1 |
2 |
dgisselq |
///////////////////////////////////////////////////////////////////////////
|
2 |
|
|
//
|
3 |
|
|
// Filename: rtcclock.v
|
4 |
|
|
//
|
5 |
|
|
// Project: A Wishbone Controlled Real--time Clock Core
|
6 |
|
|
//
|
7 |
|
|
// Purpose: Implement a real time clock, including alarm, count--down
|
8 |
|
|
// timer, stopwatch, variable time frequency, and more.
|
9 |
|
|
//
|
10 |
|
|
//
|
11 |
|
|
// Creator: Dan Gisselquist, Ph.D.
|
12 |
|
|
// Gisselquist Tecnology, LLC
|
13 |
|
|
//
|
14 |
|
|
///////////////////////////////////////////////////////////////////////////
|
15 |
|
|
//
|
16 |
|
|
// Copyright (C) 2015, Gisselquist Technology, LLC
|
17 |
|
|
//
|
18 |
|
|
// This program is free software (firmware): you can redistribute it and/or
|
19 |
|
|
// modify it under the terms of the GNU General Public License as published
|
20 |
|
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
21 |
|
|
// your option) any later version.
|
22 |
|
|
//
|
23 |
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
24 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
25 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
26 |
|
|
// for more details.
|
27 |
|
|
//
|
28 |
|
|
// You should have received a copy of the GNU General Public License along
|
29 |
|
|
// with this program. (It's in the $(ROOT)/doc directory. Run make with no
|
30 |
|
|
// target there if the PDF file isn't present.) If not, see
|
31 |
|
|
// <http://www.gnu.org/licenses/> for a copy.
|
32 |
|
|
//
|
33 |
|
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
34 |
|
|
// http://www.gnu.org/licenses/gpl.html
|
35 |
|
|
//
|
36 |
|
|
//
|
37 |
|
|
///////////////////////////////////////////////////////////////////////////
|
38 |
|
|
module rtcclock(i_clk,
|
39 |
|
|
// Wishbone interface
|
40 |
|
|
i_wb_cyc, i_wb_stb, i_wb_we, i_wb_addr, i_wb_data,
|
41 |
|
|
// o_wb_ack, o_wb_stb, o_wb_data, // no reads here
|
42 |
|
|
// // Button inputs
|
43 |
|
|
// i_btn,
|
44 |
|
|
// Output registers
|
45 |
|
|
o_data, // multiplexed based upon i_wb_addr
|
46 |
|
|
// Output controls
|
47 |
|
|
o_sseg, o_led, o_interrupt,
|
48 |
|
|
// Time setting hack(s)
|
49 |
|
|
i_hack);
|
50 |
|
|
input i_clk;
|
51 |
|
|
input i_wb_cyc, i_wb_stb, i_wb_we;
|
52 |
|
|
input [2:0] i_wb_addr;
|
53 |
|
|
input [31:0] i_wb_data;
|
54 |
|
|
// input i_btn;
|
55 |
|
|
output reg [31:0] o_data;
|
56 |
|
|
output reg [31:0] o_sseg;
|
57 |
|
|
output wire [15:0] o_led;
|
58 |
|
|
output wire o_interrupt;
|
59 |
|
|
input i_hack;
|
60 |
|
|
|
61 |
|
|
reg [31:0] clock, stopwatch, ckspeed;
|
62 |
3 |
dgisselq |
reg [25:0] timer;
|
63 |
2 |
dgisselq |
|
64 |
|
|
wire ck_sel, tm_sel, sw_sel, sp_sel, al_sel;
|
65 |
|
|
assign ck_sel = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_addr[2:0]==3'b000));
|
66 |
|
|
assign tm_sel = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_addr[2:0]==3'b001));
|
67 |
|
|
