1 |
8 |
jclaytons |
//-------------------------------------------------------------------------------------
|
2 |
|
|
//
|
3 |
|
|
// Author: John Clayton
|
4 |
|
|
// Date : June 25, 2001
|
5 |
|
|
// Update: 6/25/01 copied this file from ps2_mouse.v (pared down).
|
6 |
|
|
// Update: 6/07/01 Finished initial coding efforts.
|
7 |
|
|
// Update: 7/19/01 First compilation. Added master_br_o and master_bg_i;
|
8 |
|
|
// Update: 7/25/01 Testing. Eliminated msg_active signal. Changed serial.v
|
9 |
|
|
// to reflect new handshaking (i.e. "load_request" is now a
|
10 |
|
|
// periodic pulse of tx_clk_1x from rs232_tx...)
|
11 |
|
|
// Update: 7/30/01 Began coding m2 state machine. Defined response codes.
|
12 |
|
|
// Update: 8/01/01 After some testing with m2, merged m2 into m1. Eliminated
|
13 |
|
|
// response codes.
|
14 |
|
|
// Update: 8/02/01 Tested & measured the single "combined" state machine's
|
15 |
|
|
// performance, and "it was found wanting." (The 49.152MHz
|
16 |
|
|
// clock frequency was too fast for it...) Created clk_s
|
17 |
|
|
// at 49.152/2 MHz, and this worked.
|
18 |
|
|
// Update: 8/03/01 Added counter loop to "execute" and "bus_granted" states
|
19 |
|
|
// so that multiple bus cycles are generated, at sequential
|
20 |
|
|
// addresses. However, the qty field is not cleared before
|
21 |
|
|
// being loaded with new characters, which causes problems.
|
22 |
|
|
// Update: 8/07/01 Finished debugging. The read print formatting is now
|
23 |
|
|
// correct, and the unit appears to operate correctly.
|
24 |
|
|
// Many hours were spent puzzling over how to make this work.
|
25 |
|
|
// Removed port "debug".
|
26 |
|
|
// Update: 8/24/01 Added "master_stb_i" and "master_we_i" inputs and logic.
|
27 |
|
|
// Update: 12/13/01 For memory_sizer.v, I lowered the frequency of clk_s down
|
28 |
|
|
// to 49.152/4 MHz, so I changed the CLOCK_FACTOR from 8 to 4
|
29 |
|
|
// on the rs232 transciever, and this worked fine.
|
30 |
|
|
// Update: 9/09/02 Incorporated the "autobaud_with_tracking" module so that
|
31 |
|
|
// the serial clock is generated automatically, no matter
|
32 |
|
|
// what frequency clk_i is used. The user simply needs to
|
33 |
|
|
// press "enter" from the terminal program to synchronize
|
34 |
|
|
// the baud rate generator. Changing BAUD rates on the fly
|
35 |
|
|
// is also permitted, simply change to a new BAUD rate in the
|
36 |
|
|
// terminal program and hit enter.
|
37 |
|
|
// Update:11/26/02 Changed the string constants to binary representation
|
38 |
|
|
// (Just to eliminate warnings in XST.)
|
39 |
|
|
//
|
40 |
|
|
//
|
41 |
|
|
//
|
42 |
|
|
//
|
43 |
|
|
//
|
44 |
|
|
// Description
|
45 |
|
|
//-------------------------------------------------------------------------------------
|
46 |
|
|
// This is a state-machine driven rs232 serial port interface to a "Wishbone"
|
47 |
|
|
// type of bus. It is intended to be used as a "Wishbone system controller"
|
48 |
|
|
// for debugging purposes. Specifically, the unit allows the user to send
|
49 |
|
|
// text commands to the "rs232_syscon" unit, in order to generate read and
|
50 |
|
|
// write cycles on the Wishbone compatible bus. The command structure is
|
51 |
|
|
// quite terse and spartan in nature, this is for the sake of the logic itself.
|
52 |
|
|
// Because the menu-driven command structure is supported without the use of
|
53 |
|
|
// dedicated memory blocks (in order to maintain cross-platform portability
|
54 |
|
|
// as much as possible) the menus and command responses were kept as small
|
55 |
|
|
// as possible. In most cases, the responses from the unit to the user
|
56 |
|
|
// consist of a "newline" and one or two visible characters. The command
|
57 |
|
|
// structure consists of the following commands and responses:
|
58 |
|
|
//
|
59 |
|
|
// Command Syntax Purpose
|
60 |
|
|
// --------------- ---------------------------------------
|
61 |
|
|
// w aaaa dddd xx Write data "dddd" starting at address "aaaa"
|
62 |
|
|
// perform this "xx" times at sequential addresses.
|
63 |
|
|
// (The quantity field is optional, default is 1).
|
64 |
|
|
// r aaaa xx Read data starting from address "aaaa."
|
65 |
|
|
// Perform this "xx" times at sequential addresses.
|
66 |
|
|
// (The quantity field is optional, default is 1).
|
67 |
|
|
// i Send a reset pulse to the system. (initialize).
|
68 |
|
|
//
|
69 |
|
|
// Response from rs232_syscon Meaning
|
70 |
|
|
// -------------------------- ---------------------------------------
|
71 |
|
|
// OK Command received and performed. No errors.
|
72 |
|
|
// ? Command buffer full, without receiving "enter."
|
73 |
|
|
// C? Command not recognized.
|
74 |
|
|
// A? Address field syntax error.
|
75 |
|
|
// D? Data field syntax error.
|
76 |
|
|
// Q? Quantity field syntax error.
|
77 |
|
|
// ! No "ack_i", or else "err_i" received from bus.
|
78 |
|
|
// B! No "bg_i" received from master.
|
79 |
|
|
//
|
80 |
|
|
// NOTES on the operation of this unit:
|
81 |
|
|
//
|
82 |
|
|
// - The unit generates a command prompt which is "-> ".
|
83 |
|
|
// - Capitalization is not important.
|
84 |
|
|
// - Each command is terminated by the "enter" key (0x0d character).
|
85 |
|
|
// Commands are executed as soon as "enter" is received.
|
86 |
|
|
// - Trailing parameters need not be re-entered. Their values will
|
87 |
|
|
// remain the same as their previous settings.
|
88 |
|
|
// - Use of the backspace key is supported, so mistakes can be corrected.
|
89 |
|
|
// - The length of the command line is limited to a fixed number of
|
90 |
|
|
// characters, as configured by parameter.
|
91 |
|
|
// - Fields are separated by white space, including "tab" and/or "space"
|
92 |
|
|
// - All numerical fields are interpreted as hexadecimal numbers.
|
93 |
|
|
// Decimal is not supported.
|
94 |
|
|
// - Numerical field values are retained between commands. If a "r" is issued
|
95 |
|
|
// without any fields following it, the previous values will be used. A
|
96 |
|
|
// set of "quantity" reads will take place at sequential addresses.
|
97 |
|
|
// If a "w" is issued without any fields following it, the previous data
|
98 |
|
|
// value will be written "quantity" times at sequential addresses, starting
|
99 |
|
|
// from the next location beyond where the last command ended.
|
100 |
|
|
// - If the user does not wish to use "ack" functionality, simply tie the
|
101 |
|
|
// "ack_i" input to 1b'1, and then the ! response will never be generated.
|
102 |
|
|
// - The data which is read in by the "r" command is displayed using lines
|
103 |
|
|
// which begin with the address, followed by the data fields. The number
|
104 |
|
|
// of data fields displayed per line (following the address) is adjustable
|
105 |
|
|
// by setting a parameter. No other display format adjustments can be made.
|
106 |
|
|
// - There is currently only a single watchdog timer. It begins to count at
|
107 |
|
|
// the time a user hits "enter" to execute a command. If the bus is granted
|
108 |
|
|
// and the ack is received before the expiration of the timer, then the
|
109 |
|
|
// cycle will complete normally. Therefore, the watchdog timeout value
|
110 |
|
|
// needs to include time for the request and granting of the bus, in
|
111 |
|
|
// addition to the time needed for the actual bus cycle to complete.
|
112 |
|
|
//
|
113 |
|
|
//
|
114 |
|
|
// Currently, there is only a single indicator (stb_o) generated during bus
|
115 |
|
|
// output cycles which are generated from this unit.
|
116 |
|
|
// The user can easily implement decoding logic based upon adr_o and stb_o
|
117 |
|
|
// which would serve as multiple "stb_o" type signals for different cores
|
118 |
|
|
// which would be sharing the same bus.
|
119 |
|
|
//
|
120 |
|
|
// The dat_io bus supported by this module is a tri-state type of bus. The
|
121 |
|
|
// Wishbone spec. allows for this type of bus (see Wishbone spec. pg. 66).
|
122 |
|
|
// However, if separate dat_o and dat_i busses are desired, they can be added
|
123 |
|
|
// to the module without too much trouble. Supposedly the only difference
|
124 |
|
|
// between the two forms of data bus is that one of them avoids using tri-state
|
125 |
|
|
// at the cost of doubling the number of interconnects used to carry data back
|
126 |
|
|
// and forth... Some people say that tri-state should be avoided for use
|
127 |
|
|
// in internal busses in ASICs. Maybe they are right.
|
128 |
|
|
// But in FPGAs tri-state seems to work pretty well, even for internal busses.
