OpenCores
URL https://opencores.org/ocsvn/s6soc/s6soc/trunk

Subversion Repositories s6soc

[/] [s6soc/] [trunk/] [rtl/] [cpu/] [zipcpu.v] - Blame information for rev 7

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 2 dgisselq
///////////////////////////////////////////////////////////////////////////////
2
//
3
// Filename:    zipcpu.v
4
//
5
// Project:     Zip CPU -- a small, lightweight, RISC CPU soft core
6
//
7
// Purpose:     This is the top level module holding the core of the Zip CPU
8
//              together.  The Zip CPU is designed to be as simple as possible.
9
//      (actual implementation aside ...)  The instruction set is about as
10
//      RISC as you can get, there are only 16 instruction types supported.
11
//      Please see the accompanying spec.pdf file for a description of these
12
//      instructions.
13
//
14
//      All instructions are 32-bits wide.  All bus accesses, both address and
15
//      data, are 32-bits over a wishbone bus.
16
//
17
//      The Zip CPU is fully pipelined with the following pipeline stages:
18
//
19
//              1. Prefetch, returns the instruction from memory. 
20
//
21
//              2. Instruction Decode
22
//
23
//              3. Read Operands
24
//
25
//              4. Apply Instruction
26
//
27
//              4. Write-back Results
28
//
29
//      Further information about the inner workings of this CPU may be
30
//      found in the spec.pdf file.  (The documentation within this file
31
//      had become out of date and out of sync with the spec.pdf, so look
32
//      to the spec.pdf for accurate and up to date information.)
33
//
34
//
35
//      In general, the pipelining is controlled by three pieces of logic
36
//      per stage: _ce, _stall, and _valid.  _valid means that the stage
37
//      holds a valid instruction.  _ce means that the instruction from the
38
//      previous stage is to move into this one, and _stall means that the
39
//      instruction from the previous stage may not move into this one.
40
//      The difference between these control signals allows individual stages
41
//      to propagate instructions independently.  In general, the logic works
42
//      as:
43
//
44
//
45
//      assign  (n)_ce = (n-1)_valid && (~(n)_stall)
46
//
47
//
48
//      always @(posedge i_clk)
49
//              if ((i_rst)||(clear_pipeline))
50
//                      (n)_valid = 0
51
//              else if (n)_ce
52
//                      (n)_valid = 1
53
//              else if (n+1)_ce
54
//                      (n)_valid = 0
55
//
56
//      assign (n)_stall = (  (n-1)_valid && ( pipeline hazard detection )  )
57
//                      || (  (n)_valid && (n+1)_stall );
58
//
59
//      and ...
60
//
61
//      always @(posedge i_clk)
62
//              if (n)_ce
63
//                      (n)_variable = ... whatever logic for this stage
64
//
65
//      Note that a stage can stall even if no instruction is loaded into
66
//      it.
67
//
68
//
69
// Creator:     Dan Gisselquist, Ph.D.
70
//              Gisselquist Technology, LLC
71
//
72
///////////////////////////////////////////////////////////////////////////////
73
//
74
// Copyright (C) 2015, Gisselquist Technology, LLC
75
//
76
// This program is free software (firmware): you can redistribute it and/or
77
// modify it under the terms of  the GNU General Public License as published
78
// by the Free Software Foundation, either version 3 of the License, or (at
79
// your option) any later version.
80
//
81
// This program is distributed in the hope that it will be useful, but WITHOUT
82
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
83
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
84
// for more details.
85
//
86
// License:     GPL, v3, as defined and found on www.gnu.org,
87
//              http://www.gnu.org/licenses/gpl.html
88
//
89
//
90
///////////////////////////////////////////////////////////////////////////////
91
//
92
// We can either pipeline our fetches, or issue one fetch at a time.  Pipelined
93