assign sw_sel = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_addr[2:0]==3'b010));
|
68 |
|
|
assign al_sel = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_addr[2:0]==3'b011));
|
69 |
|
|
assign sp_sel = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_addr[2:0]==3'b100));
|
70 |
|
|
|
71 |
|
|
reg [39:0] ck_counter;
|
72 |
|
|
reg ck_carry;
|
73 |
|
|
always @(posedge i_clk)
|
74 |
|
|
{ ck_carry, ck_counter } <= ck_counter + { 8'h00, ckspeed };
|
75 |
|
|
|
76 |
|
|
wire ck_pps;
|
77 |
|
|
reg ck_prepps, ck_ppm, ck_pph, ck_ppd;
|
78 |
|
|
reg [7:0] ck_sub;
|
79 |
|
|
initial clock = 32'h00000000;
|
80 |
|
|
assign ck_pps = (ck_carry)&&(ck_prepps);
|
81 |
|
|
always @(posedge i_clk)
|
82 |
|
|
begin
|
83 |
|
|
if (ck_carry)
|
84 |
|
|
ck_sub <= ck_sub + 1;
|
85 |
|
|
ck_prepps <= (ck_sub == 8'hff);
|
86 |
|
|
|
87 |
|
|
if (ck_pps)
|
88 |
|
|
begin // advance the seconds
|
89 |
|
|
if (clock[3:0] >= 4'h9)
|
90 |
|
|
clock[3:0] <= 4'h0;
|
91 |
|
|
else
|
92 |
|
|
clock[3:0] <= clock[3:0] + 4'h1;
|
93 |
|
|
if (clock[7:0] >= 8'h59)
|
94 |
|
|
clock[7:4] <= 4'h0;
|
95 |
|
|
else if (clock[3:0] >= 4'h9)
|
96 |
|
|
clock[7:4] <= clock[7:4] + 4'h1;
|
97 |
|
|
end
|
98 |
|
|
ck_ppm <= (clock[7:0] == 8'h59);
|
99 |
|
|
|
100 |
|
|
if ((ck_pps)&&(ck_ppm))
|
101 |
|
|
begin // advance the minutes
|
102 |
|
|
if (clock[11:8] >= 4'h9)
|
103 |
|
|
clock[11:8] <= 4'h0;
|
104 |
|
|
else
|
105 |
|
|
clock[11:8] <= clock[11:8] + 4'h1;
|
106 |
|
|
if (clock[15:8] >= 8'h59)
|
107 |
|
|
clock[15:12] <= 4'h0;
|
108 |
|
|
else if (clock[11:8] >= 4'h9)
|
109 |
|
|
clock[15:12] <= clock[15:12] + 4'h1;
|
110 |
|
|
end
|
111 |
|
|
ck_pph <= (clock[15:0] == 16'h5959);
|
112 |
|
|
|
113 |
|
|
if ((ck_pps)&&(ck_pph))
|
114 |
|
|
begin // advance the hours
|
115 |
|
|
if (clock[21:16] >= 6'h23)
|
116 |
|
|
begin
|
117 |
|
|
clock[19:16] <= 4'h0;
|
118 |
|
|
clock[21:20] <= 2'h0;
|
119 |
|
|
end else if (clock[19:16] >= 4'h9)
|
120 |
|
|
begin
|
121 |
|
|
clock[19:16] <= 4'h0;
|
122 |
|
|
clock[21:20] <= clock[21:20] + 2'h1;
|
123 |
|
|
end else begin
|
124 |
|
|
clock[19:16] <= clock[19:16] + 4'h1;
|
125 |
|
|
end
|
126 |
|
|
end
|
127 |
|
|
// ppd <= (clock{15:8] == 8'h59);
|
128 |
|
|
|
129 |
|
|
if ((ck_sel)&&(i_wb_we))
|
130 |
|
|
begin
|
131 |
|
|
if (8'hff != i_wb_data[7:0])
|
132 |
|
|
begin
|
133 |
|
|
clock[7:0] <= i_wb_data[7:0];
|
134 |
|
|
ck_ppm <= (i_wb_data[7:0] == 8'h59);
|
135 |
|
|
end
|
136 |
|
|
if (8'hff != i_wb_data[15:8])
|
137 |
|
|
begin
|
138 |
|
|
clock[15:8] <= i_wb_data[15:8];
|
139 |
|
|
ck_pph <= (i_wb_data[15:8] == 8'h59);
|
140 |
|
|
end
|
141 |
|
|
if (6'h3f != i_wb_data[21:16])
|
142 |
|
|
clock[21:16] <= i_wb_data[21:16];
|
143 |
|
|
clock[31:22] <= i_wb_data[31:22];
|
144 |
|
|
if (8'h00 == i_wb_data[7:0])
|
145 |
|
|
ck_sub <= 8'h00;
|
146 |
|
|
end
|
147 |
|
|
end
|
148 |
|
|
|
149 |
|
|
// Clock updates take several clocks, so let's make sure we
|
150 |
|
|
// are only looking at a valid clock value before testing it.