|
129 |
|
|
//
|
130 |
|
|
// Parameters are provided to configure the width of the different command
|
131 |
|
|
// fields. To simplify the logic for binary to hexadecimal conversion, these
|
132 |
|
|
// parameters allow adjustment in units of 1 hex digit, not anything smaller.
|
133 |
|
|
// If your bus has 10 bits, for instance, simply set the address width to 3
|
134 |
|
|
// which produces 12 bits, and then just don't use the 2 msbs of address
|
135 |
|
|
// output.
|
136 |
|
|
//
|
137 |
|
|
// No support for the optional Wishbone "retry" (rty_i) input is provided at
|
138 |
|
|
// this time.
|
139 |
|
|
// No support for "tagn_o" bits is provided at this time, although a register
|
140 |
|
|
// might be added external to this module in order to implement to tag bits.
|
141 |
|
|
// No BLOCK or RMW cycles are supported currently, so cyc_o is equivalent to
|
142 |
|
|
// stb_o...
|
143 |
|
|
// The output busses are not tri-stated. The user may add tri-state buffers
|
144 |
|
|
// external to the module, using "stb_o" to enable the buffer outputs.
|
145 |
|
|
//
|
146 |
|
|
//-------------------------------------------------------------------------------------
|
147 |
|
|
|
148 |
|
|
|
149 |
|
|
`define NIBBLE_SIZE 4 // Number of bits in one nibble
|
150 |
|
|
|
151 |
|
|
// The command register has these values
|
152 |
|
|
`define CMD_0 0 // Unused command
|
153 |
|
|
`define CMD_I 1 // Initialize (or reset)
|
154 |
|
|
`define CMD_R 2 // Read
|
155 |
|
|
`define CMD_W 3 // Write
|
156 |
|
|
|
157 |
|
|
module rs232_syscon (
|
158 |
|
|
clk_i,
|
159 |
|
|
reset_i,
|
160 |
|
|
ack_i,
|
161 |
|
|
err_i,
|
162 |
|
|
master_bg_i,
|
163 |
|
|
master_adr_i,
|
164 |
|
|
master_stb_i,
|
165 |
|
|
master_we_i,
|
166 |
|
|
rs232_rxd_i,
|
167 |
|
|
dat_io,
|
168 |
|
|
rst_o,
|
169 |
|
|
master_br_o,
|
170 |
|
|
stb_o,
|
171 |
|
|
cyc_o,
|
172 |
|
|
adr_o,
|
173 |
|
|
we_o,
|
174 |
|
|
rs232_txd_o
|
175 |
|
|
);
|
176 |
|
|
|
177 |
|
|
|
178 |
|
|
// Parameters
|
179 |
|
|
|
180 |
|
|
// The timer value can be from [0 to (2^WATCHDOG_TIMER_BITS_PP)-1] inclusive.
|
181 |
|
|
// RD_FIELDS_PP can be from [0 to (2^RD_FIELD_CTR_BITS_PP)-1] inclusive.
|
182 |
|
|
// Ensure that (2^CHAR_COUNT_BITS_PP) >= CMD_BUFFER_SIZE_PP.
|
183 |
|
|
// The setting of CMD_BUFFER_SIZE_PP should be large enough to hold the
|
184 |
|
|
// largest command, obviously.
|
185 |
|
|
// Ensure that (2^RD_DIGIT_COUNT_BITS_PP) is greater than or equal to the
|
186 |
|
|
// larger of {ADR_DIGITS_PP,DAT_DIGITS_PP}.
|
187 |
|
|
parameter ADR_DIGITS_PP = 4; // # of hex digits for address.
|
188 |
|
|
parameter DAT_DIGITS_PP = 4; // # of hex digits for data.
|
189 |
|
|
parameter QTY_DIGITS_PP = 2; // # of hex digits for quantity.
|
190 |
|
|
parameter CMD_BUFFER_SIZE_PP = 32; // # of chars in the command buffer.
|
191 |
|
|
parameter CMD_PTR_BITS_PP = 4; // # of Bits in command buffer ptr.
|
192 |
|
|
parameter WATCHDOG_TIMER_VALUE_PP = 200; // # of sys_clks before ack expected.
|
193 |
|
|
parameter WATCHDOG_TIMER_BITS_PP = 8; // # of bits needed for timer.
|
194 |
|
|
parameter RD_FIELDS_PP = 8; // # of fields/line (when qty > 1).
|
195 |
|
|
parameter RD_FIELD_COUNT_BITS_PP = 3; // # of bits in the fields counter.
|
196 |
|
|
parameter RD_DIGIT_COUNT_BITS_PP = 2; // # of bits in the digits counter.
|
197 |
|
|
|
198 |
|
|
|
199 |
|
|
// State encodings, provided as parameters
|
200 |
|
|
// for flexibility to the one instantiating the module.
|
201 |
|
|
// In general, the default values need not be changed.
|
202 |
|
|
|
203 |
|
|
// There is one state machines: m1.
|
204 |
|
|
// "default" state upon power-up and configuration is:
|
205 |
|
|
// "m1_initial_state"
|
206 |
|
|
|
207 |
|
|
parameter m1_initial_state = 5'h00;
|
208 |
|
|
parameter m1_send_ok = 5'h01; // Sends OK
|
209 |
|
|
parameter m1_send_prompt = 5'h02; // Sends "-> "
|
210 |
|
|
parameter m1_check_received_char = 5'h03;
|
211 |
|
|
parameter m1_send_crlf = 5'h04; // Sends cr,lf
|
212 |
|
|
parameter m1_parse_error_indicator_crlf = 5'h05; // Sends cr,lf
|
213 |
|
|
parameter m1_parse_error_indicator = 5'h06; // Sends ?
|
214 |
|
|
parameter m1_ack_error_indicator = 5'h07; // Sends !
|
215 |
|
|
parameter m1_bg_error_indicator = 5'h08; // Sends B!
|
216 |
|
|
parameter m1_cmd_error_indicator = 5'h09; // Sends C?
|
217 |
|
|
parameter m1_adr_error_indicator = 5'h0a; // Sends A?
|
218 |
|
|
parameter m1_dat_error_indicator = 5'h0b; // Sends D?
|
219 |
|
|
parameter m1_qty_error_indicator = 5'h0c; // Sends Q?
|
220 |
|
|
parameter m1_scan_command = 5'h10;
|
221 |
|
|
parameter m1_scan_adr_whitespace = 5'h11;
|
222 |
|
|
parameter m1_get_adr_field = 5'h12;
|
223 |
|
|
parameter m1_scan_dat_whitespace = 5'h13;
|
224 |
|
|
parameter m1_get_dat_field = 5'h14;
|
225 |
|
|
parameter m1_scan_qty_whitespace = 5'h15;
|
226 |
|
|
parameter m1_get_qty_field = 5'h16;
|
227 |
|
|
parameter m1_start_execution = 5'h17;
|
228 |
|
|
parameter m1_request_bus = 5'h18;
|
229 |
|
|
parameter m1_bus_granted = 5'h19;
|
230 |
|
|
parameter m1_execute = 5'h1a;
|
231 |
|
|
parameter m1_rd_send_adr_sr = 5'h1b;
|
232 |
|
|
parameter m1_rd_send_separator = 5'h1c;
|
233 |
|
|
parameter m1_rd_send_dat_sr = 5'h1d;
|
234 |
|
|
parameter m1_rd_send_space = 5'h1e;
|
235 |
|
|
parameter m1_rd_send_crlf = 5'h1f;
|
236 |
|
|
|
237 |
|
|
// I/O declarations
|
238 |
|
|
input clk_i; // System clock input
|
239 |
|
|
input reset_i; // Reset signal for this module
|
240 |
|
|
input ack_i; // Ack input from Wishbone "slaves"
|
241 |
|
|
input err_i; // Err input from Wishbone "slaves"
|
242 |
|
|
input master_bg_i; // Bus Grant (grants this module the bus)
|
243 |
|
|
// Address bus input from "normal" Wishbone
|
244 |
|
|
// master (i.e. from processor)
|
245 |
|
|
input [`NIBBLE_SIZE*ADR_DIGITS_PP-1:0] master_adr_i;
|
246 |
|
|
input master_stb_i; // bus cycle signal from "normal" bus master
|
247 |
|
|
input master_we_i; // write enable from "normal" bus master
|
248 |
|
|
input rs232_rxd_i; // Serial data from debug host terminal.
|
249 |
|
|
// Data bus (tri-state, to save interconnect)
|
250 |
|
|
inout [`NIBBLE_SIZE*DAT_DIGITS_PP-1:0] dat_io;
|
251 |
|
|
|
252 |
|
|
output rst_o; // Rst output to Wishbone "slaves"
|
253 |
|
|
output master_br_o; // Bus request to normal master device.
