1 |
6 |
dgisselq |
///////////////////////////////////////////////////////////////////////////
|
2 |
|
|
//
|
3 |
|
|
// Filename: rtclight.v
|
4 |
|
|
//
|
5 |
|
|
// Project: A Wishbone Controlled Real--time Clock Core
|
6 |
|
|
//
|
7 |
|
|
// Purpose: Implement a real time clock, including alarm, count--down
|
8 |
|
|
// timer, stopwatch, variable time frequency, and more.
|
9 |
|
|
//
|
10 |
|
|
// This is a light-weight version of the RTC found in this directory.
|
11 |
|
|
// Unlike the full RTC, this version does not support time hacks, seven
|
12 |
|
|
// segment display outputs, or LED's. It is an RTC for an internal core
|
13 |
|
|
// only. (That's how I was using it on one of my projects anyway ...)
|
14 |
|
|
//
|
15 |
|
|
//
|
16 |
|
|
// Creator: Dan Gisselquist, Ph.D.
|
17 |
|
|
// Gisselquist Tecnology, LLC
|
18 |
|
|
//
|
19 |
|
|
///////////////////////////////////////////////////////////////////////////
|
20 |
|
|
//
|
21 |
|
|
// Copyright (C) 2015, Gisselquist Technology, LLC
|
22 |
|
|
//
|
23 |
|
|
// This program is free software (firmware): you can redistribute it and/or
|
24 |
|
|
// modify it under the terms of the GNU General Public License as published
|
25 |
|
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
26 |
|
|
// your option) any later version.
|
27 |
|
|
//
|
28 |
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
29 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
30 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
31 |
|
|
// for more details.
|
32 |
|
|
//
|
33 |
|
|
// You should have received a copy of the GNU General Public License along
|
34 |
|
|
// with this program. (It's in the $(ROOT)/doc directory. Run make with no
|
35 |
|
|
// target there if the PDF file isn't present.) If not, see
|
36 |
|
|
// <http://www.gnu.org/licenses/> for a copy.
|
37 |
|
|
//
|
38 |
|
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
39 |
|
|
// http://www.gnu.org/licenses/gpl.html
|
40 |
|
|
//
|
41 |
|
|
//
|
42 |
|
|
///////////////////////////////////////////////////////////////////////////
|
43 |
|
|
module rtcclock(i_clk,
|
44 |
|
|
// Wishbone interface
|
45 |
|
|
i_wb_cyc, i_wb_stb, i_wb_we, i_wb_addr, i_wb_data,
|
46 |
|
|
// o_wb_ack, o_wb_stb, o_wb_data, // no reads here
|
47 |
|
|
// // Button inputs
|
48 |
|
|
// i_btn,
|
49 |
|
|
// Output registers
|
50 |
|
|
o_data, // multiplexed based upon i_wb_addr
|
51 |
|
|
// Output controls
|
52 |
|
|
o_interrupt,
|
53 |
|
|
// A once-per-day strobe on the last clock of the day
|
54 |
|
|
o_ppd);
|
55 |
|
|
input i_clk;
|
56 |
|
|
input i_wb_cyc, i_wb_stb, i_wb_we;
|
57 |
|
|
input [2:0] i_wb_addr;
|
58 |
|
|
input [31:0] i_wb_data;
|
59 |
|
|
// input i_btn;
|
60 |
|
|
output reg [31:0] o_data;
|
61 |
|
|
output wire o_interrupt, o_ppd;
|
62 |
|
|
|
63 |
|
|
reg [31:0] clock, stopwatch, ckspeed;
|
64 |
|
|
reg [25:0] timer;
|
65 |
|
|
|
66 |
|
|
wire ck_sel, tm_sel, sw_sel, sp_sel, al_sel;
|
67 |
|
|
assign ck_sel = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_addr[2:0]==3'b000));
|
68 |
|
|