|
151 |
|
|
reg [21:0] ck_last_clock;
|
152 |
|
|
always @(posedge i_clk)
|
153 |
|
|
ck_last_clock <= clock[21:0];
|
154 |
|
|
|
155 |
|
|
|
156 |
|
|
reg tm_pps, tm_ppm, tm_int;
|
157 |
|
|
wire tm_stopped, tm_running, tm_alarm;
|
158 |
|
|
assign tm_stopped = ~timer[24];
|
159 |
|
|
assign tm_running = timer[24];
|
160 |
|
|
assign tm_alarm = timer[25];
|
161 |
|
|
reg [23:0] tm_start;
|
162 |
|
|
reg [7:0] tm_sub;
|
163 |
4 |
dgisselq |
initial tm_start = 24'h00;
|
164 |
|
|
initial timer = 26'h00;
|
165 |
2 |
dgisselq |
initial tm_int = 1'b0;
|
166 |
|
|
initial tm_pps = 1'b0;
|
167 |
|
|
always @(posedge i_clk)
|
168 |
|
|
begin
|
169 |
|
|
if (ck_carry)
|
170 |
|
|
begin
|
171 |
|
|
tm_sub <= tm_sub + 1;
|
172 |
|
|
tm_pps <= (tm_sub == 8'hff);
|
173 |
|
|
end else
|
174 |
|
|
tm_pps <= 1'b0;
|
175 |
|
|
|
176 |
|
|
if ((~tm_alarm)&&(tm_running)&&(tm_pps))
|
177 |
|
|
begin // If we are running ...
|
178 |
|
|
timer[25] <= 1'b0;
|
179 |
|
|
if (timer[23:0] == 24'h00)
|
180 |
|
|
timer[25] <= 1'b1;
|
181 |
|
|
else if (timer[3:0] != 4'h0)
|
182 |
|
|
timer[3:0] <= timer[3:0]-4'h1;
|
183 |
|
|
else begin // last digit is a zero
|
184 |
|
|
timer[3:0] <= 4'h9;
|
185 |
|
|
if (timer[7:4] != 4'h0)
|
186 |
|
|
timer[7:4] <= timer[7:4]-4'h1;
|
187 |
|
|
else begin // last two digits are zero
|
188 |
|
|
timer[7:4] <= 4'h5;
|
189 |
|
|
if (timer[11:8] != 4'h0)
|
190 |
|
|
timer[11:8] <= timer[11:8]-4'h1;
|
191 |
|
|
else begin // last three digits are zero
|
192 |
|
|
timer[11:8] <= 4'h9;
|
193 |
|
|
if (timer[15:12] != 4'h0)
|
194 |
|
|
timer[15:12] <= timer[15:12]-4'h1;
|
195 |
|
|
else begin
|
196 |
|
|
timer[15:12] <= 4'h5;
|
197 |
|
|
if (timer[19:16] != 4'h0)
|
198 |
|
|
timer[19:16] <= timer[19:16]-4'h1;
|
199 |
|
|
else begin
|
200 |
|
|
//
|
201 |
|
|
timer[19:16] <= 4'h9;
|
202 |
|
|
timer[23:20] <= timer[23:20]-4'h1;
|
203 |
|
|
end
|
204 |
|
|
end
|
205 |
|
|
end
|
206 |
|
|
end
|
207 |
|
|
end
|
208 |
|
|
end
|
209 |
|
|
|
210 |
|
|
if((~tm_alarm)&&(tm_running))
|
211 |
|
|
begin
|
212 |
|
|
timer[25] <= (timer[23:0] == 24'h00);
|
213 |
|
|
tm_int <= (timer[23:0] == 24'h00);
|
214 |
|
|
end else tm_int <= 1'b0;
|
215 |
|
|
if (tm_alarm)
|
216 |
|
|
timer[24] <= 1'b0;
|
217 |
|
|
|
218 |
|
|
if ((tm_sel)&&(i_wb_we)&&(tm_running)) // Writes while running
|
219 |
|
|
// Only allowed to stop the timer, nothing more
|
220 |
|
|
timer[24] <= i_wb_data[24];
|
221 |
|
|
else if ((tm_sel)&&(i_wb_we)&&(tm_stopped)) // Writes while off
|
222 |
|
|
begin
|
223 |
|
|
timer[24] <= i_wb_data[24];
|
224 |
|
|
if ((timer[24])||(i_wb_data[24]))
|
225 |
|
|
timer[25] <= 1'b0;
|
226 |
|
|
if (i_wb_data[23:0] != 24'h0000)
|
227 |
|
|
begin
|
228 |
|
|
timer[23:0] <= i_wb_data[23:0];
|
229 |
|
|
tm_start <= i_wb_data[23:0];
|
230 |
|
|
tm_sub <= 8'h00;
|
231 |
|
|
end else if (timer[23:0] == 24'h00)
|
232 |
|
|
begin // Resetting timer to last valid timer start val
|
233 |
|
|
timer[23:0] <= tm_start;
|
234 |
|
|
tm_sub <= 8'h00;
|
235 |
|
|
end
|
236 |
|
|
// Any write clears the alarm
|
237 |
|
|
timer[25] <= 1'b0;
|
238 |
|
|
end
|
239 |
|
|
end
|
240 |
|
|
|
241 |
|
|
//
|
242 |
|
|
// Stopwatch functionality
|
243 |
|
|
//
|
244 |
|
|
// Setting bit '0' starts the stop watch, clearing it stops it.