|
254 |
|
|
output stb_o; // Bus cycle indicator to Wishbone "slaves"
|
255 |
|
|
output cyc_o; // Bus cycle indicator to Wishbone "slaves"
|
256 |
|
|
// Address bus output to Wishbone "slaves"
|
257 |
|
|
output [`NIBBLE_SIZE*ADR_DIGITS_PP-1:0] adr_o;
|
258 |
|
|
output we_o; // Write enable to Wishbone "slaves"
|
259 |
|
|
output rs232_txd_o; // Serial transmit data to debug host terminal
|
260 |
|
|
|
261 |
|
|
reg rst_o;
|
262 |
|
|
reg master_br_o;
|
263 |
|
|
|
264 |
|
|
// Internal signal declarations
|
265 |
|
|
wire watchdog_timer_done; // High when watchdog timer is expired
|
266 |
|
|
wire rd_addr_field_done; // High when displayed addr field is complete
|
267 |
|
|
wire rd_data_field_done; // High when displayed data field is complete
|
268 |
|
|
wire rd_line_done; // High when displayed line is complete
|
269 |
|
|
wire char_is_enter; // High when cmd_buffer[char_count] is enter.
|
270 |
|
|
wire char_is_whitespace; // High when cmd_buffer[char_count] is whitespace.
|
271 |
|
|
wire char_is_num; // High when cmd_buffer[char_count] is 0..9
|
272 |
|
|
wire char_is_a_f; // High when cmd_buffer[char_count] is a..f
|
273 |
|
|
wire char_is_hex; // High when cmd_buffer[char_count] is a hex char.
|
274 |
|
|
wire char_is_r; // High when cmd_buffer[char_count] is r.
|
275 |
|
|
wire char_is_w; // High when cmd_buffer[char_count] is w.
|
276 |
|
|
wire char_is_i; // High when cmd_buffer[char_count] is i.
|
277 |
|
|
wire rx_char_is_enter; // High when rs232_rx_char is enter.
|
278 |
|
|
wire rx_char_is_backspace; // High when rs232_rx_char is backspace.
|
279 |
|
|
wire [4:0] msg_pointer; // Determines message position or address.
|
280 |
|
|
wire [3:0] hex_digit; // This is the digit to be stored.
|
281 |
|
|
|
282 |
|
|
reg rs232_echo; // High == echo char's received.
|
283 |
|
|
reg [7:0] msg_char; // Selected response message character.
|
284 |
|
|
reg [4:0] msg_base; // Added to msg_offset to form msg_pointer.
|
285 |
|
|
reg [4:0] msg_offset; // Offset from start of message.
|
286 |
|
|
reg reset_msg_offset; // High == set message offset to zero
|
287 |
|
|
reg incr_msg_offset; // Used for output messages.
|
288 |
|
|
reg cmd_i; // Sets command.
|
289 |
|
|
reg cmd_r; // Sets command.
|
290 |
|
|
reg cmd_w; // Sets command.
|
291 |
|
|
reg shift_rd_adr; // Shifts the rd_adr_sr by one character.
|
292 |
|
|
reg store_adr; // Allows adr_sr to store hex_digit.
|
293 |
|
|
reg store_dat; // Allows dat_sr to store hex_digit.
|
294 |
|
|
reg store_qty; // Allows qty_sr to store hex_digit.
|
295 |
|
|
reg reset_adr; // Clears adr_sr
|
296 |
|
|
reg reset_dat; // Clears dat_sr
|
297 |
|
|
reg reset_qty; // Clears qty_sr
|
298 |
|
|
reg init_qty; // Sets qty_sr to 1
|
299 |
|
|
reg capture_dat; // Puts dat_io into dat_sr for later display.
|
300 |
|
|
|
301 |
|
|
// For the buses
|
302 |
|
|
wire [`NIBBLE_SIZE*ADR_DIGITS_PP-1:0] adr_ptr; // = adr_sr + adr_offset
|
303 |
|
|
|
304 |
|
|
reg stb_l; // "local" stb signal (to distinguish from stb_o)
|
305 |
|
|
reg we_l; // "local" we signal (to distinguish from we_o)
|
306 |
|
|
|
307 |
|
|
reg [`NIBBLE_SIZE*ADR_DIGITS_PP-1:0] rd_adr_sr; // sr for printing addresses
|
308 |
|
|
reg [`NIBBLE_SIZE*ADR_DIGITS_PP-1:0] adr_sr; // "nibble" shift register
|
309 |
|
|
reg [`NIBBLE_SIZE*DAT_DIGITS_PP-1:0] dat_sr; // "nibble" shift register
|
310 |
|
|
reg [`NIBBLE_SIZE*QTY_DIGITS_PP-1:0] qty_sr; // "nibble" shift register
|
311 |
|
|
reg [1:0] command;
|
312 |
|
|
reg [`NIBBLE_SIZE*QTY_DIGITS_PP-1:0] adr_offset; // counts from 0 to qty_sr
|
313 |
|
|
reg reset_adr_offset;
|
314 |
|
|
reg incr_adr_offset;
|
315 |
|
|
|
316 |
|
|
// For the command buffer
|
317 |
|
|
reg [CMD_PTR_BITS_PP-1:0] cmd_ptr; // Offset from start of command.
|
318 |
|
|
reg reset_cmd_ptr; // High == set command pointer to zero.
|
319 |
|
|
reg incr_cmd_ptr; // Used for "write port" side of the command buffer
|
320 |
|
|
reg decr_cmd_ptr; // Used for "write port" side of the command buffer
|
321 |
|
|
reg cmd_buffer_write;
|
322 |
|
|
reg [7:0] cmd_buffer [0:CMD_BUFFER_SIZE_PP-1];
|
323 |
|
|
wire [7:0] cmd_char;
|
324 |
|
|
wire [7:0] lc_cmd_char; // Lowercase version of cmd_char
|
325 |
|
|
|
326 |
|
|
// For the state machine
|
327 |
|
|
reg [4:0] m1_state;
|
328 |
|
|
reg [4:0] m1_next_state;
|
329 |
|
|
|
330 |
|
|
// For various counters
|
331 |
|
|
reg reset_rd_field_count;
|
332 |
|
|
reg reset_rd_digit_count;
|
333 |
|
|
reg incr_rd_field_count;
|
334 |
|
|
reg incr_rd_digit_count;
|
335 |
|
|
reg [RD_FIELD_COUNT_BITS_PP-1:0] rd_field_count; // "fields displayed"
|
336 |
|
|
reg [RD_DIGIT_COUNT_BITS_PP-1:0] rd_digit_count; // "digits displayed"
|
337 |
|
|
reg [WATCHDOG_TIMER_BITS_PP-1:0] watchdog_timer_count;
|
338 |
|
|
reg reset_watchdog;
|
339 |
|
|
|
340 |
|
|
// For the rs232 interface
|
341 |
|
|
wire serial_clk;
|
342 |
|
|
wire [2:0] rs232_rx_error;
|
343 |
|
|
wire rs232_tx_load;
|
344 |
|
|
wire rs232_tx_load_request;
|
345 |
|
|
wire rs232_rx_data_ready;
|
346 |
|
|
wire [7:0] rs232_rx_char;
|
347 |
|
|
wire [7:0] rs232_tx_char; // Either rs232_rx_char or msg_char
|
348 |
|
|
|
349 |
|
|
//--------------------------------------------------------------------------
|
350 |
|
|
// Instantiations
|
351 |
|
|
//--------------------------------------------------------------------------
|
352 |
|
|
|
353 |
|
|
|
354 |
|
|
// These defines are for the rs232 interface
|
355 |
|
|
`define START_BITS 1
|
356 |
|
|
`define DATA_BITS 8
|
357 |
|
|
`define STOP_BITS 1
|
358 |
|
|
`define CLOCK_FACTOR 8
|
359 |
|
|
|
360 |
|
|
// This module generates a serial BAUD clock automatically.
|
361 |
|
|
// The unit synchronizes on the carriage return character, so the user
|
362 |
|
|
// only needs to press the "enter" key for serial communications to start
|
363 |
|
|
// working, no matter what BAUD rate and clk_i frequency are used!
|
364 |
|
|
auto_baud_with_tracking #(
|
365 |
|
|
`CLOCK_FACTOR, // CLOCK_FACTOR_PP
|
366 |
|
|
16 // LOG2_MAX_COUNT_PP
|
367 |
|
|
)
|
368 |
|
|
clock_unit_2
|
369 |
|
|
(
|
370 |
|
|
.clk_i(clk_i),
|
371 |
|
|
.reset_i(reset_i),
|
372 |
|
|
.serial_dat_i(rs232_rxd_i),
|
373 |
|
|
.auto_baud_locked_o(),
|
374 |
|
|
.baud_clk_o(serial_clk)
|
375 |
|
|
);
|
376 |
|
|
|
377 |
|
|
// A transmitter, which asserts load_request at the end of the currently
|
378 |
|
|
// transmitted word. The tx_clk must be a "clock enable" (narrow positive
|
379 |
|
|
// pulse) which occurs at 16x the desired transmit rate. If load_request
|
380 |
|
|
// is connected directly to load, the unit will transmit continuously.
|
381 |
|
|
rs232tx #(
|
382 |
|
|
`START_BITS, // start_bits
|
383 |
|
|
`DATA_BITS, // data_bits
|
384 |
|
|
`STOP_BITS, // stop_bits (add intercharacter delay...)
|
385 |
|
|
`CLOCK_FACTOR // clock_factor
|
386 |
|
|
)
|
387 |
|
|
rs232_tx_block // instance name
|
388 |
|
|
(
|
389 |
|
|
.clk(clk_i),
|
390 |
|
|
.tx_clk(serial_clk),
|
391 |
|
|
.reset(reset_i),
|
392 |
|
|
.load(rs232_tx_load),
|
393 |
|
|
.data(rs232_tx_char),
|
394 |
|
|
.load_request(rs232_tx_load_request),
|
395 |
|
|
.txd(rs232_txd_o)
|
396 |
|
|
);
|
397 |
|
|
|
398 |
|
|
// A receiver, which asserts "word_ready" to indicate a received word.
