1 |
19 |
robfinch |
// ============================================================================
|
2 |
|
|
// __
|
3 |
|
|
// \\__/ o\ (C) 2015-2022 Robert Finch, Waterloo
|
4 |
|
|
// \ __ / All rights reserved.
|
5 |
|
|
// \/_// robfinch@finitron.ca
|
6 |
|
|
// ||
|
7 |
|
|
//
|
8 |
|
|
//
|
9 |
|
|
// BSD 3-Clause License
|
10 |
|
|
// Redistribution and use in source and binary forms, with or without
|
11 |
|
|
// modification, are permitted provided that the following conditions are met:
|
12 |
|
|
//
|
13 |
|
|
// 1. Redistributions of source code must retain the above copyright notice, this
|
14 |
|
|
// list of conditions and the following disclaimer.
|
15 |
|
|
//
|
16 |
|
|
// 2. Redistributions in binary form must reproduce the above copyright notice,
|
17 |
|
|
// this list of conditions and the following disclaimer in the documentation
|
18 |
|
|
// and/or other materials provided with the distribution.
|
19 |
|
|
//
|
20 |
|
|
// 3. Neither the name of the copyright holder nor the names of its
|
21 |
|
|
// contributors may be used to endorse or promote products derived from
|
22 |
|
|
// this software without specific prior written permission.
|
23 |
|
|
//
|
24 |
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
25 |
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
26 |
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
27 |
|
|
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
28 |
|
|
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
29 |
|
|
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
30 |
|
|
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
31 |
|
|
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
32 |
|
|
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
33 |
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
34 |
|
|
//
|
35 |
|
|
// ============================================================================
|
36 |
|
|
//
|
37 |
|
|
// Compute the graphics address
|
38 |
|
|
//
|
39 |
|
|
import gfx_pkg::*;
|
40 |
|
|
|
41 |
|
|
module gfx_calc_address(clk, base_address_i, color_depth_i, bmp_width_i, x_coord_i, y_coord_i,
|
42 |
|
|
address_o, mb_o, me_o, ce_o);
|
43 |
|
|
parameter SW = 96; // strip width in bits
|
44 |
|
|
parameter BN = 6;
|
45 |
|
|
input clk;
|
46 |
|
|
input [31:0] base_address_i;
|
47 |
|
|
input [3:0] color_depth_i;
|
48 |
|
|
input [15:0] bmp_width_i; // pixel per line
|
49 |
|
|
input [15:0] x_coord_i;
|
50 |
|
|
input [15:0] y_coord_i;
|
51 |
|
|
output [31:0] address_o;
|
52 |
|
|
output [BN:0] mb_o; // mask begin
|
53 |
|
|
output [BN:0] me_o; // mask end
|
54 |
|
|
output [BN:0] ce_o; // color bits end
|
55 |
|
|
|
56 |
|
|
// This coefficient is a fixed point fraction representing the inverse of the
|
57 |
|
|
// number of pixels per strip. The inverse (reciprocal) is used for a high
|
58 |
|
|
// speed divide operation.
|
59 |
|
|
reg [15:0] coeff;
|
60 |
|
|
always @(color_depth_i)
|
61 |
|
|
case(color_depth_i)
|
62 |
|
|
BPP6: coeff = 65536*6/SW;
|
63 |
|
|
BPP8: coeff = 65536*8/SW;
|
64 |
|
|
BPP12: coeff = 65536*12/SW;
|
65 |
|
|
BPP16: coeff = 65536*16/SW;
|
66 |
|
|
BPP18: coeff = 65536*18/SW;
|
67 |
|
|
BPP21: coeff = 65536*21/SW;
|
68 |
|
|
BPP24: coeff = 65536*24/SW;
|
69 |
|
|
BPP27: coeff = 65536*27/SW;
|
70 |
|
|
BPP32: coeff = 65536*32/SW;
|
71 |
|
|
BPP33: coeff = 65536*33/SW;
|
72 |
|
|
default: coeff = 65536*16/SW;
|
73 |
|
|
endcase
|
74 |
|
|
|
75 |
|
|
// Bits per pixel minus one.
|
76 |
|
|
reg [5:0] bpp;
|
77 |
|
|
always @(color_depth_i)
|
78 |
|
|
case(color_depth_i)
|
79 |
|
|
BPP6: bpp = 5;
|
80 |
|
|
BPP8: bpp = 7;
|
81 |
|
|
BPP12: bpp = 11;
|
82 |
|
|
BPP16: bpp = 15;
|
83 |
|
|
BPP18: bpp = 17;
|
84 |
|
|
BPP21: bpp = 20;
|
85 |
|
|
BPP24: bpp = 23;
|
86 |
|
|
BPP27: bpp = 26;
|
87 |
|
|
BPP32: bpp = 31;
|
88 |
|
|
BPP33: bpp = 32;
|
89 |
|
|
default: bpp = 15;
|
90 |
|
|
endcase
|
91 |
|
|
|
92 |
|
|
// Color bits per pixel minus one.
