OpenCores
URL https://opencores.org/ocsvn/s6soc/s6soc/trunk

Subversion Repositories s6soc

[/] [s6soc/] [trunk/] [rtl/] [cpu/] [div.v] - Blame information for rev 47

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 46 dgisselq
////////////////////////////////////////////////////////////////////////////////
2
//
3
// Filename:    div.v
4
//
5
// Project:     Zip CPU -- a small, lightweight, RISC CPU soft core
6
//
7
// Purpose:     Provide an Integer divide capability to the Zip CPU.  Provides
8
//              for both signed and unsigned divide.
9
//
10
// Steps:
11
//      i_rst   The DIVide unit starts in idle.  It can also be placed into an
12
//      idle by asserting the reset input.
13
//
14
//      i_wr    When i_rst is asserted, a divide begins.  On the next clock:
15
//
16
//        o_busy is set high so everyone else knows we are at work and they can
17
//              wait for us to complete.
18
//
19
//        pre_sign is set to true if we need to do a signed divide.  In this
20
//              case, we take a clock cycle to turn the divide into an unsigned
21
//              divide.
22
//
23
//        o_quotient, a place to store our result, is initialized to all zeros.
24
//
25
//        r_dividend is set to the numerator
26
//
27
//        r_divisor is set to 2^31 * the denominator (shift left by 31, or add
28
//              31 zeros to the right of the number.
29
//
30
//      pre_sign When true (clock cycle after i_wr), a clock cycle is used
31
//              to take the absolute value of the various arguments (r_dividend
32
//              and r_divisor), and to calculate what sign the output result
33
//              should be.
34
//
35
//
36
//      At this point, the divide is has started.  The divide works by walking
37
//      through every shift of the 
38
//
39
//                  DIVIDEND    over the
40
//              DIVISOR
41
//
42
//      If the DIVISOR is bigger than the dividend, the divisor is shifted
43
//      right, and nothing is done to the output quotient.
44
//
45
//                  DIVIDEND
46
//               DIVISOR
47
//
48
//      This repeats, until DIVISOR is less than or equal to the divident, as in
49
//
50
//              DIVIDEND
51
//              DIVISOR
52
//
53
//      At this point, if the DIVISOR is less than the dividend, the 
54
//      divisor is subtracted from the dividend, and the DIVISOR is again
55
//      shifted to the right.  Further, a '1' bit gets set in the output
56
//      quotient.
57
//
58
//      Once we've done this for 32 clocks, we've accumulated our answer into
59
//      the output quotient, and we can proceed to the next step.  If the
60
//      result will be signed, the next step negates the quotient, otherwise
61
//      it returns the result.
62
//
63
//      On the clock when we are done, o_busy is set to false, and o_valid set
64
//      to true.  (It is a violation of the ZipCPU internal protocol for both
65
//      busy and valid to ever be true on the same clock.  It is also a 
66
//      violation for busy to be false with valid true thereafter.)
67
//
68
//
69
// Creator:     Dan Gisselquist, Ph.D.
70
//              Gisselquist Technology, LLC
71
//
72
////////////////////////////////////////////////////////////////////////////////
73
//
74
// Copyright (C) 2015-2017, Gisselquist Technology, LLC
75
//
76
// This program is free software (firmware): you can redistribute it and/or
77
// modify it under the terms of  the GNU General Public License as published
78
// by the Free Software Foundation, either version 3 of the License, or (at
79
// your option) any later version.
80
//
81
// This program is distributed in the hope that it will be useful, but WITHOUT
82
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
83
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
84
// for more details.
85
//
86
// You should have received a copy of the GNU General Public License along
87
// with this program.  (It's in the $(ROOT)/doc directory.  Run make with no
88
// target there if the PDF file isn't present.)  If not, see
89
// <http://www.gnu.org/licenses/> for a copy.
90
//
91
// License:     GPL, v3, as defined and found on www.gnu.org,
92
//              http://www.gnu.org/licenses/gpl.html
93
//
94
//
95
////////////////////////////////////////////////////////////////////////////////
96
//
97
//
98
// `include "cpudefs.v"
99
//
100
module  div(i_clk, i_rst, i_wr, i_signed, i_numerator, i_denominator,
101
                o_busy, o_valid, o_err, o_quotient, o_flags);
102
        parameter               BW=32, LGBW = 5;
103
        input                   i_clk, i_rst;
104
        // Input parameters
105
        input                   i_wr, i_signed;
106
        input   [(BW-1):0]       i_numerator, i_denominator;
107
        // Output parameters
108
        output  reg             o_busy, o_valid, o_err;
109
        output  reg [(BW-1):0]   o_quotient;
110
        output  wire    [3:0]    o_flags;
111
 
112
        // r_busy is an internal busy register.  It will clear one clock
113
        // before we are valid, so it can't be o_busy ...
114
        //
115
        reg                     r_busy;
116
        reg     [(2*BW-2):0]     r_divisor;
117
        reg     [(BW-1):0]       r_dividend;
118
        wire    [(BW):0] diff; // , xdiff[(BW-1):0];
119
        assign  diff = r_dividend - r_divisor[(BW-1):0];
120
        // assign       xdiff= r_dividend - { 1'b0, r_divisor[(BW-1):1] };
121
 
122
        reg             r_sign, pre_sign, r_z, r_c, last_bit;
123
        reg     [(LGBW-1):0]     r_bit;
124
 