|
399 |
|
|
// Asserting "read_word" will cause "word_ready" to go low again if it was high.
|
400 |
|
|
// The character is held in the output register, during the time the next
|
401 |
|
|
// character is coming in.
|
402 |
|
|
rs232rx #(
|
403 |
|
|
`START_BITS, // start_bits
|
404 |
|
|
`DATA_BITS, // data_bits
|
405 |
|
|
`STOP_BITS, // stop_bits
|
406 |
|
|
`CLOCK_FACTOR // clock_factor
|
407 |
|
|
)
|
408 |
|
|
rs232_rx_block // instance name
|
409 |
|
|
(
|
410 |
|
|
.clk(clk_i),
|
411 |
|
|
.rx_clk(serial_clk),
|
412 |
|
|
.reset(reset_i || (| rs232_rx_error)),
|
413 |
|
|
.rxd(rs232_rxd_i),
|
414 |
|
|
.read(rs232_tx_load),
|
415 |
|
|
.data(rs232_rx_char),
|
416 |
|
|
.data_ready(rs232_rx_data_ready),
|
417 |
|
|
.error_over_run(rs232_rx_error[0]),
|
418 |
|
|
.error_under_run(rs232_rx_error[1]),
|
419 |
|
|
.error_all_low(rs232_rx_error[2])
|
420 |
|
|
);
|
421 |
|
|
|
422 |
|
|
//`undef START_BITS
|
423 |
|
|
//`undef DATA_BITS
|
424 |
|
|
//`undef STOP_BITS
|
425 |
|
|
//`undef CLOCK_FACTOR
|
426 |
|
|
|
427 |
|
|
|
428 |
|
|
//--------------------------------------------------------------------------
|
429 |
|
|
// Module code
|
430 |
|
|
//--------------------------------------------------------------------------
|
431 |
|
|
|
432 |
|
|
assign adr_o = master_bg_i?adr_ptr:master_adr_i;
|
433 |
|
|
assign we_o = master_bg_i?we_l:master_we_i;
|
434 |
|
|
assign stb_o = master_bg_i?stb_l:master_stb_i;
|
435 |
|
|
|
436 |
|
|
|
437 |
|
|
assign dat_io = (master_bg_i && we_l && stb_l)?
|
438 |
|
|
dat_sr:{`NIBBLE_SIZE*DAT_DIGITS_PP{1'bZ}};
|
439 |
|
|
|
440 |
|
|
// Temporary
|
441 |
|
|
assign cyc_o = stb_o; // Separate cyc_o is not yet supported!
|
442 |
|
|
|
443 |
|
|
|
444 |
|
|
// This is the adress offset counter
|
445 |
|
|
always @(posedge clk_i)
|
446 |
|
|
begin
|
447 |
|
|
if (reset_i || reset_adr_offset) adr_offset <= 0;
|
448 |
|
|
else if (incr_adr_offset) adr_offset <= adr_offset + 1;
|
449 |
|
|
end
|
450 |
|
|
// This forms the adress pointer which is used on the bus.
|
451 |
|
|
assign adr_ptr = adr_sr + adr_offset;
|
452 |
|
|
|
453 |
|
|
|
454 |
|
|
// This is the ROM for the ASCII characters to be transmitted.
|
455 |
|
|
always @(msg_pointer)
|
456 |
|
|
begin
|
457 |
|
|
case (msg_pointer) // synthesis parallel_case
|
458 |
|
|
5'b00000 : msg_char <= 8'h30; // "0"; // Hexadecimal characters
|
459 |
|
|
5'b00001 : msg_char <= 8'h31; // "1";
|
460 |
|
|
5'b00010 : msg_char <= 8'h32; // "2";
|
461 |
|
|
5'b00011 : msg_char <= 8'h33; // "3";
|
462 |
|
|
5'b00100 : msg_char <= 8'h34; // "4";
|
463 |
|
|
5'b00101 : msg_char <= 8'h35; // "5";
|
464 |
|
|
5'b00110 : msg_char <= 8'h36; // "6";
|
465 |
|
|
5'b00111 : msg_char <= 8'h37; // "7";
|
466 |
|
|
5'b01000 : msg_char <= 8'h38; // "8";
|
467 |
|
|
5'b01001 : msg_char <= 8'h39; // "9";
|
468 |
|
|
5'b01010 : msg_char <= 8'h41; // "A"; // Address error indication
|
469 |
|
|
5'b01011 : msg_char <= 8'h42; // "B";
|
470 |
|
|
5'b01100 : msg_char <= 8'h43; // "C"; // Command error indication
|
471 |
|
|
5'b01101 : msg_char <= 8'h44; // "D"; // Data error indication
|
472 |
|
|
5'b01110 : msg_char <= 8'h45; // "E";
|
473 |
|
|
5'b01111 : msg_char <= 8'h46; // "F";
|
474 |
|
|
5'b10000 : msg_char <= 8'h20; // " "; // Space
|
475 |
|
|
5'b10001 : msg_char <= 8'h3A; // ":"; // Colon
|
476 |
|
|
5'b10010 : msg_char <= 8'h20; // " "; // Space
|
477 |
|
|
5'b10011 : msg_char <= 8'h3F; // "?"; // Parse error indication
|
478 |
|
|
5'b10100 : msg_char <= 8'h21; // "!"; // ack_i/err_i error indication
|
479 |
|
|
5'b10101 : msg_char <= 8'h4F; // "O"; // "All is well" message
|
480 |
|
|
5'b10110 : msg_char <= 8'h4B; // "K";
|
481 |
|
|
5'b10111 : msg_char <= 8'h0D; // Carriage return & line feed
|
482 |
|
|
5'b11000 : msg_char <= 8'h0A;
|
483 |
|
|
5'b11001 : msg_char <= 8'h2D; // "-"; // Command Prompt
|
484 |
|
|
5'b11010 : msg_char <= 8'h3E; // ">";
|
485 |
|
|
5'b11011 : msg_char <= 8'h20; // " ";
|
486 |
|
|
5'b11100 : msg_char <= 8'h51; // "Q"; // Quantity error indication
|
487 |
|
|
default : msg_char <= 8'h3D; // "=";
|
488 |
|
|
endcase
|
489 |
|
|
end
|
490 |
|
|
|
491 |
|
|
// This logic determines when to load a transmit character.
|
492 |
|
|
assign rs232_tx_load = rs232_echo?
|
493 |
|
|
(rs232_rx_data_ready && rs232_tx_load_request):rs232_tx_load_request;
|
494 |
|
|
|
495 |
|
|
// This is the counter for incrementing, decrementing or resetting the
|
496 |
|
|
// message pointer.
|
497 |
|
|
always @(posedge clk_i)
|
498 |
|
|
begin
|
499 |
|
|
if (reset_i || reset_msg_offset) msg_offset <= 0;
|
500 |
|
|
else if (incr_msg_offset) msg_offset <= msg_offset + 1;
|
501 |
|
|
end
|
502 |
|
|
assign msg_pointer = msg_offset + msg_base;
|
503 |
|
|
|
504 |
|
|
|
505 |
|
|
|
506 |
|
|
// This is the mux which selects whether to echo back the characters
|
507 |
|
|
// received (as during the entering of a command) or to send back response
|
508 |
|
|
// characters.
|
509 |
|
|
assign rs232_tx_char = (rs232_echo)?rs232_rx_char:msg_char;
|
510 |
|
|
|
511 |
|
|
|
512 |
|
|
// These assigments are for detecting whether the received rs232 character is
|
513 |
|
|
// anything of special interest.
|
514 |
|
|
assign rx_char_is_enter = (rs232_rx_char == 8'h0d);
|
515 |
|
|
assign rx_char_is_backspace = (rs232_rx_char == 8'h08);
|
516 |
|
|
|
517 |
|
|
|
518 |
|
|
|
519 |
|
|
// This is state machine m1. It handles receiving the command line, including
|
520 |
|
|
// backspaces, and prints error/response messages. It also parses and
|
521 |
|
|
// executes the commands.
|
522 |
|
|
|
523 |
|
|
// State register
|
524 |
|
|
always @(posedge clk_i)
|
525 |
|
|
begin : m1_state_register
|
526 |
|
|
if (reset_i) m1_state <= m1_initial_state; // perform reset for rest of system
|
527 |
|
|
else m1_state <= m1_next_state;
|
528 |
|
|
end
|
529 |
|
|
|
530 |
|
|
// State transition logic
|
531 |
|
|
always @(m1_state
|
532 |
|
|
or rx_char_is_enter
|
533 |
|
|
or rx_char_is_backspace
|
534 |
|
|
or msg_offset
|
535 |
|
|
or cmd_ptr
|
536 |
|
|
or rs232_tx_load
|
537 |
|
|
or char_is_whitespace
|
538 |
|
|
or char_is_hex
|
539 |
|
|
or char_is_enter
|
540 |
|
|
or char_is_i
|
541 |
|
|
or char_is_r
|
542 |
|
|
or char_is_w
|
543 |
|
|
or command
|
544 |
|
|
or master_bg_i
|
545 |
|
|
or watchdog_timer_done
|
546 |
|
|
or err_i
|
547 |
|
|
or ack_i
|
548 |
|
|
or adr_offset
|
549 |
|
|
or qty_sr
|
550 |
|
|
or dat_sr
|
551 |
|
|
or rd_adr_sr
|
552 |
|
|
or rd_field_count
|
553 |
|
|
or rd_digit_count
|
554 |
|
|
)
|
555 |
|
|
begin : m1_state_logic
|
556 |
|
|
|
557 |
|
|
// Default values for outputs. The individual states can override these.
