| 1 |
2 |
dgisselq |
///////////////////////////////////////////////////////////////////////////////
|
| 2 |
|
|
//
|
| 3 |
|
|
// Filename: idecode.v
|
| 4 |
|
|
//
|
| 5 |
|
|
// Project: Zip CPU -- a small, lightweight, RISC CPU soft core
|
| 6 |
|
|
//
|
| 7 |
|
|
// Purpose: This RTL file specifies how instructions are to be decoded
|
| 8 |
|
|
// into their underlying meanings. This is specifically a version
|
| 9 |
|
|
// designed to support a "Next Generation", or "Version 2" instruction
|
| 10 |
|
|
// set as (currently) activated by the OPT_NEW_INSTRUCTION_SET option
|
| 11 |
|
|
// in cpudefs.v.
|
| 12 |
|
|
//
|
| 13 |
|
|
// I expect to (eventually) retire the old instruction set, at which point
|
| 14 |
|
|
// this will become the default instruction set decoder.
|
| 15 |
|
|
//
|
| 16 |
|
|
//
|
| 17 |
|
|
// Creator: Dan Gisselquist, Ph.D.
|
| 18 |
|
|
// Gisselquist Technology, LLC
|
| 19 |
|
|
//
|
| 20 |
|
|
///////////////////////////////////////////////////////////////////////////////
|
| 21 |
|
|
//
|
| 22 |
|
|
// Copyright (C) 2015, Gisselquist Technology, LLC
|
| 23 |
|
|
//
|
| 24 |
|
|
// This program is free software (firmware): you can redistribute it and/or
|
| 25 |
|
|
// modify it under the terms of the GNU General Public License as published
|
| 26 |
|
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
| 27 |
|
|
// your option) any later version.
|
| 28 |
|
|
//
|
| 29 |
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
| 30 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
| 31 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 32 |
|
|
// for more details.
|
| 33 |
|
|
//
|
| 34 |
|
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
| 35 |
|
|
// http://www.gnu.org/licenses/gpl.html
|
| 36 |
|
|
//
|
| 37 |
|
|
//
|
| 38 |
|
|
///////////////////////////////////////////////////////////////////////////////
|
| 39 |
|
|
//
|
| 40 |
|
|
//
|
| 41 |
|
|
//
|
| 42 |
|
|
`define CPU_CC_REG 4'he
|
| 43 |
|
|
`define CPU_PC_REG 4'hf
|
| 44 |
|
|
//
|
| 45 |
|
|
`include "cpudefs.v"
|
| 46 |
|
|
//
|
| 47 |
|
|
//
|
| 48 |
|
|
//
|
| 49 |
|
|
module idecode(i_clk, i_rst, i_ce, i_stalled,
|
| 50 |
|
|
i_instruction, i_gie, i_pc, i_pf_valid,
|
| 51 |
|
|
i_illegal,
|
| 52 |
|
|
o_phase, o_illegal,
|
| 53 |
|
|
o_pc, o_gie,
|
| 54 |
|
|
o_dcdR, o_dcdA, o_dcdB, o_I, o_zI,
|
| 55 |
|
|
o_cond, o_wF,
|
| 56 |
|
|
o_op, o_ALU, o_M, o_DV, o_FP, o_break, o_lock,
|
| 57 |
|
|
o_wR, o_rA, o_rB,
|
| 58 |
|
|
o_early_branch, o_branch_pc, o_ljmp,
|
| 59 |
|
|
o_pipe
|
| 60 |
|
|
);
|
| 61 |
|
|
parameter ADDRESS_WIDTH=24, IMPLEMENT_MPY=1, EARLY_BRANCHING=1,