|
245 |
|
|
// Writing to the register with bit '1' high will clear the stopwatch,
|
246 |
|
|
// and return it to zero provided that the stopwatch is stopped either
|
247 |
|
|
// before or after the write. Hence, writing a '2' to the device
|
248 |
|
|
// will always stop and clear it, whereas writing a '3' to the device
|
249 |
|
|
// will only clear it if it was already stopped.
|
250 |
|
|
reg sw_pps, sw_ppm, sw_pph;
|
251 |
|
|
reg [7:0] sw_sub;
|
252 |
|
|
wire sw_running;
|
253 |
|
|
assign sw_running = stopwatch[0];
|
254 |
4 |
dgisselq |
initial stopwatch = 32'h00000;
|
255 |
2 |
dgisselq |
always @(posedge i_clk)
|
256 |
|
|
begin
|
257 |
|
|
sw_pps <= 1'b0;
|
258 |
|
|
if (sw_running)
|
259 |
|
|
begin
|
260 |
|
|
if (ck_carry)
|
261 |
|
|
begin
|
262 |
|
|
sw_sub <= sw_sub + 1;
|
263 |
|
|
sw_pps <= (sw_sub == 8'hff);
|
264 |
|
|
end
|
265 |
|
|
end
|
266 |
|
|
|
267 |
|
|
stopwatch[7:1] <= sw_sub[7:1];
|
268 |
|
|
|
269 |
|
|
if (sw_pps)
|
270 |
|
|
begin // Second hand
|
271 |
|
|
if (stopwatch[11:8] >= 4'h9)
|
272 |
|
|
stopwatch[11:8] <= 4'h0;
|
273 |
|
|
else
|
274 |
|
|
stopwatch[11:8] <= stopwatch[11:8] + 4'h1;
|
275 |
|
|
|
276 |
|
|
if (stopwatch[15:8] >= 8'h59)
|
277 |
|
|
stopwatch[15:12] <= 4'h0;
|
278 |
|
|
else if (stopwatch[11:8] >= 4'h9)
|
279 |
|
|
stopwatch[15:12] <= stopwatch[15:12] + 4'h1;
|
280 |
|
|
sw_ppm <= (stopwatch[15:8] == 8'h59);
|
281 |
|
|
end else sw_ppm <= 1'b0;
|
282 |
|
|
|
283 |
|
|
if (sw_ppm)
|
284 |
|
|
begin // Minutes
|
285 |
|
|
if (stopwatch[19:16] >= 4'h9)
|
286 |
|
|
stopwatch[19:16] <= 4'h0;
|
287 |
|
|
else
|
288 |
|
|
stopwatch[19:16] <= stopwatch[19:16]+4'h1;
|
289 |
|
|
|
290 |
|
|
if (stopwatch[23:16] >= 8'h59)
|
291 |
|
|
stopwatch[23:20] <= 4'h0;
|
292 |
|
|
else if (stopwatch[19:16] >= 4'h9)
|
293 |
|
|
stopwatch[23:20] <= stopwatch[23:20]+4'h1;
|
294 |
|
|
sw_pph <= (stopwatch[23:16] == 8'h59);
|
295 |
|
|
end else sw_pph <= 1'b0;
|
296 |
|
|
|
297 |
|
|
if (sw_pph)
|
298 |
|
|
begin // And hours
|
299 |
|
|
if (stopwatch[27:24] >= 4'h9)
|
300 |
|
|
stopwatch[27:24] <= 4'h0;
|
301 |
|
|
else
|
302 |
|
|
stopwatch[27:24] <= stopwatch[27:24]+4'h1;
|
303 |
|
|
|
304 |
|
|
if((stopwatch[27:24] >= 4'h9)&&(stopwatch[31:28] < 4'hf))
|
305 |
|
|
stopwatch[31:28] <= stopwatch[27:24]+4'h1;
|
306 |
|
|
end
|
307 |
|
|
|
308 |
|
|
if ((sw_sel)&&(i_wb_we))
|
309 |
|
|
begin
|
310 |
|
|
stopwatch[0] <= i_wb_data[0];
|
311 |
|
|
if((i_wb_data[1])&&((~stopwatch[0])||(~i_wb_data[0])))
|
312 |
|
|
begin
|
313 |
|
|
stopwatch[31:1] <= 31'h00;
|
314 |
|
|
sw_sub <= 8'h00;
|
315 |
|
|
sw_pps <= 1'b0;
|
316 |
|
|
sw_ppm <= 1'b0;
|
317 |
|
|