|
558 |
|
|
msg_base <= 5'b0;
|
559 |
|
|
reset_msg_offset <= 0;
|
560 |
|
|
incr_msg_offset <= 0;
|
561 |
|
|
rs232_echo <= 0;
|
562 |
|
|
rst_o <= 0;
|
563 |
|
|
we_l <= 0;
|
564 |
|
|
stb_l <= 0;
|
565 |
|
|
cmd_buffer_write <= 0;
|
566 |
|
|
reset_cmd_ptr <= 0;
|
567 |
|
|
incr_cmd_ptr <= 0;
|
568 |
|
|
decr_cmd_ptr <= 0;
|
569 |
|
|
master_br_o <= 0;
|
570 |
|
|
cmd_r <= 0;
|
571 |
|
|
cmd_w <= 0;
|
572 |
|
|
cmd_i <= 0;
|
573 |
|
|
shift_rd_adr <= 0;
|
574 |
|
|
store_adr <= 0; // enables storing hex chars in adr_sr (shift)
|
575 |
|
|
store_dat <= 0; // enables storing hex chars in dat_sr (shift)
|
576 |
|
|
store_qty <= 0; // enables storing hex chars in qty_sr (shift)
|
577 |
|
|
reset_adr <= 0;
|
578 |
|
|
reset_dat <= 0;
|
579 |
|
|
reset_qty <= 0;
|
580 |
|
|
init_qty <= 0;
|
581 |
|
|
capture_dat <= 0; // enables capturing bus data in dat_sr (load)
|
582 |
|
|
incr_adr_offset <= 0;
|
583 |
|
|
reset_adr_offset <= 0;
|
584 |
|
|
reset_watchdog <= 0;
|
585 |
|
|
incr_rd_field_count <= 0;
|
586 |
|
|
incr_rd_digit_count <= 0;
|
587 |
|
|
reset_rd_field_count <= 0;
|
588 |
|
|
reset_rd_digit_count <= 0;
|
589 |
|
|
|
590 |
|
|
case (m1_state) // synthesis parallel_case
|
591 |
|
|
|
592 |
|
|
m1_initial_state :
|
593 |
|
|
begin
|
594 |
|
|
incr_msg_offset <= rs232_tx_load;
|
595 |
|
|
if ((msg_offset == 15) && rs232_tx_load) begin
|
596 |
|
|
m1_next_state <= m1_send_prompt;
|
597 |
|
|
reset_msg_offset <= 1;
|
598 |
|
|
end
|
599 |
|
|
else m1_next_state <= m1_initial_state;
|
600 |
|
|
end
|
601 |
|
|
|
602 |
|
|
m1_send_ok :
|
603 |
|
|
begin
|
604 |
|
|
msg_base <= 5'b10101; // Address of the OK message
|
605 |
|
|
incr_msg_offset <= rs232_tx_load;
|
606 |
|
|
if ((msg_offset == 1) && rs232_tx_load) begin
|
607 |
|
|
m1_next_state <= m1_send_prompt;
|
608 |
|
|
reset_msg_offset <= 1;
|
609 |
|
|
end
|
610 |
|
|
else m1_next_state <= m1_send_ok;
|
611 |
|
|
end
|
612 |
|
|
|
613 |
|
|
m1_send_prompt :
|
614 |
|
|
begin
|
615 |
|
|
msg_base <= 5'b10111; // Address of the cr,lf,prompt message
|
616 |
|
|
incr_msg_offset <= rs232_tx_load;
|
617 |
|
|
if ((msg_offset == 4) && rs232_tx_load) begin
|
618 |
|
|
m1_next_state <= m1_check_received_char;
|
619 |
|
|
reset_cmd_ptr <= 1;
|
620 |
|
|
end
|
621 |
|
|
else m1_next_state <= m1_send_prompt;
|
622 |
|
|
end
|
623 |
|
|
|
624 |
|
|
// This state always leads to activating the parser...
|
625 |
|
|
m1_send_crlf :
|
626 |
|
|
begin
|
627 |
|
|
msg_base <= 5'b10111; // Address of the cr/lf message
|
628 |
|
|
incr_msg_offset <= rs232_tx_load;
|
629 |
|
|
if ((msg_offset == 1) && rs232_tx_load) begin
|
630 |
|
|
m1_next_state <= m1_scan_command;
|
631 |
|
|
reset_cmd_ptr <= 1;
|
632 |
|
|
end
|
633 |
|
|
else m1_next_state <= m1_send_crlf;
|
634 |
|
|
end
|
635 |
|
|
|
636 |
|
|
m1_check_received_char :
|
637 |
|
|
begin
|
638 |
|
|
rs232_echo <= 1; // Allow echoing of characters
|
639 |
|
|
if (rx_char_is_backspace && rs232_tx_load)
|
640 |
|
|
begin
|
641 |
|
|
m1_next_state <= m1_check_received_char;
|
642 |
|
|
decr_cmd_ptr <= 1; // This effectively eliminates the last char
|
643 |
|
|
end
|
644 |
|
|
else if (rx_char_is_enter && rs232_tx_load)
|
645 |
|
|
begin
|
646 |
|
|
m1_next_state <= m1_send_crlf;
|
647 |
|
|
cmd_buffer_write <= 1; // Store the enter as "marker" for parsing
|
648 |
|
|
reset_msg_offset <= 1;
|
649 |
|
|
end
|
650 |
|
|
else if (rs232_tx_load && (cmd_ptr == CMD_BUFFER_SIZE_PP-1))
|
651 |
|
|
begin
|
652 |
|
|
m1_next_state <= m1_parse_error_indicator_crlf;
|
653 |
|
|
reset_msg_offset <= 1;
|
654 |
|
|
reset_cmd_ptr <= 1;
|
655 |
|
|
end
|
656 |
|
|
else if (rs232_tx_load)
|
657 |
|
|
begin
|
658 |
|
|
incr_cmd_ptr <= 1;
|
659 |
|
|
cmd_buffer_write <= 1;
|
660 |
|
|
m1_next_state <= m1_check_received_char;
|
661 |
|
|
end
|
662 |
|
|
else m1_next_state <= m1_check_received_char;
|
663 |
|
|
end
|
664 |
|
|
|
665 |
|
|
m1_bg_error_indicator :
|
666 |
|
|
begin
|
667 |
|
|
msg_base <= 5'b01011; // Address of the B character
|
668 |
|
|
incr_msg_offset <= rs232_tx_load;
|
669 |
|
|
if ((msg_offset == 0) && rs232_tx_load) begin
|
670 |
|
|
m1_next_state <= m1_ack_error_indicator;
|
671 |
|
|
reset_msg_offset <= 1;
|
672 |
|
|
end
|
673 |
|
|
else m1_next_state <= m1_bg_error_indicator;
|
674 |
|
|
end
|
675 |
|
|
|
676 |
|
|
m1_ack_error_indicator :
|
677 |
|
|
begin
|
678 |
|
|
msg_base <= 5'b10100; // Address of the ! error message
|
679 |
|
|
incr_msg_offset <= rs232_tx_load;
|
680 |
|
|
if ((msg_offset == 0) && rs232_tx_load) begin
|
681 |
|
|
m1_next_state <= m1_send_prompt;
|
682 |
|
|
reset_msg_offset <= 1;
|
683 |
|
|
end
|
684 |
|
|
else m1_next_state <= m1_ack_error_indicator;
|
685 |
|
|
end
|
686 |
|
|
|
687 |
|
|
// This state is used when the line is too long...
|
688 |
|
|
m1_parse_error_indicator_crlf :
|
689 |
|
|
begin
|
690 |
|
|
msg_base <= 5'b10111; // Address of the cr,lf message.
|
691 |
|
|
incr_msg_offset <= rs232_tx_load;
|
692 |
|
|
if ((msg_offset == 1) && rs232_tx_load) begin
|
693 |
|
|
m1_next_state <= m1_parse_error_indicator;
|
694 |
|
|
reset_msg_offset <= 1;
|
695 |
|
|
end
|
696 |
|
|
else m1_next_state <= m1_parse_error_indicator_crlf;
|
697 |
|
|
end
|
698 |
|
|
|
699 |
|
|
m1_parse_error_indicator :
|
700 |
|
|
begin
|
701 |
|
|
msg_base <= 5'b10011; // Address of the ? message.