// fetches are more complicated and therefore use more FPGA resources, while
94
// single fetches will cause the CPU to stall for about 5 stalls each 
95
// instruction cycle, effectively reducing the instruction count per clock to
96
// about 0.2.  However, the area cost may be worth it.  Consider:
97
//
98
//      Slice LUTs              ZipSystem       ZipCPU
99
//      Single Fetching         2521            1734
100
//      Pipelined fetching      2796            2046
101
//
102
//
103
//
104
`define CPU_CC_REG      4'he
105
`define CPU_PC_REG      4'hf
106
`define CPU_FPUERR_BIT  12      // Floating point error flag, set on error
107
`define CPU_DIVERR_BIT  11      // Divide error flag, set on divide by zero
108
`define CPU_BUSERR_BIT  10      // Bus error flag, set on error
109
`define CPU_TRAP_BIT    9       // User TRAP has taken place
110
`define CPU_ILL_BIT     8       // Illegal instruction
111
`define CPU_BREAK_BIT   7
112
`define CPU_STEP_BIT    6       // Will step one or two (VLIW) instructions
113
`define CPU_GIE_BIT     5
114
`define CPU_SLEEP_BIT   4
115
// Compile time defines
116
//
117
`include "cpudefs.v"
118
//
119
//
120
module  zipcpu(i_clk, i_rst, i_interrupt,
121
                // Debug interface
122
                i_halt, i_clear_pf_cache, i_dbg_reg, i_dbg_we, i_dbg_data,
123
                        o_dbg_stall, o_dbg_reg, o_dbg_cc,
124
                        o_break,
125
                // CPU interface to the wishbone bus
126
                o_wb_gbl_cyc, o_wb_gbl_stb,
127
                        o_wb_lcl_cyc, o_wb_lcl_stb,
128
                        o_wb_we, o_wb_addr, o_wb_data,
129
                        i_wb_ack, i_wb_stall, i_wb_data,
130
                        i_wb_err,
131
                // Accounting/CPU usage interface
132
                o_op_stall, o_pf_stall, o_i_count
133
`ifdef  DEBUG_SCOPE
134
                , o_debug
135
`endif
136
                );
137
        parameter       RESET_ADDRESS=32'h0100000, ADDRESS_WIDTH=24,
138
                        LGICACHE=6;
139
`ifdef  OPT_MULTIPLY
140 7 dgisselq
        parameter       IMPLEMENT_MPY = `OPT_MULTIPLY;
141 2 dgisselq
`else
142
        parameter       IMPLEMENT_MPY = 0;
143
`endif
144
`ifdef  OPT_DIVIDE
145
        parameter       IMPLEMENT_DIVIDE = 1;
146
`else
147
        parameter       IMPLEMENT_DIVIDE = 0;
148
`endif
149
`ifdef  OPT_IMPLEMENT_FPU
150
        parameter       IMPLEMENT_FPU = 1,
151
`else
152
        parameter       IMPLEMENT_FPU = 0,
153
`endif
154
                        IMPLEMENT_LOCK=1;
155
`ifdef  OPT_EARLY_BRANCHING
156
        parameter       EARLY_BRANCHING = 1;
157
`else
158
        parameter       EARLY_BRANCHING = 0;
159
`endif
160
        parameter       AW=ADDRESS_WIDTH;
161
        input                   i_clk, i_rst, i_interrupt;
162
        // Debug interface -- inputs
163
        input                   i_halt, i_clear_pf_cache;
164
        input           [4:0]    i_dbg_reg;
165
        input                   i_dbg_we;
166
        input           [31:0]   i_dbg_data;
167
        // Debug interface -- outputs
168
        output  reg             o_dbg_stall;
169
        output  reg     [31:0]   o_dbg_reg;
170
        output  reg     [3:0]    o_dbg_cc;
171
        output  wire            o_break;
172
        // Wishbone interface -- outputs
173
        output  wire            o_wb_gbl_cyc, o_wb_gbl_stb;
174
        output  wire            o_wb_lcl_cyc, o_wb_lcl_stb, o_wb_we;
175
        output  wire    [(AW-1):0]       o_wb_addr;
176
        output  wire    [31:0]   o_wb_data;
177
        // Wishbone interface -- inputs
178
        input                   i_wb_ack, i_wb_stall;
179
        input           [31:0]   i_wb_data;
180
        input                   i_wb_err;
181
        // Accounting outputs ... to help us count stalls and usage
182
        output  wire            o_op_stall;
183
        output  wire            o_pf_stall;
184
        output  wire            o_i_count;
185
        //
186
`ifdef  DEBUG_SCOPE
187
        output  reg     [31:0]   o_debug;
188
`endif
189
 