125
        reg     zero_divisor;
126
        initial zero_divisor = 1'b0;
127
        always @(posedge i_clk)
128
                zero_divisor <= (r_divisor == 0)&&(r_busy);
129
 
130
        initial r_busy = 1'b0;
131
        always @(posedge i_clk)
132
                if (i_rst)
133
                        r_busy <= 1'b0;
134
                else if (i_wr)
135
                        r_busy <= 1'b1;
136
                else if ((last_bit)||(zero_divisor))
137
                        r_busy <= 1'b0;
138
 
139
        initial o_busy = 1'b0;
140
        always @(posedge i_clk)
141
                if (i_rst)
142
                        o_busy <= 1'b0;
143
                else if (i_wr)
144
                        o_busy <= 1'b1;
145
                else if (((last_bit)&&(~r_sign))||(zero_divisor))
146
                        o_busy <= 1'b0;
147
                else if (~r_busy)
148
                        o_busy <= 1'b0;
149
 
150
        always @(posedge i_clk)
151
                if ((i_rst)||(i_wr))
152
                        o_valid <= 1'b0;
153
                else if (r_busy)
154
                begin
155
                        if ((last_bit)||(zero_divisor))
156
                                o_valid <= (zero_divisor)||(~r_sign);
157
                end else if (r_sign)
158
                begin
159
                        o_valid <= (~zero_divisor); // 1'b1;
160
                end else
161
                        o_valid <= 1'b0;
162
 
163
        initial o_err = 1'b0;
164
        always @(posedge i_clk)
165
                if((i_rst)||(o_valid))
166
                        o_err <= 1'b0;
167
                else if (((r_busy)||(r_sign))&&(zero_divisor))
168
                        o_err <= 1'b1;
169
                else
170
                        o_err <= 1'b0;
171
 
172
        initial last_bit = 1'b0;
173
        always @(posedge i_clk)
174
                if ((i_wr)||(pre_sign)||(i_rst))
175
                        last_bit <= 1'b0;
176
                else if (r_busy)
177
                        last_bit <= (r_bit == {{(LGBW-1){1'b0}},1'b1});
178
 
179
        always @(posedge i_clk)
180
                // if (i_rst) r_busy <= 1'b0;
181
                // else
182
                if (i_wr)
183
                begin
184
                        //
185
                        // Set our values upon an initial command.  Here's
186
                        // where we come in and start.
187
                        //
188
                        // r_busy <= 1'b1;
189
                        //
190
                        o_quotient <= 0;
191
                        r_bit <= {(LGBW){1'b1}};
192
                        r_divisor <= {  i_denominator, {(BW-1){1'b0}} };
193
                        r_dividend <=  i_numerator;
194
                        r_sign <= 1'b0;
195
                        pre_sign <= i_signed;
196
                        r_z <= 1'b1;
197
                end else if (pre_sign)
198
                begin
199
                        //
200
                        // Note that we only come in here, for one clock, if
201
                        // our initial value may have been signed.  If we are
202
                        // doing an unsigned divide, we then skip this step.
203
                        //
204
                        r_sign <= ((r_divisor[(2*BW-2)])^(r_dividend[(BW-1)]));
205
                        // Negate our dividend if necessary so that it becomes
206
                        // a magnitude only value
207
                        if (r_dividend[BW-1])
208
                                r_dividend <= -r_dividend;
209
                        // Do the same with the divisor--rendering it into
210
                        // a magnitude only.
211
                        if (r_divisor[(2*BW-2)])
212
                                r_divisor[(2*BW-2):(BW-1)] <= -r_divisor[(2*BW-2):(BW-1)];
213
                        //
214
                        // We only do this stage for a single clock, so go on
215
                        // with the rest of the divide otherwise.
216
                        pre_sign <= 1'b0;
217
                end else if (r_busy)
218
                begin
219
                        // While the divide is taking place, we examine each bit
220
                        // in turn here.
221
                        //
222
                        r_bit <= r_bit + {(LGBW){1'b1}}; // r_bit = r_bit - 1;
223
                        r_divisor <= { 1'b0, r_divisor[(2*BW-2):1] };
224
                        if (|r_divisor[(2*BW-2):(BW)])
225
                        begin
226
                        end else if (diff[BW])
227
                        begin
228
                                // 
229
                                // diff = r_dividend - r_divisor[(BW-1):0];
230
                                //
231
                                // If this value was negative, there wasn't
232
                                // enough value in the dividend to support
233
                                // pulling off a bit.  We'll move down a bit
234
                                // therefore and try again.
235
                                //
236
                        end else begin
237
                                //
238
                                // Put a '1' into our output accumulator.
239
                                // Subtract the divisor from the dividend,
240
                                // and then move on to the next bit
241
                                //
242
                                r_dividend <= diff[(BW-1):0];
243
                                o_quotient[r_bit[(LGBW-1):0]] <= 1'b1;
244
                                r_z <= 1'b0;
245
                        end
246
                        r_sign <= (r_sign)&&(~zero_divisor);
247
                end else if (r_sign)
248
                begin
249
                        r_sign <= 1'b0;
250
                        o_quotient <= -o_quotient;
251
                end
252
 
253
        // Set Carry on an exact divide
254
        wire    w_n;
255
        always @(posedge i_clk)
256
                r_c <= (r_busy)&&((diff == 0)||(r_dividend == 0));
257
        assign w_n = o_quotient[(BW-1)];
258
 
259
        assign o_flags = { 1'b0, w_n, r_c, r_z };
260
endmodule

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.