|
702 |
|
|
incr_msg_offset <= rs232_tx_load;
|
703 |
|
|
if ((msg_offset == 0) && rs232_tx_load) begin
|
704 |
|
|
m1_next_state <= m1_send_prompt;
|
705 |
|
|
reset_msg_offset <= 1;
|
706 |
|
|
end
|
707 |
|
|
else m1_next_state <= m1_parse_error_indicator;
|
708 |
|
|
end
|
709 |
|
|
|
710 |
|
|
m1_cmd_error_indicator :
|
711 |
|
|
begin
|
712 |
|
|
msg_base <= 5'b01100; // Address of 'C'
|
713 |
|
|
incr_msg_offset <= rs232_tx_load;
|
714 |
|
|
if ((msg_offset == 0) && rs232_tx_load) begin
|
715 |
|
|
m1_next_state <= m1_parse_error_indicator;
|
716 |
|
|
reset_msg_offset <= 1;
|
717 |
|
|
end
|
718 |
|
|
else m1_next_state <= m1_cmd_error_indicator;
|
719 |
|
|
end
|
720 |
|
|
|
721 |
|
|
m1_adr_error_indicator :
|
722 |
|
|
begin
|
723 |
|
|
msg_base <= 5'b01010; // Address of 'A'
|
724 |
|
|
incr_msg_offset <= rs232_tx_load;
|
725 |
|
|
if ((msg_offset == 0) && rs232_tx_load)
|
726 |
|
|
begin
|
727 |
|
|
m1_next_state <= m1_parse_error_indicator;
|
728 |
|
|
reset_msg_offset <= 1;
|
729 |
|
|
end
|
730 |
|
|
else m1_next_state <= m1_adr_error_indicator;
|
731 |
|
|
end
|
732 |
|
|
|
733 |
|
|
m1_dat_error_indicator :
|
734 |
|
|
begin
|
735 |
|
|
msg_base <= 5'b01101; // Address of 'D'
|
736 |
|
|
incr_msg_offset <= rs232_tx_load;
|
737 |
|
|
if ((msg_offset == 0) && rs232_tx_load)
|
738 |
|
|
begin
|
739 |
|
|
m1_next_state <= m1_parse_error_indicator;
|
740 |
|
|
reset_msg_offset <= 1;
|
741 |
|
|
end
|
742 |
|
|
else m1_next_state <= m1_dat_error_indicator;
|
743 |
|
|
end
|
744 |
|
|
|
745 |
|
|
m1_qty_error_indicator :
|
746 |
|
|
begin
|
747 |
|
|
msg_base <= 5'b11100; // Address of 'Q'
|
748 |
|
|
incr_msg_offset <= rs232_tx_load;
|
749 |
|
|
if ((msg_offset == 0) && rs232_tx_load)
|
750 |
|
|
begin
|
751 |
|
|
m1_next_state <= m1_parse_error_indicator;
|
752 |
|
|
reset_msg_offset <= 1;
|
753 |
|
|
end
|
754 |
|
|
else m1_next_state <= m1_qty_error_indicator;
|
755 |
|
|
end
|
756 |
|
|
|
757 |
|
|
// The following states are for parsing and executing the command.
|
758 |
|
|
|
759 |
|
|
// This state takes care of leading whitespace before the command
|
760 |
|
|
m1_scan_command :
|
761 |
|
|
begin
|
762 |
|
|
rs232_echo <= 1; // Don't send message characters
|
763 |
|
|
reset_msg_offset <= 1; // This one reset should cover all of the
|
764 |
|
|
// parse/exec. states. With rs232_echo
|
765 |
|
|
// on, and no receive characters arrive,
|
766 |
|
|
// then the msg_offset will remain reset.
|
767 |
|
|
// This means the watchdog timer can take
|
768 |
|
|
// a long time, if need be, during exec.
|
769 |
|
|
// (NOTE: It might be better to disable
|
770 |
|
|
// the echoing of rx chars during these
|
771 |
|
|
// states.)
|
772 |
|
|
init_qty <= 1; // Set qty = 1 by default. That can be
|
773 |
|
|
// overridden later, if the command has
|
774 |
|
|
// a different qty field.
|
775 |
|
|
if (char_is_whitespace) begin
|
776 |
|
|
m1_next_state <= m1_scan_command;
|
777 |
|
|
incr_cmd_ptr <= 1;
|
778 |
|
|
end
|
779 |
|
|
else if (char_is_r) begin
|
780 |
|
|
m1_next_state <= m1_scan_adr_whitespace;
|
781 |
|
|
incr_cmd_ptr <= 1;
|
782 |
|
|
cmd_r <= 1;
|
783 |
|
|
end
|
784 |
|
|
else if (char_is_w) begin
|
785 |
|
|
m1_next_state <= m1_scan_adr_whitespace;
|
786 |
|
|
incr_cmd_ptr <= 1;
|
787 |
|
|
cmd_w <= 1;
|
788 |
|
|
end
|
789 |
|
|
else if (char_is_i) begin
|
790 |
|
|
m1_next_state <= m1_start_execution;
|
791 |
|
|
cmd_i <= 1;
|
792 |
|
|
end
|
793 |
|
|
else m1_next_state <= m1_cmd_error_indicator;
|
794 |
|
|
end
|
795 |
|
|
|
796 |
|
|
// The only way to determine the end of a valid field is to find
|
797 |
|
|
// whitespace. Therefore, char_is_whitespace must be used as an exit
|
798 |
|
|
// condition from the "get_xxx_field" states. So, this state is used to
|
799 |
|
|
// scan through any leading whitespace prior to it.
|
800 |
|
|
m1_scan_adr_whitespace :
|
801 |
|
|
begin
|
802 |
|
|
rs232_echo <= 1; // Don't send message characters
|
803 |
|
|
if (char_is_whitespace) begin
|
804 |
|
|
m1_next_state <= m1_scan_adr_whitespace;
|
805 |
|
|
incr_cmd_ptr <= 1;
|
806 |
|
|
end
|
807 |
|
|
else if (char_is_enter) m1_next_state <= m1_start_execution;
|
808 |
|
|
else begin
|
809 |
|
|
m1_next_state <= m1_get_adr_field;
|
810 |
|
|
reset_adr <= 1;
|
811 |
|
|
end
|
812 |
|
|
end
|
813 |
|
|
|
814 |
|
|
m1_get_adr_field :
|
815 |
|
|
begin
|
816 |
|
|
rs232_echo <= 1; // Don't send message characters
|
817 |
|
|
if (char_is_hex) begin
|
818 |
|
|
m1_next_state <= m1_get_adr_field;
|
819 |
|
|
store_adr <= 1;
|
820 |
|
|
incr_cmd_ptr <= 1;
|
821 |
|
|
end
|
822 |
|
|
else if (char_is_whitespace) begin // Normal exit
|
823 |
|
|
m1_next_state <= m1_scan_dat_whitespace;
|
824 |
|
|
end
|
825 |
|
|
else if (char_is_enter) m1_next_state <= m1_start_execution;
|
826 |
|
|
else m1_next_state <= m1_adr_error_indicator;
|
827 |
|
|
end
|
828 |
|
|
|
829 |
|
|
m1_scan_dat_whitespace :
|
830 |
|
|
begin
|
831 |
|
|
rs232_echo <= 1; // Don't send message characters
|
832 |
|
|
// There is no DAT field for reads, so skip it.
|
833 |
|
|
if (command == `CMD_R) m1_next_state <= m1_scan_qty_whitespace;
|
834 |
|
|
else if (char_is_whitespace) begin
|
835 |
|
|
m1_next_state <= m1_scan_dat_whitespace;
|
836 |
|
|
incr_cmd_ptr <= 1;
|
837 |
|
|
end
|
838 |
|
|
else if (char_is_enter) m1_next_state <= m1_start_execution;
|
839 |
|
|
else begin
|
840 |
|
|
m1_next_state <= m1_get_dat_field;
|
841 |
|
|
reset_dat <= 1;
|
842 |
|
|
end
|
843 |
|
|
end
|
844 |
|
|
|
845 |
|
|
m1_get_dat_field :
|
846 |
|
|
begin
|
847 |
|
|
rs232_echo <= 1; // Don't send message characters
|
848 |
|
|
if (char_is_hex) begin
|
849 |
|
|
m1_next_state <= m1_get_dat_field;
|
850 |
|
|
store_dat <= 1;
|
851 |
|
|
incr_cmd_ptr <= 1;
|
852 |
|
|
end
|
853 |
|
|
else if (char_is_whitespace) begin // Normal exit
|
854 |
|
|
m1_next_state <= m1_scan_qty_whitespace;
|
855 |
|
|
end
|
856 |
|
|
else if (char_is_enter) m1_next_state <= m1_start_execution;
|
857 |
|
|
else m1_next_state <= m1_dat_error_indicator;
|
858 |
|
|
end
|
859 |
|
|
|
860 |
|
|
m1_scan_qty_whitespace :
|
861 |
|
|
begin
|
862 |
|
|
rs232_echo <= 1; // Don't send message characters
|
863 |
|
|
if (char_is_whitespace) begin
|
864 |
|
|
m1_next_state <= m1_scan_qty_whitespace;
|
865 |
|
|
incr_cmd_ptr <= 1;
|
866 |
|
|
end
|
867 |
|
|
else if (char_is_enter) m1_next_state <= m1_start_execution;
|
868 |
|
|
else begin
|
869 |
|
|
m1_next_state <= m1_get_qty_field;
|
870 |
|
|
reset_qty <= 1;
|
871 |
|
|
end
|
872 |
|
|
end
|
873 |
|
|
|
874 |
|
|
m1_get_qty_field :
|
875 |
|
|
begin
|
876 |
|
|
rs232_echo <= 1; // Don't send message characters
|
877 |
|
|
if (char_is_hex) begin
|
878 |
|
|
m1_next_state <= m1_get_qty_field;
|
879 |
|
|
store_qty <= 1;
|
880 |
|
|
incr_cmd_ptr <= 1;
|
881 |
|
|
end
|
882 |
|
|
else if (char_is_whitespace || char_is_enter) begin // Normal exit
|
883 |
|
|
m1_next_state <= m1_start_execution;
|
884 |
|
|
end
|
885 |
|
|
else m1_next_state <= m1_qty_error_indicator;
|
886 |
|
|
end
|
887 |
|
|
|
888 |
|
|
// This state seeks to obtain master_bg_i, which grants the bus to
|
889 |
|
|
// rs232_syscon.