assign tm_sel = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_addr[2:0]==3'b001));
|
69 |
|
|
assign sw_sel = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_addr[2:0]==3'b010));
|
70 |
|
|
assign al_sel = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_addr[2:0]==3'b011));
|
71 |
|
|
assign sp_sel = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_addr[2:0]==3'b100));
|
72 |
|
|
|
73 |
|
|
reg [39:0] ck_counter;
|
74 |
|
|
reg ck_carry;
|
75 |
|
|
always @(posedge i_clk)
|
76 |
|
|
{ ck_carry, ck_counter } <= ck_counter + { 8'h00, ckspeed };
|
77 |
|
|
|
78 |
|
|
wire ck_pps;
|
79 |
|
|
reg ck_prepps, ck_ppm, ck_pph, ck_ppd;
|
80 |
|
|
reg [7:0] ck_sub;
|
81 |
|
|
initial clock = 32'h00000000;
|
82 |
|
|
assign ck_pps = (ck_carry)&&(ck_prepps);
|
83 |
|
|
always @(posedge i_clk)
|
84 |
|
|
begin
|
85 |
|
|
if (ck_carry)
|
86 |
|
|
ck_sub <= ck_sub + 8'h1;
|
87 |
|
|
ck_prepps <= (ck_sub == 8'hff);
|
88 |
|
|
|
89 |
|
|
if (ck_pps)
|
90 |
|
|
begin // advance the seconds
|
91 |
|
|
if (clock[3:0] >= 4'h9)
|
92 |
|
|
clock[3:0] <= 4'h0;
|
93 |
|
|
else
|
94 |
|
|
clock[3:0] <= clock[3:0] + 4'h1;
|
95 |
|
|
if (clock[7:0] >= 8'h59)
|
96 |
|
|
clock[7:4] <= 4'h0;
|
97 |
|
|
else if (clock[3:0] >= 4'h9)
|
98 |
|
|
clock[7:4] <= clock[7:4] + 4'h1;
|
99 |
|
|
end
|
100 |
|
|
ck_ppm <= (clock[7:0] == 8'h59);
|
101 |
|
|
|
102 |
|
|
if ((ck_pps)&&(ck_ppm))
|
103 |
|
|
begin // advance the minutes
|
104 |
|
|
if (clock[11:8] >= 4'h9)
|
105 |
|
|
clock[11:8] <= 4'h0;
|
106 |
|
|
else
|
107 |
|
|
clock[11:8] <= clock[11:8] + 4'h1;
|
108 |
|
|
if (clock[15:8] >= 8'h59)
|
109 |
|
|
clock[15:12] <= 4'h0;
|
110 |
|
|
else if (clock[11:8] >= 4'h9)
|
111 |
|
|
clock[15:12] <= clock[15:12] + 4'h1;
|
112 |
|
|
end
|
113 |
|
|
ck_pph <= (clock[15:0] == 16'h5959);
|
114 |
|
|
|
115 |
|
|
if ((ck_pps)&&(ck_pph))
|
116 |
|
|
begin // advance the hours
|
117 |
|
|
if (clock[21:16] >= 6'h23)
|
118 |
|
|
begin
|
119 |
|
|
clock[19:16] <= 4'h0;
|
120 |
|
|
clock[21:20] <= 2'h0;
|
121 |
|
|
end else if (clock[19:16] >= 4'h9)
|
122 |
|
|
begin
|
123 |
|
|
clock[19:16] <= 4'h0;
|
124 |
|
|
clock[21:20] <= clock[21:20] + 2'h1;
|
125 |
|
|
end else begin
|
126 |
|
|
clock[19:16] <= clock[19:16] + 4'h1;
|
127 |
|
|
end
|
128 |
|
|
end
|
129 |
|
|
ck_ppd <= (clock[21:0] == 22'h235959);
|
130 |
|
|
|
131 |
|
|
|
132 |
|
|
if ((ck_sel)&&(i_wb_we))
|
133 |
|
|
begin
|
134 |
|
|
if (8'hff != i_wb_data[7:0])
|
135 |
|
|
begin
|
136 |
|
|
clock[7:0] <= i_wb_data[7:0];
|
137 |
|
|
ck_ppm <= (i_wb_data[7:0] == 8'h59);
|
138 |
|
|
end
|
139 |
|
|
if (8'hff != i_wb_data[15:8])
|
140 |
|
|
begin
|
141 |
|
|
clock[15:8] <= i_wb_data[15:8];
|
142 |
|
|
ck_pph <= (i_wb_data[15:8] == 8'h59);
|
143 |
|
|
end
|
144 |
|
|
if (6'h3f != i_wb_data[21:16])
|
145 |
|
|
clock[21:16] <= i_wb_data[21:16];
|
146 |
|
|
clock[31:22] <= i_wb_data[31:22];
|
147 |
|
|
if (8'h00 == i_wb_data[7:0])
|
148 |
|
|
ck_sub <= 8'h00;
|
149 |
|
|
end
|
150 |
|
|
end
|
151 |
|
|
|
152 |
|
|
// Clock updates take several clocks, so let's make sure we
|
153 |
|
|
// are only looking at a valid clock value before testing it.