sw_pph <= 1'b0;
|
318 |
|
|
end
|
319 |
|
|
end
|
320 |
|
|
end
|
321 |
|
|
|
322 |
|
|
//
|
323 |
|
|
// The alarm code
|
324 |
|
|
//
|
325 |
|
|
// Set the alarm register to the time you wish the board to "alarm".
|
326 |
|
|
// The "alarm" will take place once per day at that time. At that
|
327 |
|
|
// time, the RTC code will generate a clock interrupt, and the CPU/host
|
328 |
|
|
// can come and see that the alarm tripped.
|
329 |
|
|
//
|
330 |
|
|
//
|
331 |
|
|
reg [21:0] alarm_time;
|
332 |
|
|
reg al_int, // The alarm interrupt line
|
333 |
|
|
al_enabled, // Whether the alarm is enabled
|
334 |
|
|
al_tripped; // Whether the alarm has tripped
|
335 |
|
|
initial al_enabled= 1'b0;
|
336 |
|
|
initial al_tripped= 1'b0;
|
337 |
|
|
always @(posedge i_clk)
|
338 |
|
|
begin
|
339 |
|
|
if ((al_sel)&&(i_wb_we))
|
340 |
|
|
begin
|
341 |
|
|
// Only adjust the alarm hours if the requested hours
|
342 |
|
|
// are valid. This allows writes to the register,
|
343 |
|
|
// without a prior read, to leave these configuration
|
344 |
|
|
// bits alone.
|
345 |
|
|
if (i_wb_data[21:16] != 6'h3f)
|
346 |
|
|
alarm_time[21:16] <= i_wb_data[21:16];
|
347 |
|
|
// Here's the same thing for the minutes: only adjust
|
348 |
|
|
// the alarm minutes if the new bits are not all 1's.
|
349 |
|
|
if (i_wb_data[15:8] != 8'hff)
|
350 |
|
|
alarm_time[15:8] <= i_wb_data[15:8];
|
351 |
|
|
// Here's the same thing for the seconds: only adjust
|
352 |
|
|
// the alarm minutes if the new bits are not all 1's.
|
353 |
|
|
if (i_wb_data[7:0] != 8'hff)
|
354 |
|
|
alarm_time[7:0] <= i_wb_data[7:0];
|
355 |
|
|
al_enabled <= i_wb_data[24];
|
356 |
|
|
// Reset the alarm if a '1' is written to the tripped
|
357 |
|
|
// register, or if the alarm is disabled.
|
358 |
|
|
if ((i_wb_data[25])||(~i_wb_data[24]))
|
359 |
|
|
al_tripped <= 1'b0;
|
360 |
|
|
end
|
361 |
|
|
|
362 |
|
|
al_int <= 1'b0;
|
363 |
|
|
if ((ck_last_clock != alarm_time)&&(clock[21:0] == alarm_time)
|
364 |
|
|
&&(al_enabled))
|
365 |
|
|
begin
|
366 |
|
|
al_tripped <= 1'b1;
|
367 |
|
|
al_int <= 1'b1;
|
368 |
|
|
end
|
369 |
|
|
end
|
370 |
|
|
|
371 |
|
|
//
|
372 |
|
|
// The ckspeed register is equal to 2^48 divded by the number of
|
373 |
|
|
// clock ticks you expect per second. Adjust high for a slower
|
374 |
|
|
// clock, lower for a faster clock. In this fashion, a single
|
375 |
|
|
// real time clock RTL file can handle tracking the clock in any
|
376 |
|
|
// device. Further, because this is only the lower 32 bits of a
|
377 |
|
|
// 48 bit counter per seconds, the clock jitter is kept below
|
378 |
|
|
// 1 part in 65 thousand.