|
890 |
|
|
m1_start_execution :
|
891 |
|
|
begin
|
892 |
|
|
rs232_echo <= 1; // Don't send message characters
|
893 |
|
|
reset_watchdog <= 1; // Reset the timer.
|
894 |
|
|
reset_adr_offset <= 1; // Reset the address offset.
|
895 |
|
|
reset_rd_field_count <= 1; // Reset the rd_field_count.
|
896 |
|
|
m1_next_state <= m1_request_bus;
|
897 |
|
|
end
|
898 |
|
|
|
899 |
|
|
m1_request_bus :
|
900 |
|
|
begin
|
901 |
|
|
rs232_echo <= 1; // Don't send message characters
|
902 |
|
|
master_br_o <= 1; // Request the bus.
|
903 |
|
|
if (master_bg_i) m1_next_state <= m1_bus_granted;
|
904 |
|
|
else if (watchdog_timer_done) begin
|
905 |
|
|
m1_next_state <= m1_bg_error_indicator;
|
906 |
|
|
end
|
907 |
|
|
else m1_next_state <= m1_request_bus;
|
908 |
|
|
end
|
909 |
|
|
|
910 |
|
|
m1_bus_granted :
|
911 |
|
|
begin
|
912 |
|
|
rs232_echo <= 1; // Don't send message characters
|
913 |
|
|
master_br_o <= 1; // Keep holding the bus
|
914 |
|
|
reset_watchdog <= 1; // Reset the timer.
|
915 |
|
|
if (adr_offset != qty_sr) m1_next_state <= m1_execute;
|
916 |
|
|
else m1_next_state <= m1_send_ok;
|
917 |
|
|
end
|
918 |
|
|
|
919 |
|
|
// This single state does reset/write/read depending upon the value
|
920 |
|
|
// contained in "command"!
|
921 |
|
|
m1_execute :
|
922 |
|
|
begin
|
923 |
|
|
rs232_echo <= 1; // Don't send message characters
|
924 |
|
|
master_br_o <= 1; // Keep holding the bus
|
925 |
|
|
stb_l <= 1'b1; // Show that a bus cycle is happening
|
926 |
|
|
case (command) // Assert the appropriate signals
|
927 |
|
|
`CMD_I : rst_o <= 1;
|
928 |
|
|
`CMD_R : capture_dat <= ack_i;
|
929 |
|
|
`CMD_W : we_l <= 1;
|
930 |
|
|
default: ;
|
931 |
|
|
endcase
|
932 |
|
|
if (watchdog_timer_done || err_i) begin
|
933 |
|
|
m1_next_state <= m1_ack_error_indicator;
|
934 |
|
|
end
|
935 |
|
|
else if (ack_i
|
936 |
|
|
&& (command == `CMD_R)
|
937 |
|
|
&& (rd_field_count == 0)
|
938 |
|
|
)
|
939 |
|
|
begin
|
940 |
|
|
m1_next_state <= m1_rd_send_adr_sr; // Leads to a new address line.
|
941 |
|
|
reset_rd_digit_count <= 1;
|
942 |
|
|
incr_adr_offset <= 1; // move to the next address
|
943 |
|
|
end
|
944 |
|
|
else if (ack_i && (command == `CMD_R)) begin
|
945 |
|
|
m1_next_state <= m1_rd_send_dat_sr; // Leads to a new data field.
|
946 |
|
|
reset_rd_digit_count <= 1;
|
947 |
|
|
reset_msg_offset <= 1;
|
948 |
|
|
incr_adr_offset <= 1; // move to the next address
|
949 |
|
|
end
|
950 |
|
|
else if (ack_i) begin
|
951 |
|
|
m1_next_state <= m1_bus_granted; // continue to the next cycle
|
952 |
|
|
incr_adr_offset <= 1; // move to the next address
|
953 |
|
|
end
|
954 |
|
|
else m1_next_state <= m1_execute;
|
955 |
|
|
end
|
956 |
|
|
|
957 |
|
|
m1_rd_send_adr_sr :
|
958 |
|
|
begin
|
959 |
|
|
msg_base <= {1'b0,rd_adr_sr[`NIBBLE_SIZE*ADR_DIGITS_PP-1:
|
960 |
|
|
`NIBBLE_SIZE*(ADR_DIGITS_PP-1)]};
|
961 |
|
|
if ((rd_digit_count == ADR_DIGITS_PP-1) && rs232_tx_load) begin
|
962 |
|
|
m1_next_state <= m1_rd_send_separator;
|
963 |
|
|
reset_msg_offset <= 1;
|
964 |
|
|
end
|
965 |
|
|
else if (rs232_tx_load) begin
|
966 |
|
|
shift_rd_adr <= 1;
|
967 |
|
|
incr_rd_digit_count <= 1;
|
968 |
|
|
m1_next_state <= m1_rd_send_adr_sr;
|
969 |
|
|
end
|
970 |
|
|
else m1_next_state <= m1_rd_send_adr_sr;
|
971 |
|
|
end
|
972 |
|
|
|
973 |
|
|
m1_rd_send_separator :
|
974 |
|
|
begin
|
975 |
|
|
msg_base <= 5'b10000; // Address of the separator message
|
976 |
|
|
incr_msg_offset <= rs232_tx_load;
|
977 |
|
|
if ((msg_offset == 2) && rs232_tx_load)
|
978 |
|
|
begin
|
979 |
|
|
m1_next_state <= m1_rd_send_dat_sr;
|
980 |
|
|
reset_rd_digit_count <= 1;
|
981 |
|
|
reset_msg_offset <= 1;
|
982 |
|
|
end
|
983 |
|
|
else m1_next_state <= m1_rd_send_separator;
|
984 |
|
|
end
|
985 |
|
|
|
986 |
|
|
m1_rd_send_dat_sr :
|
987 |
|
|
begin
|
988 |
|
|
msg_base <= {1'b0,dat_sr[`NIBBLE_SIZE*DAT_DIGITS_PP-1:
|
989 |
|
|
`NIBBLE_SIZE*(DAT_DIGITS_PP-1)]};
|
990 |
|
|
if (
|
991 |
|
|
(rd_digit_count == DAT_DIGITS_PP-1)
|
992 |
|
|
&& (rd_field_count == RD_FIELDS_PP-1)
|
993 |
|
|
&& rs232_tx_load
|
994 |
|
|
)
|
995 |
|
|
begin
|
996 |
|
|
m1_next_state <= m1_rd_send_crlf;
|
997 |
|
|
reset_rd_field_count <= 1;
|
998 |
|
|
end
|
999 |
|
|
else if ((rd_digit_count == DAT_DIGITS_PP-1) && rs232_tx_load) begin
|
1000 |
|
|
m1_next_state <= m1_rd_send_space;
|
1001 |
|
|
incr_rd_field_count <= 1;
|
1002 |
|
|
end
|
1003 |
|
|
else if (rs232_tx_load) begin
|
1004 |
|
|
store_dat <= 1;
|
1005 |
|
|
incr_rd_digit_count <= 1;
|
1006 |
|
|
m1_next_state <= m1_rd_send_dat_sr;
|
1007 |
|
|
end
|
1008 |
|
|
else m1_next_state <= m1_rd_send_dat_sr;
|
1009 |
|
|
end
|
1010 |
|
|
|
1011 |
|
|
m1_rd_send_space :
|
1012 |
|
|
begin
|
1013 |
|
|
msg_base <= 5'b10000; // Address of the space
|
1014 |
|
|
incr_msg_offset <= rs232_tx_load;
|
1015 |
|
|
if ((msg_offset == 0) && rs232_tx_load) begin
|
1016 |
|
|
m1_next_state <= m1_bus_granted;
|
1017 |
|
|
reset_msg_offset <= 1;
|
1018 |
|
|
end
|
1019 |
|
|
else m1_next_state <= m1_rd_send_space;
|
1020 |
|
|
end
|
1021 |
|
|
|
1022 |
|
|
m1_rd_send_crlf :
|
1023 |
|
|
begin
|
1024 |
|
|
msg_base <= 5'b10111; // Address of the cr/lf message
|
1025 |
|
|
incr_msg_offset <= rs232_tx_load;
|
1026 |
|
|
if ((msg_offset == 1) && rs232_tx_load) begin
|
1027 |
|
|
m1_next_state <= m1_bus_granted;
|
1028 |
|
|
reset_msg_offset <= 1;
|
1029 |
|
|
end
|
1030 |
|
|
else m1_next_state <= m1_rd_send_crlf;
|
1031 |
|
|
end
|
1032 |
|
|
|
1033 |
|
|
default : m1_next_state <= m1_initial_state;
|
1034 |
|
|
endcase
|
1035 |
|
|
end
|
1036 |
|
|
|
1037 |
|
|
|
1038 |
|
|
// This is the counter for incrementing or loading the cmd_ptr
|
1039 |
|
|
always @(posedge clk_i)
|
1040 |
|
|
begin
|
1041 |
|
|
if (reset_i || reset_cmd_ptr) cmd_ptr <= 0;
|
1042 |
|
|
else if (decr_cmd_ptr) cmd_ptr <= cmd_ptr - 1;
|
1043 |
|
|
else if (incr_cmd_ptr) cmd_ptr <= cmd_ptr + 1;
|
1044 |
|
|
end
|
1045 |
|
|
|
1046 |
|
|
|
1047 |
|
|
// This is the command buffer writing section
|
1048 |
|
|
always @(posedge clk_i)
|
1049 |
|
|
begin
|
1050 |
|
|
if (rs232_echo && cmd_buffer_write) cmd_buffer[cmd_ptr] <= rs232_rx_char;
|
1051 |
|
|
end
|
1052 |
|
|
// This is the command buffer reading section
|
1053 |
|
|
assign cmd_char = cmd_buffer[cmd_ptr];
|
1054 |
|
|
assign lc_cmd_char = (cmd_buffer[cmd_ptr] | 8'h20); // lowercase
|
1055 |
|
|
|
1056 |
|
|
|
1057 |
|
|
|
1058 |
|
|
// These assigments are for detecting whether the cmd_char is
|
1059 |
|
|
// anything of special interest.