|
154 |
|
|
reg [21:0] ck_last_clock;
|
155 |
|
|
always @(posedge i_clk)
|
156 |
|
|
ck_last_clock <= clock[21:0];
|
157 |
|
|
|
158 |
|
|
|
159 |
|
|
reg tm_pps, tm_ppm, tm_int;
|
160 |
|
|
wire tm_stopped, tm_running, tm_alarm;
|
161 |
|
|
assign tm_stopped = ~timer[24];
|
162 |
|
|
assign tm_running = timer[24];
|
163 |
|
|
assign tm_alarm = timer[25];
|
164 |
|
|
reg [23:0] tm_start;
|
165 |
|
|
reg [7:0] tm_sub;
|
166 |
|
|
initial tm_start = 24'h00;
|
167 |
|
|
initial timer = 26'h00;
|
168 |
|
|
initial tm_int = 1'b0;
|
169 |
|
|
initial tm_pps = 1'b0;
|
170 |
|
|
always @(posedge i_clk)
|
171 |
|
|
begin
|
172 |
|
|
if (ck_carry)
|
173 |
|
|
begin
|
174 |
|
|
tm_sub <= tm_sub + 8'h1;
|
175 |
|
|
tm_pps <= (tm_sub == 8'hff);
|
176 |
|
|
end else
|
177 |
|
|
tm_pps <= 1'b0;
|
178 |
|
|
|
179 |
|
|
if ((~tm_alarm)&&(tm_running)&&(tm_pps))
|
180 |
|
|
begin // If we are running ...
|
181 |
|
|
timer[25] <= 1'b0;
|
182 |
|
|
if (timer[23:0] == 24'h00)
|
183 |
|
|
timer[25] <= 1'b1;
|
184 |
|
|
else if (timer[3:0] != 4'h0)
|
185 |
|
|
timer[3:0] <= timer[3:0]-4'h1;
|
186 |
|
|
else begin // last digit is a zero
|
187 |
|
|
timer[3:0] <= 4'h9;
|
188 |
|
|
if (timer[7:4] != 4'h0)
|
189 |
|
|
timer[7:4] <= timer[7:4]-4'h1;
|
190 |
|
|
else begin // last two digits are zero
|
191 |
|
|
timer[7:4] <= 4'h5;
|
192 |
|
|
if (timer[11:8] != 4'h0)
|
193 |
|
|
timer[11:8] <= timer[11:8]-4'h1;
|
194 |
|
|
else begin // last three digits are zero
|
195 |
|
|
timer[11:8] <= 4'h9;
|
196 |
|
|
if (timer[15:12] != 4'h0)
|
197 |
|
|
timer[15:12] <= timer[15:12]-4'h1;
|
198 |
|
|
else begin
|
199 |
|
|
timer[15:12] <= 4'h5;
|
200 |
|
|
if (timer[19:16] != 4'h0)
|
201 |
|
|
timer[19:16] <= timer[19:16]-4'h1;
|
202 |
|
|
else begin
|
203 |
|
|
//
|
204 |
|
|
timer[19:16] <= 4'h9;
|
205 |
|
|
timer[23:20] <= timer[23:20]-4'h1;
|
206 |
|
|
end
|
207 |
|
|
end
|
208 |
|
|
end
|
209 |
|
|
end
|
210 |
|
|
end
|
211 |
|
|
end
|
212 |
|
|
|
213 |
|
|
if((~tm_alarm)&&(tm_running))
|
214 |
|
|
begin
|
215 |
|
|
timer[25] <= (timer[23:0] == 24'h00);
|
216 |
|
|
tm_int <= (timer[23:0] == 24'h00);
|
217 |
|
|
end else tm_int <= 1'b0;
|
218 |
|
|
if (tm_alarm)
|
219 |
|
|
timer[24] <= 1'b0;
|
220 |
|
|
|
221 |
|
|
if ((tm_sel)&&(i_wb_we)&&(tm_running)) // Writes while running
|
222 |
|
|