|
| 62 |
|
|
IMPLEMENT_DIVIDE=1, IMPLEMENT_FPU=0, AW = ADDRESS_WIDTH;
|
| 63 |
|
|
input i_clk, i_rst, i_ce, i_stalled;
|
| 64 |
|
|
input [31:0] i_instruction;
|
| 65 |
|
|
input i_gie;
|
| 66 |
|
|
input [(AW-1):0] i_pc;
|
| 67 |
|
|
input i_pf_valid, i_illegal;
|
| 68 |
|
|
output wire o_phase;
|
| 69 |
|
|
output reg o_illegal;
|
| 70 |
|
|
output reg [(AW-1):0] o_pc;
|
| 71 |
|
|
output reg o_gie;
|
| 72 |
|
|
output reg [6:0] o_dcdR, o_dcdA, o_dcdB;
|
| 73 |
|
|
output wire [31:0] o_I;
|
| 74 |
|
|
output reg o_zI;
|
| 75 |
|
|
output reg [3:0] o_cond;
|
| 76 |
|
|
output reg o_wF;
|
| 77 |
|
|
output reg [3:0] o_op;
|
| 78 |
|
|
output reg o_ALU, o_M, o_DV, o_FP, o_break, o_lock;
|
| 79 |
|
|
output reg o_wR, o_rA, o_rB;
|
| 80 |
|
|
output wire o_early_branch;
|
| 81 |
|
|
output wire [(AW-1):0] o_branch_pc;
|
| 82 |
|
|
output wire o_ljmp;
|
| 83 |
|
|
output reg o_pipe;
|
| 84 |
|
|
|
| 85 |
|
|
wire dcdA_stall, dcdB_stall, dcdF_stall;
|
| 86 |
|
|
wire o_dcd_early_branch;
|
| 87 |
|
|
wire [(AW-1):0] o_dcd_branch_pc;
|
| 88 |
|
|
reg o_dcdI, o_dcdIz;
|
| 89 |
|
|
|
| 90 |
|
|
|
| 91 |
|
|
wire [4:0] w_op;
|
| 92 |
|
|
wire w_ldi, w_mov, w_cmptst, w_ldixx, w_ALU;
|
| 93 |
|
|
wire [4:0] w_dcdR, w_dcdB, w_dcdA;
|
| 94 |
|
|
wire w_dcdR_pc, w_dcdR_cc;
|
| 95 |
|
|
wire w_dcdA_pc, w_dcdA_cc;
|
| 96 |
|
|
wire w_dcdB_pc, w_dcdB_cc;
|
| 97 |
|
|
wire [3:0] w_cond;
|
| 98 |
|
|
wire w_wF, w_dcdM, w_dcdDV, w_dcdFP;
|
| 99 |
|
|
wire w_wR, w_rA, w_rB, w_wR_n;
|
| 100 |
|
|
wire w_ljmp;
|
| 101 |
|
|
|
| 102 |
|
|
generate
|
| 103 |
|
|
if (EARLY_BRANCHING != 0)
|
| 104 |
|
|
assign w_ljmp = (iword == 32'h7c87c000);
|
| 105 |
|
|
else
|
| 106 |
|
|
assign w_ljmp = 1'b0;
|
| 107 |
|
|
endgenerate
|
| 108 |
|
|
|
| 109 |
|
|
|
| 110 |
|
|
wire [31:0] iword;
|
| 111 |
|
|
`ifdef OPT_VLIW
|
| 112 |
|
|
reg [16:0] r_nxt_half;
|
| 113 |
|
|
assign iword = (o_phase)
|
| 114 |
|
|
// set second half as a NOOP ... but really
|
| 115 |
|
|
// shouldn't matter
|
| 116 |
|
|
? { r_nxt_half[16:7], 1'b0, r_nxt_half[6:0], 5'b11000, 3'h7, 6'h00 }
|
| 117 |
|
|
: i_instruction;
|
| 118 |
|
|
`else
|
| 119 |
|
|
assign iword = { 1'b0, i_instruction[30:0] };
|
| 120 |
|
|
`endif
|
| 121 |
|
|
|
| 122 |
|
|
assign w_op= iword[26:22];
|
| 123 |
|
|
assign w_mov = (w_op == 5'h0f);
|
| 124 |
|
|
assign w_ldi = (w_op[4:1] == 4'hb);
|
| 125 |
|
|
assign w_cmptst = (w_op[4:1] == 4'h8);
|
| 126 |
|
|
assign w_ldixx = (w_op[4:1] == 4'h4);
|
| 127 |
|
|
assign w_ALU = (~w_op[4]);
|
| 128 |
|
|
|
| 129 |
|
|
// 4 LUTs
|
| 130 |
|
|
assign w_dcdR = { ((~iword[31])&&(w_mov)&&(~i_gie))?iword[18]:i_gie,
|