|
379 |
|
|
//
|
380 |
|
|
initial ckspeed = 32'd2814750; // 2af31e = 2^48 / 100e6 MHz
|
381 |
|
|
// In the case of verilator, comment the above and uncomment the line
|
382 |
|
|
// below. The clock constant below is "close" to simulation time,
|
383 |
|
|
// meaning that my verilator simulation is running about 300x slower
|
384 |
|
|
// than board time.
|
385 |
|
|
// initial ckspeed = 32'd786432000;
|
386 |
|
|
always @(posedge i_clk)
|
387 |
|
|
if ((sp_sel)&&(i_wb_we))
|
388 |
|
|
ckspeed <= i_wb_data;
|
389 |
|
|
|
390 |
|
|
//
|
391 |
|
|
// If you want very fine precision control over your clock, you need
|
392 |
|
|
// to be able to transfer time from one location to another. This
|
393 |
|
|
// is the beginning of that means: by setting a wire, i_hack, high
|
394 |
|
|
// on a particular input, you can then read (later) what the clock
|
395 |
|
|
// time was on that input.
|
396 |
|
|
//
|
397 |
|
|
// What's missing from this high precision adjustment mechanism is a
|
398 |
|
|
// means of actually adjusting this time based upon the time
|
399 |
|
|
// difference you measure here between the hack time and some time
|
400 |
|
|
// on another clock, but we'll get there.
|
401 |
|
|
//
|
402 |
|
|
reg r_hack_carry;
|
403 |
|
|
reg [29:0] hack_time;
|
404 |
|
|
reg [39:0] hack_counter;
|
405 |
4 |
dgisselq |
initial hack_time = 30'h0000;
|
406 |
|
|
initial hack_counter = 40'h0000;
|
407 |
2 |
dgisselq |
always @(posedge i_clk)
|
408 |
|
|
if (i_hack)
|
409 |
|
|
begin
|
410 |
|
|
hack_time <= { clock[21:0], ck_sub };
|
411 |
|
|
hack_counter <= ck_counter;
|
412 |
|
|
r_hack_carry <= ck_carry;
|
413 |
|
|
// if ck_carry is set, the clock register is in the
|
414 |
|
|
// middle of a two clock update. In that case ....
|
415 |
|
|
end else if (r_hack_carry)
|
416 |
|
|
begin // update again on the next clock to get the correct
|
417 |
|
|
// hack time.
|
418 |
|
|
hack_time <= { clock[21:0], ck_sub };
|
419 |
|
|
r_hack_carry <= 1'b0;
|
420 |
|
|
end
|
421 |
|
|
|
422 |
|
|
reg [15:0] h_sseg;
|
423 |
4 |
dgisselq |
reg [3:0] dmask;
|
424 |
2 |
dgisselq |
always @(posedge i_clk)
|
425 |
|
|
case(clock[27:24])
|
426 |
4 |
dgisselq |
4'h1: begin h_sseg <= timer[15:0];
|
427 |
|
|
if (tm_alarm) dmask <= 4'hf;
|
428 |
|
|
else begin
|
429 |
|
|
dmask[3] <= (12'h000 != timer[23:12]); // timer[15:12]
|
430 |
|
|
dmask[2] <= (16'h000 != timer[23: 8]); // timer[11: 8]
|
431 |
|
|
dmask[1] <= (20'h000 != timer[23: 4]); // timer[ 7: 4]
|
432 |
|
|
dmask[0] <= 1'b1; // Always on
|
433 |
|
|
end end
|
434 |
|
|
4'h2: begin h_sseg <= stopwatch[19:4];
|
435 |