// Only allowed to stop the timer, nothing more
|
223 |
|
|
timer[24] <= i_wb_data[24];
|
224 |
|
|
else if ((tm_sel)&&(i_wb_we)&&(tm_stopped)) // Writes while off
|
225 |
|
|
begin
|
226 |
|
|
timer[24] <= i_wb_data[24];
|
227 |
|
|
if ((timer[24])||(i_wb_data[24]))
|
228 |
|
|
timer[25] <= 1'b0;
|
229 |
|
|
if (i_wb_data[23:0] != 24'h0000)
|
230 |
|
|
begin
|
231 |
|
|
timer[23:0] <= i_wb_data[23:0];
|
232 |
|
|
tm_start <= i_wb_data[23:0];
|
233 |
|
|
tm_sub <= 8'h00;
|
234 |
|
|
end else if (timer[23:0] == 24'h00)
|
235 |
|
|
begin // Resetting timer to last valid timer start val
|
236 |
|
|
timer[23:0] <= tm_start;
|
237 |
|
|
tm_sub <= 8'h00;
|
238 |
|
|
end
|
239 |
|
|
// Any write clears the alarm
|
240 |
|
|
timer[25] <= 1'b0;
|
241 |
|
|
end
|
242 |
|
|
end
|
243 |
|
|
|
244 |
|
|
//
|
245 |
|
|
// Stopwatch functionality
|
246 |
|
|
//
|
247 |
|
|
// Setting bit '0' starts the stop watch, clearing it stops it.
|
248 |
|
|
// Writing to the register with bit '1' high will clear the stopwatch,
|
249 |
|
|
// and return it to zero provided that the stopwatch is stopped either
|
250 |
|
|
// before or after the write. Hence, writing a '2' to the device
|
251 |
|
|
// will always stop and clear it, whereas writing a '3' to the device
|
252 |
|
|
// will only clear it if it was already stopped.
|
253 |
|
|
reg sw_pps, sw_ppm, sw_pph;
|
254 |
|
|
reg [7:0] sw_sub;
|
255 |
|
|
wire sw_running;
|
256 |
|
|
assign sw_running = stopwatch[0];
|
257 |
|
|
initial stopwatch = 32'h00000;
|
258 |
|
|
always @(posedge i_clk)
|
259 |
|
|
begin
|
260 |
|
|
sw_pps <= 1'b0;
|
261 |
|
|
if (sw_running)
|
262 |
|
|
begin
|
263 |
|
|
if (ck_carry)
|
264 |
|
|
begin
|
265 |
|
|
sw_sub <= sw_sub + 8'h1;
|
266 |
|
|
sw_pps <= (sw_sub == 8'hff);
|
267 |
|
|
end
|
268 |
|
|
end
|
269 |
|
|
|
270 |
|
|
stopwatch[7:1] <= sw_sub[7:1];
|
271 |
|
|
|
272 |
|
|
if (sw_pps)
|
273 |
|
|
begin // Second hand
|
274 |
|
|
if (stopwatch[11:8] >= 4'h9)
|
275 |
|
|
stopwatch[11:8] <= 4'h0;
|
276 |
|
|
else
|
277 |
|
|
stopwatch[11:8] <= stopwatch[11:8] + 4'h1;
|
278 |
|
|
|
279 |
|
|
if (stopwatch[15:8] >= 8'h59)
|
280 |
|
|
stopwatch[15:12] <= 4'h0;
|
281 |
|
|
else if (stopwatch[11:8] >= 4'h9)
|
282 |
|
|
stopwatch[15:12] <= stopwatch[15:12] + 4'h1;
|
283 |
|
|
sw_ppm <= (stopwatch[15:8] == 8'h59);
|