| 131 |
|
|
iword[30:27] };
|
| 132 |
|
|
// 4 LUTs
|
| 133 |
|
|
assign w_dcdB = { ((~iword[31])&&(w_mov)&&(~i_gie))?iword[13]:i_gie,
|
| 134 |
|
|
iword[17:14] };
|
| 135 |
|
|
|
| 136 |
|
|
// 0 LUTs
|
| 137 |
|
|
assign w_dcdA = w_dcdR;
|
| 138 |
|
|
// 2 LUTs, 1 delay each
|
| 139 |
|
|
assign w_dcdR_pc = (w_dcdR == {i_gie, `CPU_PC_REG});
|
| 140 |
|
|
assign w_dcdR_cc = (w_dcdR == {i_gie, `CPU_CC_REG});
|
| 141 |
|
|
// 0 LUTs
|
| 142 |
|
|
assign w_dcdA_pc = w_dcdR_pc;
|
| 143 |
|
|
assign w_dcdA_cc = w_dcdR_cc;
|
| 144 |
|
|
// 2 LUTs, 1 delays each
|
| 145 |
|
|
assign w_dcdB_pc = (w_dcdB[3:0] == `CPU_PC_REG);
|
| 146 |
|
|
assign w_dcdB_cc = (w_dcdB[3:0] == `CPU_CC_REG);
|
| 147 |
|
|
|
| 148 |
|
|
// Under what condition will we execute this
|
| 149 |
|
|
// instruction? Only the load immediate instruction
|
| 150 |
|
|
// is completely unconditional.
|
| 151 |
|
|
//
|
| 152 |
|
|
// 3+4 LUTs
|
| 153 |
|
|
assign w_cond = (w_ldi) ? 4'h8 :
|
| 154 |
|
|
(iword[31])?{(iword[20:19]==2'b00),
|
| 155 |
|
|
1'b0,iword[20:19]}
|
| 156 |
|
|
: { (iword[21:19]==3'h0), iword[21:19] };
|
| 157 |
|
|
|
| 158 |
|
|
// 1 LUT
|
| 159 |
|
|
assign w_dcdM = (w_op[4:1] == 4'h9);
|
| 160 |
|
|
// 1 LUT
|
| 161 |
|
|
assign w_dcdDV = (w_op[4:1] == 4'ha);
|
| 162 |
|
|
// 1 LUT
|
| 163 |
|
|
assign w_dcdFP = (w_op[4:3] == 2'b11)&&(w_dcdR[3:1] != 3'h7);
|
| 164 |
|
|
// 4 LUT's--since it depends upon FP/NOOP condition (vs 1 before)
|
| 165 |
|
|
// Everything reads A but ... NOOP/BREAK/LOCK, LDI, LOD, MOV
|
| 166 |
|
|
assign w_rA = (w_dcdFP)
|
| 167 |
|
|
// Divide's read A
|
| 168 |
|
|
||(w_dcdDV)
|
| 169 |
|
|
// ALU read's A, unless it's a MOV to A
|
| 170 |
|
|
// This includes LDIHI/LDILO
|
| 171 |
|
|
||((~w_op[4])&&(w_op[3:0]!=4'hf))
|
| 172 |
|
|
// STO's read A
|
| 173 |
|
|
||((w_dcdM)&&(w_op[0]))
|
| 174 |
|
|
// Test/compares
|
| 175 |
|
|
||(w_op[4:1]== 4'h8);
|
| 176 |
|
|
// 1 LUTs -- do we read a register for operand B? Specifically, do
|
| 177 |
|
|
// we need to stall if the register is not (yet) ready?
|
| 178 |
|
|
assign w_rB = (w_mov)||((iword[18])&&((~w_ldi)&&(~w_ldixx)));
|
| 179 |
|
|
// 1 LUT: All but STO, NOOP/BREAK/LOCK, and CMP/TST write back to w_dcdR
|
| 180 |
|
|
assign w_wR_n = ((w_dcdM)&&(w_op[0]))
|
| 181 |
|
|
||((w_op[4:3]==2'b11)&&(w_dcdR[3:1]==3'h7))
|
| 182 |
|
|
||(w_cmptst);
|
| 183 |
|
|
assign w_wR = ~w_wR_n;
|
| 184 |
|
|
//
|
| 185 |
|
|
// 1-output bit (5 Opcode bits, 4 out-reg bits, 3 condition bits)
|
| 186 |
|
|
//
|
| 187 |
|
|
// This'd be 4 LUTs, save that we have the carve out for NOOPs
|
| 188 |
|
|
// and writes to the PC/CC register(s).
