06),s1ph);
171
        denormlowshiftermult:lpm_mult
172
        generic map ("DEDICATED_MULTIPLIER_CIRCUITRY=YES,MAXIMIZE_SPEED=9","UNSIGNED","LPM_MULT",9,9,18)
173
        port    map (s1shifter,s1umantshift(5 downto 0)&"000",s1pl);
174
 
175
        s1postshift(23 downto 7) <= s1ph(25 downto 9);
176
        s1postshift(06 downto 0) <= s1ph(08 downto 2) or s1pl(17 downto 11);
177
        s1xorslab(23 downto 0) <= (others => s1umantfixed(23));
178
 
179
        --! Combinatorial Gremlin, Etapa 2: Signar la mantissa denormalizada. 
180
        s2xorslab <= (others => s2umantshift(24));
181
 
182
        --! Combinatorial Gremlin, Etapa 4: Quitar el signo de la mantissa resultante.
183
        s4xorslab <= (others => s4sresult(25));
184
 
185
        --! Combinatorial Gremlin, Etapa 5: Codificar el factor de normalizacion de la mantissa resultante.
186
        normalizerdecodeshift:
187
        process (s5result,s5factorhot25)
188
        begin
189 119 jguarin200
                s5factor <= x"00";
190
                s5factorhot25 <= '0'&x"000000";
191 118 jguarin200
                for i in 24 downto 0 loop
192
                        if s5result(i)='1' then
193
                                s5factor <= conv_std_logic_vector(24-i,8);
194
                                s5factorhot25(24-i) <= '1';
195
                                exit;
196
                        end if;
197
                end loop;
198
                s5factorhot9 <= (s5factorhot25(8 downto 1)or s5factorhot25(16 downto 9)or s5factorhot25(24 downto 17)) & s5factorhot25(0);
199
        end process;
200 119 jguarin200
 
201
        --! Etapa 6: Ejecutar el corrimiento para normalizar la mantissa.
202 118 jguarin200
        normhighshiftermult:lpm_mult
203
        generic map ("DEDICATED_MULTIPLIER_CIRCUITRY=YES,MAXIMIZE_SPEED=9","UNSIGNED","LPM_MULT",9,18,27)
204 119 jguarin200
        port    map (s6factorhot9,s6result(24 downto 7),s6ph);
205 118 jguarin200
        normlowshiftermult:lpm_mult
206
        generic map ("DEDICATED_MULTIPLIER_CIRCUITRY=YES,MAXIMIZE_SPEED=9","UNSIGNED","LPM_MULT",9,9,18)
207 119 jguarin200
        port    map (s6factorhot9,s6result(06 downto 0)&"00",s6pl);
208
        s6postshift(22 downto 15) <= s6ph(16 downto 09);
209
        s6postshift(14 downto 06) <= s6ph(08 downto 00); --! Activar este pedazo si se requiere extrema precision            or s5pl(17 downto 9);
210
        s6postshift(05 downto 00) <= s6pl(08 downto 03);
211 118 jguarin200
 
212
 
213
 
214
 
215
 
216 119 jguarin200
end fadd32_arch;
217 118 jguarin200
 
218
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.