|
|
dmask[3] <= (12'h00 != stopwatch[27:16]);
|
436 |
|
|
dmask[2] <= (16'h000 != stopwatch[27:12]);
|
437 |
|
|
dmask[1] <= 1'b1; // Always on, stopwatch[11:8]
|
438 |
|
|
dmask[0] <= 1'b1; // Always on, stopwatch[7:4]
|
439 |
|
|
end
|
440 |
|
|
4'h3: begin h_sseg <= ck_last_clock[15:0];
|
441 |
|
|
dmask[3:0] <= 4'hf;
|
442 |
|
|
end
|
443 |
|
|
default: begin // 4'h0
|
444 |
|
|
h_sseg <= { 2'b00, ck_last_clock[21:8] };
|
445 |
|
|
dmask[2:0] <= 3'hf;
|
446 |
|
|
dmask[3] <= (2'b00 != ck_last_clock[21:20]);
|
447 |
|
|
end
|
448 |
2 |
dgisselq |
endcase
|
449 |
|
|
|
450 |
|
|
wire [31:0] w_sseg;
|
451 |
4 |
dgisselq |
assign w_sseg[ 0] = (~ck_sub[7]);
|
452 |
|
|
assign w_sseg[ 8] = (clock[27:24] == 4'h2);
|
453 |
|
|
assign w_sseg[16] = ((clock[27:24] == 4'h0)&&(~ck_sub[7]))||(clock[27:24] == 4'h3);
|
454 |
2 |
dgisselq |
assign w_sseg[24] = 1'b0;
|
455 |
|
|
hexmap ha(i_clk, h_sseg[ 3: 0], w_sseg[ 7: 1]);
|
456 |
|
|
hexmap hb(i_clk, h_sseg[ 7: 4], w_sseg[15: 9]);
|
457 |
|
|
hexmap hc(i_clk, h_sseg[11: 8], w_sseg[23:17]);
|
458 |
|
|
hexmap hd(i_clk, h_sseg[15:12], w_sseg[31:25]);
|
459 |
|
|
|
460 |
|
|
always @(posedge i_clk)
|
461 |
|
|
if ((tm_alarm || al_tripped)&&(ck_sub[7]))
|
462 |
|
|
o_sseg <= 32'h0000;
|
463 |
|
|
else
|
464 |
4 |
dgisselq |
o_sseg <= {
|
465 |
|
|
(dmask[3])?w_sseg[31:24]:8'h00,
|
466 |
|
|
(dmask[2])?w_sseg[23:16]:8'h00,
|
467 |
|
|
(dmask[1])?w_sseg[15: 8]:8'h00,
|
468 |
|
|
(dmask[0])?w_sseg[ 7: 0]:8'h00 };
|
469 |
2 |
dgisselq |
|
470 |
|
|
reg [17:0] ledreg;
|
471 |
|
|
always @(posedge i_clk)
|
472 |
|
|
if ((ck_pps)&&(ck_ppm))
|
473 |
|
|
ledreg <= 18'h00;
|
474 |
|
|
else if (ck_carry)
|
475 |
|
|
ledreg <= ledreg + 18'h11;
|
476 |
4 |
dgisselq |
assign o_led = (tm_alarm||al_tripped)?{ (16){ck_sub[7]}}:
|
477 |
|
|
{ ledreg[17:10],
|
478 |
|
|
ledreg[10], ledreg[11], ledreg[12], ledreg[13],
|
479 |
|
|
ledreg[14], ledreg[15], ledreg[16], ledreg[17] };
|
480 |
2 |
dgisselq |
|
481 |
|
|
assign o_interrupt = tm_int || al_int;
|
482 |
|
|
|
483 |
|
|
always @(posedge i_clk)
|
484 |
|
|
case(i_wb_addr[2:0])
|
485 |
|
|
3'b000: o_data <= { clock[31:22], ck_last_clock };
|
486 |
4 |
dgisselq |
3'b001: o_data <= { 6'h00, timer };
|
487 |
2 |
dgisselq |
3'b010: o_data <= stopwatch;
|
488 |
|
|
3'b011: o_data <= { 6'h00, al_tripped, al_enabled, 2'b00, alarm_time };
|
489 |
|
|
3'b100: o_data <= ckspeed;
|
490 |
|
|
3'b101: o_data <= { 2'b00, hack_time };
|
491 |
|
|
3'b110: o_data <= hack_counter[39:8];
|
492 |
|
|
3'b111: o_data <= { hack_counter[7:0], 24'h00 };
|
493 |
|
|
endcase
|
494 |
|
|
|
495 |
|
|
endmodule
|