|
| 189 |
|
|
assign w_wF = (w_cmptst)
|
| 190 |
|
|
||((w_cond[3])&&((w_dcdFP)||(w_dcdDV)
|
| 191 |
|
|
||((w_ALU)&&(~w_mov)&&(~w_ldixx)
|
| 192 |
|
|
&&(iword[30:28] != 3'h7))));
|
| 193 |
|
|
|
| 194 |
|
|
// Bottom 13 bits: no LUT's
|
| 195 |
|
|
// w_dcd[12: 0] -- no LUTs
|
| 196 |
|
|
// w_dcd[ 13] -- 2 LUTs
|
| 197 |
|
|
// w_dcd[17:14] -- (5+i0+i1) = 3 LUTs, 1 delay
|
| 198 |
|
|
// w_dcd[22:18] : 5 LUTs, 1 delay (assuming high bit is o/w determined)
|
| 199 |
|
|
reg [22:0] r_I;
|
| 200 |
|
|
wire [22:0] w_I, w_fullI;
|
| 201 |
|
|
wire w_Iz;
|
| 202 |
|
|
|
| 203 |
|
|
assign w_fullI = (w_ldi) ? { iword[22:0] } // LDI
|
| 204 |
|
|
:((w_mov) ?{ {(23-13){iword[12]}}, iword[12:0] } // Move
|
| 205 |
|
|
:((~iword[18]) ? { {(23-18){iword[17]}}, iword[17:0] }
|
| 206 |
|
|
: { {(23-14){iword[13]}}, iword[13:0] }
|
| 207 |
|
|
));
|
| 208 |
|
|
|
| 209 |
|
|
`ifdef OPT_VLIW
|
| 210 |
|
|
wire [5:0] w_halfI;
|
| 211 |
|
|
assign w_halfI = (w_ldi) ? iword[5:0]
|
| 212 |
|
|
:((iword[5]) ? 6'h00 : {iword[4],iword[4:0]});
|
| 213 |
|
|
assign w_I = (iword[31])? {{(23-6){w_halfI[5]}}, w_halfI }:w_fullI;
|
| 214 |
|
|
`else
|
| 215 |
|
|
assign w_I = w_fullI;
|
| 216 |
|
|
`endif
|
| 217 |
|
|
assign w_Iz = (w_I == 0);
|
| 218 |
|
|
|
| 219 |
|
|
|
| 220 |
|
|
`ifdef OPT_VLIW
|
| 221 |
|
|
//
|
| 222 |
|
|
// The o_phase parameter is special. It needs to let the software
|
| 223 |
|
|
// following know that it cannot break/interrupt on an o_phase asserted
|
| 224 |
|
|
// instruction, lest the break take place between the first and second
|
| 225 |
|
|
// half of a VLIW instruction. To do this, o_phase must be asserted
|
| 226 |
|
|
// when the first instruction half is valid, but not asserted on either
|
| 227 |
|
|
// a 32-bit instruction or the second half of a 2x16-bit instruction.
|
| 228 |
|
|
reg r_phase;
|
| 229 |
|
|
initial r_phase = 1'b0;
|
| 230 |
|
|
always @(posedge i_clk)
|
| 231 |
|
|
if (i_rst) // When no instruction is in the pipe, phase is zero
|
| 232 |
|
|
r_phase <= 1'b0;
|
| 233 |
|
|
else if (i_ce)
|
| 234 |
|
|
r_phase <= (o_phase)? 1'b0:(i_instruction[31]);
|
| 235 |
|
|
// Phase is '1' on the first instruction of a two-part set
|
| 236 |
|
|
// But, due to the delay in processing, it's '1' when our output is
|
| 237 |
|
|
// valid for that first part, but that'll be the same time we
|
| 238 |
|
|
// are processing the second part ... so it may look to us like a '1'
|
| 239 |
|
|
// on the second half of processing.