190
 
191
        // Registers
192
        //
193
        //      The distributed RAM style comment is necessary on the
194
        // SPARTAN6 with XST to prevent XST from oversimplifying the register
195
        // set and in the process ruining everything else.  It basically
196
        // optimizes logic away, to where it no longer works.  The logic
197
        // as described herein will work, this just makes sure XST implements
198
        // that logic.
199
        //
200
        (* ram_style = "distributed" *)
201
        reg     [31:0]   regset [0:31];
202
 
203
        // Condition codes
204
        // (BUS, TRAP,ILL,BREAKEN,STEP,GIE,SLEEP ), V, N, C, Z
205
        reg     [3:0]    flags, iflags;
206
        wire    [13:0]   w_uflags, w_iflags;
207
        reg             trap, break_en, step, gie, sleep;
208
`ifdef  OPT_ILLEGAL_INSTRUCTION
209
        reg             ill_err_u, ill_err_i;
210
`else
211
        wire            ill_err_u, ill_err_i;
212
`endif
213
        reg             ibus_err_flag, ubus_err_flag;
214
        wire            idiv_err_flag, udiv_err_flag;
215
        wire            ifpu_err_flag, ufpu_err_flag;
216
        wire            ihalt_phase, uhalt_phase;
217
 
218
        // The master chip enable
219
        wire            master_ce;
220
 
221
        //
222
        //
223
        //      PIPELINE STAGE #1 :: Prefetch
224
        //              Variable declarations
225
        //
226
        reg     [(AW-1):0]       pf_pc;
227
        reg     new_pc;
228
        wire    clear_pipeline;
229
        assign  clear_pipeline = new_pc || i_clear_pf_cache;
230
 
231
        wire            dcd_stalled;
232
        wire            pf_cyc, pf_stb, pf_we, pf_busy, pf_ack, pf_stall, pf_err;
233
        wire    [(AW-1):0]       pf_addr;
234
        wire    [31:0]           pf_data;
235
        wire    [31:0]           instruction;
236
        wire    [(AW-1):0]       instruction_pc;
237
        wire    pf_valid, instruction_gie, pf_illegal;
238
 
239
        //
240
        //
241
        //      PIPELINE STAGE #2 :: Instruction Decode
242
        //              Variable declarations
243
        //
244
        //
245
        reg             opvalid, opvalid_mem, opvalid_alu;
246
        reg             opvalid_div, opvalid_fpu;
247
        wire            op_stall, dcd_ce, dcd_phase;
248
        wire    [3:0]    dcdOp;
249
        wire    [4:0]    dcdA, dcdB, dcdR;
250
        wire            dcdA_cc, dcdB_cc, dcdA_pc, dcdB_pc, dcdR_cc, dcdR_pc;
251
        wire    [3:0]    dcdF;
252
        wire            dcdR_wr, dcdA_rd, dcdB_rd,
253
                                dcdALU, dcdM, dcdDV, dcdFP,
254
                                dcdF_wr, dcd_gie, dcd_break, dcd_lock,
255
                                dcd_pipe, dcd_ljmp;
256
        reg             r_dcdvalid;
257
        wire            dcdvalid;
258
        wire    [(AW-1):0]       dcd_pc;
259
        wire    [31:0]   dcdI;
260
        wire            dcd_zI; // true if dcdI == 0
261
        wire    dcdA_stall, dcdB_stall, dcdF_stall;
262
 
263
        wire    dcd_illegal;
264
        wire                    dcd_early_branch;
265
        wire    [(AW-1):0]       dcd_branch_pc;
266
 