|
1060 |
|
|
assign char_is_enter = (cmd_char == 8'h0d); // enter
|
1061 |
|
|
assign char_is_whitespace = (
|
1062 |
|
|
(cmd_char == 8'h20) // space
|
1063 |
|
|
|| (cmd_char == 8'h09) // tab
|
1064 |
|
|
);
|
1065 |
|
|
assign char_is_num = ((cmd_char>=8'h30)&&(cmd_char<=8'h39));
|
1066 |
|
|
assign char_is_a_f = ((lc_cmd_char>=8'h61)&&(lc_cmd_char<=8'h66));
|
1067 |
|
|
assign char_is_hex = ( char_is_num || char_is_a_f );
|
1068 |
|
|
assign char_is_r = (lc_cmd_char == 8'h72); // "r"
|
1069 |
|
|
assign char_is_w = (lc_cmd_char == 8'h77); // "w"
|
1070 |
|
|
assign char_is_i = (lc_cmd_char == 8'h69); // "i"
|
1071 |
|
|
|
1072 |
|
|
assign hex_digit = char_is_num?cmd_char[3:0]:(cmd_char[3:0]+9);
|
1073 |
|
|
|
1074 |
|
|
// This is the command register. It stores the type of command to execute.
|
1075 |
|
|
// This is so that the state machine can parse address, data and qty
|
1076 |
|
|
// into "generic" storage locations, and then when it executes the command,
|
1077 |
|
|
// it refers back to this register in order to determine what type of
|
1078 |
|
|
// operation to perform.
|
1079 |
|
|
|
1080 |
|
|
always @(posedge clk_i)
|
1081 |
|
|
begin
|
1082 |
|
|
if (reset_i) command <= `CMD_0;
|
1083 |
|
|
else if (cmd_i) command <= `CMD_I;
|
1084 |
|
|
else if (cmd_r) command <= `CMD_R;
|
1085 |
|
|
else if (cmd_w) command <= `CMD_W;
|
1086 |
|
|
end
|
1087 |
|
|
|
1088 |
|
|
// This is the "nibble" shift register for the address which is sent character
|
1089 |
|
|
// by character to the user. It is loaded each time the adr_offset is
|
1090 |
|
|
// incremented, in order to save the previous address for use in printing
|
1091 |
|
|
// to the user.
|
1092 |
|
|
always @(posedge clk_i)
|
1093 |
|
|
begin
|
1094 |
|
|
if (reset_i || reset_adr) rd_adr_sr <= 0;
|
1095 |
|
|
else if (incr_adr_offset) rd_adr_sr <= adr_ptr;
|
1096 |
|
|
else if (shift_rd_adr) begin
|
1097 |
|
|
rd_adr_sr[`NIBBLE_SIZE*ADR_DIGITS_PP-1:`NIBBLE_SIZE] <=
|
1098 |
|
|
rd_adr_sr[`NIBBLE_SIZE*(ADR_DIGITS_PP-1)-1:0];
|
1099 |
|
|
rd_adr_sr[`NIBBLE_SIZE-1:0] <= {`NIBBLE_SIZE{1'b0}};
|
1100 |
|
|
end
|
1101 |
|
|
end
|
1102 |
|
|
|
1103 |
|
|
// These are the "nibble" shift registers. They handle loading the
|
1104 |
|
|
// hexadecimal digits from the command line.
|
1105 |
|
|
always @(posedge clk_i)
|
1106 |
|
|
begin
|
1107 |
|
|
if (reset_i || reset_adr) adr_sr <= 0;
|
1108 |
|
|
else if (store_adr) begin
|
1109 |
|
|
adr_sr[`NIBBLE_SIZE*ADR_DIGITS_PP-1:`NIBBLE_SIZE] <=
|
1110 |
|
|
adr_sr[`NIBBLE_SIZE*(ADR_DIGITS_PP-1)-1:0];
|
1111 |
|
|
adr_sr[`NIBBLE_SIZE-1:0] <= hex_digit;
|
1112 |
|
|
end
|
1113 |
|
|
end
|
1114 |
|
|
|
1115 |
|
|
always @(posedge clk_i)
|
1116 |
|
|
begin
|
1117 |
|
|
if (reset_i || reset_dat) dat_sr <= 0;
|
1118 |
|
|
else if (capture_dat) dat_sr <= dat_io;
|
1119 |
|
|
else if (store_dat) begin
|
1120 |
|
|
dat_sr[`NIBBLE_SIZE*DAT_DIGITS_PP-1:`NIBBLE_SIZE] <=
|
1121 |
|
|
dat_sr[`NIBBLE_SIZE*(DAT_DIGITS_PP-1)-1:0];
|
1122 |
|
|
dat_sr[`NIBBLE_SIZE-1:0] <= hex_digit;
|
1123 |
|
|
end
|
1124 |
|
|
end
|
1125 |
|
|
|
1126 |
|
|
always @(posedge clk_i)
|
1127 |
|
|
begin
|
1128 |
|
|
if (reset_i || reset_qty) qty_sr <= 0;
|
1129 |
|
|
else if (init_qty) qty_sr <= 1;
|
1130 |
|
|
else if (store_qty) begin
|
1131 |
|
|
qty_sr[`NIBBLE_SIZE*QTY_DIGITS_PP-1:`NIBBLE_SIZE] <=
|
1132 |
|
|
qty_sr[`NIBBLE_SIZE*(QTY_DIGITS_PP-1)-1:0];
|
1133 |
|
|
qty_sr[`NIBBLE_SIZE-1:0] <= hex_digit;
|
1134 |
|
|
end
|
1135 |
|
|
end
|
1136 |
|
|
|
1137 |
|
|
// This is the rd_digit_count counter. It is used for counting digits
|
1138 |
|
|
// displayed of both the adr_sr and dat_sr, so it must be able to count up
|
1139 |
|
|
// to the extent of the larger of the two...
|
1140 |
|
|
always @(posedge clk_i)
|
1141 |
|
|
begin
|
1142 |
|
|
if (reset_i || reset_rd_digit_count) rd_digit_count <= 0;
|
1143 |
|
|
else if (incr_rd_digit_count) rd_digit_count <= rd_digit_count + 1;
|
1144 |
|
|
end
|
1145 |
|
|
|
1146 |
|
|
// This is the rd_field_count counter. It is used for counting dat_sr fields
|
1147 |
|
|
// displayed per line.
|
1148 |
|
|
always @(posedge clk_i)
|
1149 |
|
|
begin
|
1150 |
|
|
if (reset_i || reset_rd_field_count) rd_field_count <= 0;
|
1151 |
|
|
else if (incr_rd_field_count) rd_field_count <= rd_field_count + 1;
|
1152 |
|
|
end
|
1153 |
|
|
|
1154 |
|
|
|
1155 |
|
|
// This is the watchdog timer counter
|
1156 |
|
|
// The watchdog timer is always "enabled" to operate.
|
1157 |
|
|
always @(posedge clk_i)
|
1158 |
|
|
begin
|
1159 |
|
|
if (reset_i || reset_watchdog) watchdog_timer_count <= 0;
|
1160 |
|
|
else if (~watchdog_timer_done)
|
1161 |
|
|
watchdog_timer_count <= watchdog_timer_count + 1;
|
1162 |
|
|
end
|
1163 |
|
|
assign watchdog_timer_done = (watchdog_timer_count==WATCHDOG_TIMER_VALUE_PP);
|
1164 |
|
|
|
1165 |
|
|
|
1166 |
|
|
endmodule
|
1167 |
|
|
|
1168 |
|
|
|