|
| 240 |
|
|
|
| 241 |
|
|
assign o_phase = r_phase;
|
| 242 |
|
|
`else
|
| 243 |
|
|
assign o_phase = 1'b0;
|
| 244 |
|
|
`endif
|
| 245 |
|
|
|
| 246 |
|
|
|
| 247 |
|
|
initial o_illegal = 1'b0;
|
| 248 |
|
|
always @(posedge i_clk)
|
| 249 |
|
|
if (i_rst)
|
| 250 |
|
|
o_illegal <= 1'b0;
|
| 251 |
|
|
else if (i_ce)
|
| 252 |
|
|
begin
|
| 253 |
|
|
`ifdef OPT_VLIW
|
| 254 |
|
|
o_illegal <= (i_illegal);
|
| 255 |
|
|
`else
|
| 256 |
|
|
o_illegal <= ((i_illegal) || (i_instruction[31]));
|
| 257 |
|
|
`endif
|
| 258 |
|
|
if ((IMPLEMENT_MPY!=1)&&(w_op[4:1]==4'h5))
|
| 259 |
|
|
o_illegal <= 1'b1;
|
| 260 |
|
|
|
| 261 |
|
|
if ((IMPLEMENT_DIVIDE==0)&&(w_dcdDV))
|
| 262 |
|
|
o_illegal <= 1'b1;
|
| 263 |
|
|
else if ((IMPLEMENT_DIVIDE!=0)&&(w_dcdDV)&&(w_dcdR[3:1]==3'h7))
|
| 264 |
|
|
o_illegal <= 1'b1;
|
| 265 |
|
|
|
| 266 |
|
|
|
| 267 |
|
|
if ((IMPLEMENT_FPU!=0)&&(w_dcdFP)&&(w_dcdR[3:1]==3'h7))
|
| 268 |
|
|
o_illegal <= 1'b1;
|
| 269 |
|
|
else if ((IMPLEMENT_FPU==0)&&(w_dcdFP))
|
| 270 |
|
|
o_illegal <= 1'b1;
|
| 271 |
|
|
|
| 272 |
|
|
if ((w_op[4:3]==2'b11)&&(w_dcdR[3:1]==3'h7)
|
| 273 |
|
|
&&(
|
| 274 |
|
|
(w_op[2:0] != 3'h2) // LOCK
|
| 275 |
|
|
&&(w_op[2:0] != 3'h1) // BREAK
|
| 276 |
|
|
&&(w_op[2:0] != 3'h0))) // NOOP
|
| 277 |
|
|
o_illegal <= 1'b1;
|
| 278 |
|
|
end
|
| 279 |
|
|
|
| 280 |
|
|
|
| 281 |
|
|
always @(posedge i_clk)
|
| 282 |
|
|
if (i_ce)
|
| 283 |
|
|
begin
|
| 284 |
|
|
`ifdef OPT_VLIW
|
| 285 |
|
|
if (~o_phase)
|
| 286 |
|
|
begin
|
| 287 |
|
|
o_gie<= i_gie;
|
| 288 |
|
|
// i.e. dcd_pc+1
|
| 289 |
|
|
o_pc <= i_pc+{{(AW-1){1'b0}},1'b1};
|
| 290 |
|
|
end
|
| 291 |
|
|
`else
|
| 292 |
|
|
o_gie<= i_gie;
|
| 293 |
|
|
o_pc <= i_pc+{{(AW-1){1'b0}},1'b1};
|
| 294 |
|
|
`endif
|
| 295 |
|
|
|
| 296 |
|
|
// Under what condition will we execute this
|
| 297 |
|
|
// instruction? Only the load immediate instruction
|
| 298 |
|
|
// is completely unconditional.
|
| 299 |
|
|
o_cond <= w_cond;
|
| 300 |
|
|
// Don't change the flags on conditional instructions,
|
| 301 |
|
|
// UNLESS: the conditional instruction was a CMP
|
| 302 |
|
|
// or TST instruction.
|
| 303 |
|
|
o_wF <= w_wF;
|
| 304 |
|
|
|
| 305 |
|
|
// Record what operation/op-code (4-bits) we are doing
|
| 306 |
|
|
// Note that LDI magically becomes a MOV
|
| 307 |
|
|
// instruction here. That way it's a pass through
|
| 308 |
|
|
// the ALU. Likewise, the two compare instructions
|
| 309 |
|
|
// CMP and TST becomes SUB and AND here as well.