284 |
|
|
end else sw_ppm <= 1'b0;
|
285 |
|
|
|
286 |
|
|
if (sw_ppm)
|
287 |
|
|
begin // Minutes
|
288 |
|
|
if (stopwatch[19:16] >= 4'h9)
|
289 |
|
|
stopwatch[19:16] <= 4'h0;
|
290 |
|
|
else
|
291 |
|
|
stopwatch[19:16] <= stopwatch[19:16]+4'h1;
|
292 |
|
|
|
293 |
|
|
if (stopwatch[23:16] >= 8'h59)
|
294 |
|
|
stopwatch[23:20] <= 4'h0;
|
295 |
|
|
else if (stopwatch[19:16] >= 4'h9)
|
296 |
|
|
stopwatch[23:20] <= stopwatch[23:20]+4'h1;
|
297 |
|
|
sw_pph <= (stopwatch[23:16] == 8'h59);
|
298 |
|
|
end else sw_pph <= 1'b0;
|
299 |
|
|
|
300 |
|
|
if (sw_pph)
|
301 |
|
|
begin // And hours
|
302 |
|
|
if (stopwatch[27:24] >= 4'h9)
|
303 |
|
|
stopwatch[27:24] <= 4'h0;
|
304 |
|
|
else
|
305 |
|
|
stopwatch[27:24] <= stopwatch[27:24]+4'h1;
|
306 |
|
|
|
307 |
|
|
if((stopwatch[27:24] >= 4'h9)&&(stopwatch[31:28] < 4'hf))
|
308 |
|
|
stopwatch[31:28] <= stopwatch[27:24]+4'h1;
|
309 |
|
|
end
|
310 |
|
|
|
311 |
|
|
if ((sw_sel)&&(i_wb_we))
|
312 |
|
|
begin
|
313 |
|
|
stopwatch[0] <= i_wb_data[0];
|
314 |
|
|
if((i_wb_data[1])&&((~stopwatch[0])||(~i_wb_data[0])))
|
315 |
|
|
begin
|
316 |
|
|
stopwatch[31:1] <= 31'h00;
|
317 |
|
|
sw_sub <= 8'h00;
|
318 |
|
|
sw_pps <= 1'b0;
|
319 |
|
|
sw_ppm <= 1'b0;
|
320 |
|
|
sw_pph <= 1'b0;
|
321 |
|
|
end
|
322 |
|
|
end
|
323 |
|
|
end
|
324 |
|
|
|
325 |
|
|
//
|
326 |
|
|
// The alarm code
|
327 |
|
|
//
|
328 |
|
|
// Set the alarm register to the time you wish the board to "alarm".
|
329 |
|
|
// The "alarm" will take place once per day at that time. At that
|
330 |
|
|
// time, the RTC code will generate a clock interrupt, and the CPU/host
|
331 |
|
|
// can come and see that the alarm tripped.
|
332 |
|
|
//
|
333 |
|
|
//
|
334 |
|
|
reg [21:0] alarm_time;
|
335 |
|
|
reg al_int, // The alarm interrupt line
|
336 |
|
|
al_enabled, // Whether the alarm is enabled
|
337 |
|
|
al_tripped; // Whether the alarm has tripped
|
338 |
|
|
initial al_enabled= 1'b0;
|
339 |
|
|
initial al_tripped= 1'b0;
|
340 |
|
|
always @(posedge i_clk)
|
341 |
|
|
begin
|
342 |
|
|
if ((al_sel)&&(i_wb_we))
|
343 |
|
|
begin
|
344 |
|
|
// Only adjust the alarm hours if the requested hours
|
345 |
|
|
// are valid. This allows writes to the register,
|
346 |
|
|
// without a prior read, to leave these configuration
|
347 |
|
|
// bits alone.