|
93 |
|
|
reg [5:0] cbpp;
|
94 |
|
|
always @(color_depth_i)
|
95 |
|
|
case(color_depth_i)
|
96 |
|
|
BPP6: cbpp = 2;
|
97 |
|
|
BPP8: cbpp = 4;
|
98 |
|
|
BPP12: cbpp = 8;
|
99 |
|
|
BPP16: cbpp = 11;
|
100 |
|
|
BPP18: cbpp = 14;
|
101 |
|
|
BPP21: cbpp = 17;
|
102 |
|
|
BPP24: cbpp = 20;
|
103 |
|
|
BPP27: cbpp = 23;
|
104 |
|
|
BPP32: cbpp = 26;
|
105 |
|
|
BPP33: cbpp = 29;
|
106 |
|
|
default: cbpp = 11;
|
107 |
|
|
endcase
|
108 |
|
|
|
109 |
|
|
// This coefficient is the number of bits used by all pixels in the strip.
|
110 |
|
|
// Used to determine pixel placement in the strip.
|
111 |
|
|
reg [7:0] coeff2;
|
112 |
|
|
always @(color_depth_i)
|
113 |
|
|
case(color_depth_i)
|
114 |
|
|
BPP6: coeff2 = SW-(SW % 6);
|
115 |
|
|
BPP8: coeff2 = SW-(SW % 8);
|
116 |
|
|
BPP12: coeff2 = SW-(SW % 12);
|
117 |
|
|
BPP16: coeff2 = SW-(SW % 16);
|
118 |
|
|
BPP18: coeff2 = SW-(SW % 18);
|
119 |
|
|
BPP21: coeff2 = SW-(SW % 21);
|
120 |
|
|
BPP24: coeff2 = SW-(SW % 24);
|
121 |
|
|
BPP27: coeff2 = SW-(SW % 27);
|
122 |
|
|
BPP32: coeff2 = SW-(SW % 32);
|
123 |
|
|
BPP33: coeff2 = SW-(SW % 33);
|
124 |
|
|
default: coeff2 = SW-(SW % 16);
|
125 |
|
|
endcase
|
126 |
|
|
|
127 |
|
|
// Compute the fixed point horizonal strip number value. This has 16 binary
|
128 |
|
|
// point places.
|
129 |
|
|
wire [31:0] strip_num65k = x_coord_i * coeff;
|
130 |
|
|
// Truncate off the binary fraction to get the strip number. The strip
|
131 |
|
|
// number will be used to form part of the address.
|
132 |
|
|
wire [17:0] strip_num = strip_num65k[31:16];
|
133 |
|
|
// Calculate pixel position within strip using the fractional part of the
|
134 |
|
|
// horizontal strip number.
|
135 |
|
|
wire [15:0] strip_fract = strip_num65k[15:0]+16'h7F; // +7F to round
|
136 |
|
|
// Pixel beginning bit is ratio of pixel # into all bits used by pixels
|
137 |
|
|
wire [15:0] ndx = strip_fract[15:7] * coeff2;
|
138 |
|
|
assign mb_o = ndx[15:9]; // Get whole pixel position (discard fraction)
|
139 |
|
|
assign me_o = mb_o + bpp; // Set high order position for mask
|
140 |
|
|
assign ce_o = mb_o + cbpp;
|
141 |
|
|
// num_strips is essentially a constant value unless the screen resolution changes.
|
142 |
|
|
// Gain performance here by regstering the multiply so that there aren't two
|
143 |
|
|
// cascaded multiplies when calculating the offset.
|
144 |
|
|
reg [31:0] num_strips65k;
|
145 |
|
|
always @(posedge clk)
|
146 |
|
|
num_strips65k <= bmp_width_i * coeff;
|
147 |
|
|
wire [15:0] num_strips = num_strips65k[31:16];
|
148 |
|
|
|
149 |
|
|
wire [31:0] offset = {(({4'b0,num_strips} * y_coord_i) + strip_num),4'h0};
|
150 |
|
|
|
151 |
|
|
assign address_o = base_address_i + offset;
|
152 |
|
|
|
153 |
|
|
endmodule
|