|
| 310 |
|
|
// We keep only the bottom four bits, since we've
|
| 311 |
|
|
// already done the rest of the decode necessary to
|
| 312 |
|
|
// settle between the other instructions. For example,
|
| 313 |
|
|
// o_FP plus these four bits uniquely defines the FP
|
| 314 |
|
|
// instruction, o_DV plus the bottom of these defines
|
| 315 |
|
|
// the divide, etc.
|
| 316 |
|
|
o_op <= (w_ldi)? 4'hf:w_op[3:0];
|
| 317 |
|
|
|
| 318 |
|
|
// Default values
|
| 319 |
|
|
o_dcdR <= { w_dcdR_cc, w_dcdR_pc, w_dcdR};
|
| 320 |
|
|
o_dcdA <= { w_dcdA_cc, w_dcdA_pc, w_dcdA};
|
| 321 |
|
|
o_dcdB <= { w_dcdB_cc, w_dcdB_pc, w_dcdB};
|
| 322 |
|
|
o_wR <= w_wR;
|
| 323 |
|
|
o_rA <= w_rA;
|
| 324 |
|
|
o_rB <= w_rB;
|
| 325 |
|
|
r_I <= w_I;
|
| 326 |
|
|
o_zI <= w_Iz;
|
| 327 |
|
|
|
| 328 |
|
|
o_ALU <= (w_ALU)||(w_ldi)||(w_cmptst); // 1 LUT
|
| 329 |
|
|
o_M <= w_dcdM;
|
| 330 |
|
|
o_DV <= w_dcdDV;
|
| 331 |
|
|
o_FP <= w_dcdFP;
|
| 332 |
|
|
|
| 333 |
|
|
o_break <= (w_op[4:3]==2'b11)&&(w_dcdR[3:1]==3'h7)&&(w_op[2:0]==3'b001);
|
| 334 |
|
|
o_lock <= (w_op[4:3]==2'b11)&&(w_dcdR[3:1]==3'h7)&&(w_op[2:0]==3'b010);
|
| 335 |
|
|
`ifdef OPT_VLIW
|
| 336 |
|
|
r_nxt_half <= { iword[31], iword[13:5],
|
| 337 |
|
|
((iword[21])? iword[20:19] : 2'h0),
|
| 338 |
|
|
iword[4:0] };
|
| 339 |
|
|
`endif
|
| 340 |
|
|
end
|
| 341 |
|
|
|
| 342 |
|
|
generate
|
| 343 |
|
|
if (EARLY_BRANCHING!=0)
|
| 344 |
|
|
begin
|
| 345 |
|
|
reg r_early_branch, r_ljmp;
|
| 346 |
|
|
reg [(AW-1):0] r_branch_pc;
|
| 347 |
|
|
|
| 348 |
|
|
initial r_ljmp = 1'b0;
|
| 349 |
|
|
always @(posedge i_clk)
|
| 350 |
|
|
if (i_rst)
|
| 351 |
|
|
r_ljmp <= 1'b0;
|
| 352 |
|
|
else if ((i_ce)&&(i_pf_valid))
|
| 353 |
|
|
r_ljmp <= (w_ljmp);
|
| 354 |
|
|
assign o_ljmp = r_ljmp;
|
| 355 |
|
|
|
| 356 |
|
|
always @(posedge i_clk)
|
| 357 |
|
|
if (i_rst)
|
| 358 |
|
|
r_early_branch <= 1'b0;
|
| 359 |
|
|
else if ((i_ce)&&(i_pf_valid))
|
| 360 |
|
|
begin
|
| 361 |
|
|
if (r_ljmp)
|
| 362 |
|
|
// LOD (PC),PC
|
| 363 |
|
|
r_early_branch <= 1'b1;
|
| 364 |
|
|
else if ((~iword[31])&&(iword[30:27]==`CPU_PC_REG)&&(w_cond[3]))
|
| 365 |
|
|
begin
|
| 366 |
|
|
if (w_op[4:1] == 4'hb) // LDI to PC
|
| 367 |
|
|
// LDI x,PC
|
| 368 |
|
|
r_early_branch <= 1'b1;
|
| 369 |
|
|
else if ((w_op[4:0]==5'h02)&&(~iword[18]))
|
| 370 |
|
|
// Add x,PC
|
| 371 |
|
|
r_early_branch <= 1'b1;
|
| 372 |
|
|
else begin
|
| 373 |
|
|
r_early_branch <= 1'b0;
|
| 374 |
|
|
end