|
348 |
|
|
if (i_wb_data[21:16] != 6'h3f)
|
349 |
|
|
alarm_time[21:16] <= i_wb_data[21:16];
|
350 |
|
|
// Here's the same thing for the minutes: only adjust
|
351 |
|
|
// the alarm minutes if the new bits are not all 1's.
|
352 |
|
|
if (i_wb_data[15:8] != 8'hff)
|
353 |
|
|
alarm_time[15:8] <= i_wb_data[15:8];
|
354 |
|
|
// Here's the same thing for the seconds: only adjust
|
355 |
|
|
// the alarm minutes if the new bits are not all 1's.
|
356 |
|
|
if (i_wb_data[7:0] != 8'hff)
|
357 |
|
|
alarm_time[7:0] <= i_wb_data[7:0];
|
358 |
|
|
al_enabled <= i_wb_data[24];
|
359 |
|
|
// Reset the alarm if a '1' is written to the tripped
|
360 |
|
|
// register, or if the alarm is disabled.
|
361 |
|
|
if ((i_wb_data[25])||(~i_wb_data[24]))
|
362 |
|
|
al_tripped <= 1'b0;
|
363 |
|
|
end
|
364 |
|
|
|
365 |
|
|
al_int <= 1'b0;
|
366 |
|
|
if ((ck_last_clock != alarm_time)&&(clock[21:0] == alarm_time)
|
367 |
|
|
&&(al_enabled))
|
368 |
|
|
begin
|
369 |
|
|
al_tripped <= 1'b1;
|
370 |
|
|
al_int <= 1'b1;
|
371 |
|
|
end
|
372 |
|
|
end
|
373 |
|
|
|
374 |
|
|
//
|
375 |
|
|
// The ckspeed register is equal to 2^48 divded by the number of
|
376 |
|
|
// clock ticks you expect per second. Adjust high for a slower
|
377 |
|
|
// clock, lower for a faster clock. In this fashion, a single
|
378 |
|
|
// real time clock RTL file can handle tracking the clock in any
|
379 |
|
|
// device. Further, because this is only the lower 32 bits of a
|
380 |
|
|
// 48 bit counter per seconds, the clock jitter is kept below
|
381 |
|
|
// 1 part in 65 thousand.
|
382 |
|
|
//
|
383 |
|
|
initial ckspeed = 32'd2814750; // 2af31e = 2^48 / 100e6 MHz
|
384 |
|
|
// In the case of verilator, comment the above and uncomment the line
|
385 |
|
|
// below. The clock constant below is "close" to simulation time,
|
386 |
|
|
// meaning that my verilator simulation is running about 300x slower
|
387 |
|
|
// than board time.
|
388 |
|
|
// initial ckspeed = 32'd786432000;
|
389 |
|
|
always @(posedge i_clk)
|
390 |
|
|
if ((sp_sel)&&(i_wb_we))
|
391 |
|
|
ckspeed <= i_wb_data;
|
392 |
|
|
|
393 |
|
|
assign o_interrupt = tm_int || al_int;
|
394 |
|
|
|
395 |
|
|
// A once-per day strobe, on the last second of the day so that the
|
396 |
|
|
// the next clock is the first clock of the day. This is useful for
|
397 |
|
|
// connecting this module to a year/month/date date/calendar module.
|
398 |
|
|
assign o_ppd = (ck_ppd)&&(ck_pps);
|
399 |
|
|
|
400 |
|
|
always @(posedge i_clk)
|
401 |
|
|
case(i_wb_addr[2:0])
|
402 |
|
|
3'b000: o_data <= { clock[31:22], ck_last_clock };
|
403 |
|
|
3'b001: o_data <= { 6'h00, timer };
|
404 |
|
|
3'b010: o_data <= stopwatch;
|
405 |
|
|
3'b011: o_data <= { 6'h00, al_tripped, al_enabled, 2'b00, alarm_time };
|
406 |
|
|
3'b100: o_data <= ckspeed;
|
407 |
|
|
default: o_data <= 32'h000;
|
408 |
|
|
endcase
|
409 |
|
|
|
410 |
|
|
endmodule
|