|
| 375 |
|
|
end else
|
| 376 |
|
|
r_early_branch <= 1'b0;
|
| 377 |
|
|
end else if (i_ce)
|
| 378 |
|
|
r_early_branch <= 1'b0;
|
| 379 |
|
|
|
| 380 |
|
|
always @(posedge i_clk)
|
| 381 |
|
|
if (i_ce)
|
| 382 |
|
|
begin
|
| 383 |
|
|
if (r_ljmp)
|
| 384 |
|
|
r_branch_pc <= iword[(AW-1):0];
|
| 385 |
|
|
else if (w_op[4:1] == 4'hb) // LDI
|
| 386 |
|
|
r_branch_pc <= {{(AW-23){iword[22]}},iword[22:0]};
|
| 387 |
|
|
else // Add x,PC
|
| 388 |
|
|
r_branch_pc <= i_pc
|
| 389 |
|
|
+ {{(AW-17){iword[17]}},iword[16:0]}
|
| 390 |
|
|
+ {{(AW-1){1'b0}},1'b1};
|
| 391 |
|
|
end
|
| 392 |
|
|
|
| 393 |
|
|
assign o_early_branch = r_early_branch;
|
| 394 |
|
|
assign o_branch_pc = r_branch_pc;
|
| 395 |
|
|
end else begin
|
| 396 |
|
|
assign o_early_branch = 1'b0;
|
| 397 |
|
|
assign o_branch_pc = {(AW){1'b0}};
|
| 398 |
|
|
assign o_ljmp = 1'b0;
|
| 399 |
|
|
end endgenerate
|
| 400 |
|
|
|
| 401 |
|
|
|
| 402 |
|
|
// To be a pipeable operation there must be ...
|
| 403 |
|
|
// 1. Two valid adjacent instructions
|
| 404 |
|
|
// 2. Both must be memory operations, of the same time (both lods
|
| 405 |
|
|
// or both stos)
|
| 406 |
|
|
// 3. Both must use the same register base address
|
| 407 |
|
|
// 4. Both must be to the same address, or the address incremented
|
| 408 |
|
|
// by one
|
| 409 |
|
|
// Note that we're not using iword here ... there's a lot of logic
|
| 410 |
|
|
// taking place, and it's only valid if the new word is not compressed.
|
| 411 |
|
|
//
|
| 412 |
|
|
reg r_valid;
|
| 413 |
|
|
always @(posedge i_clk)
|
| 414 |
|
|
if (i_ce)
|
| 415 |
|
|
o_pipe <= (r_valid)&&(i_pf_valid)&&(~i_instruction[31])
|
| 416 |
|
|
&&(w_dcdM)&&(o_M)&&(o_op[0] ==i_instruction[22])
|
| 417 |
|
|
&&(i_instruction[17:14] == o_dcdB[3:0])
|
| 418 |
|
|
&&(i_gie == o_gie)
|
| 419 |
|
|
&&((i_instruction[21:19]==o_cond[2:0])
|
| 420 |
|
|
||(o_cond[2:0] == 3'h0))
|
| 421 |
|
|
&&((i_instruction[13:0]==r_I[13:0])
|
| 422 |
|
|
||({1'b0, i_instruction[13:0]}==(r_I[13:0]+14'h1)));
|
| 423 |
|
|
always @(posedge i_clk)
|
| 424 |
|
|
if (i_rst)
|
| 425 |
|
|
r_valid <= 1'b0;
|
| 426 |
|
|
else if ((i_ce)&&(o_ljmp))
|
| 427 |
|
|
r_valid <= 1'b0;
|
| 428 |
|
|
else if ((i_ce)&&(i_pf_valid))
|
| 429 |
|
|
r_valid <= 1'b1;
|
| 430 |
|
|
else if (~i_stalled)
|
| 431 |
|
|
r_valid <= 1'b0;
|
| 432 |
|
|
|
| 433 |
|
|
|
| 434 |
|
|
assign o_I = { {(32-22){r_I[22]}}, r_I[21:0] };
|
| 435 |
|
|
|
| 436 |
|
|
endmodule
|