267
 
268
        //
269
        //
270
        //      PIPELINE STAGE #3 :: Read Operands
271
        //              Variable declarations
272
        //
273
        //
274
        //
275
        // Now, let's read our operands
276
        reg     [4:0]    alu_reg;
277
        reg     [3:0]    opn;
278
        reg     [4:0]    opR;
279
        reg     [31:0]   r_opA, r_opB;
280
        reg     [(AW-1):0]       op_pc;
281
        wire    [31:0]   w_opA, w_opB;
282
        wire    [31:0]   opA_nowait, opB_nowait, opA, opB;
283
        reg             opR_wr, opR_cc, opF_wr, op_gie;
284
        wire    [13:0]   opFl;
285
        reg     [5:0]    r_opF;
286
        wire    [7:0]    opF;
287 7 dgisselq
        wire            op_ce, op_phase, op_pipe;
288 2 dgisselq
        // Some pipeline control wires
289
`ifdef  OPT_PIPELINED
290
        reg     opA_alu, opA_mem;
291
        reg     opB_alu, opB_mem;
292
`endif
293
`ifdef  OPT_ILLEGAL_INSTRUCTION
294
        reg     op_illegal;
295
`endif
296
        reg     op_break;
297
        wire    op_lock;
298
 
299
 
300
        //
301
        //
302
        //      PIPELINE STAGE #4 :: ALU / Memory
303
        //              Variable declarations
304
        //
305
        //
306
        reg     [(AW-1):0]       alu_pc;
307 7 dgisselq
        reg             alu_pc_valid, mem_pc_valid;
308 2 dgisselq
        wire            alu_phase;
309
        wire            alu_ce, alu_stall;
310
        wire    [31:0]   alu_result;
311
        wire    [3:0]    alu_flags;
312
        wire            alu_valid, alu_busy;
313
        wire            set_cond;
314
        reg             alu_wr, alF_wr, alu_gie;
315
        wire            alu_illegal_op;
316
        wire            alu_illegal;
317
 
318
 
319
 
320
        wire    mem_ce, mem_stalled;
321
`ifdef  OPT_PIPELINED_BUS_ACCESS
322
        wire    mem_pipe_stalled;
323
`endif
324
        wire    mem_valid, mem_ack, mem_stall, mem_err, bus_err,
325
                mem_cyc_gbl, mem_cyc_lcl, mem_stb_gbl, mem_stb_lcl, mem_we;
326
        wire    [4:0]            mem_wreg;
327
 
328
        wire                    mem_busy, mem_rdbusy;
329
        wire    [(AW-1):0]       mem_addr;
330
        wire    [31:0]           mem_data, mem_result;
331
 
332
        wire    div_ce, div_error, div_busy, div_valid;
333
        wire    [31:0]   div_result;
334
        wire    [3:0]    div_flags;
335
 
336
        assign  div_ce = (master_ce)&&(~clear_pipeline)&&(opvalid_div)
337
                                &&(~mem_rdbusy)&&(~div_busy)&&(~fpu_busy)
338
                                &&(set_cond);
339
 
340
        wire    fpu_ce, fpu_error, fpu_busy, fpu_valid;
341
        wire    [31:0]   fpu_result;
342
        wire    [3:0]    fpu_flags;
343
 
344
        assign  fpu_ce = (master_ce)&&(~clear_pipeline)&&(opvalid_fpu)
345
                                &&(~mem_rdbusy)&&(~div_busy)&&(~fpu_busy)
346
                                &&(set_cond);
347
 
348
 
349
        //
350
        //
351
        //      PIPELINE STAGE #5 :: Write-back
352
        //              Variable declarations
353
        //
354
        wire            wr_reg_ce, wr_flags_ce, wr_write_pc, wr_write_cc;
355
        wire    [4:0]    wr_reg_id;
356
        wire    [31:0]   wr_reg_vl;
357
        wire    w_switch_to_interrupt, w_release_from_interrupt;
358
        reg     [(AW-1):0]       upc, ipc;
359
 
360
 
361
 
362
        //
363
        //      MASTER: clock enable.
364
        //
365
        assign  master_ce = (~i_halt)&&(~o_break)&&(~sleep);
366
 
367
 
368
        //
369
        //      PIPELINE STAGE #1 :: Prefetch
370
        //              Calculate stall conditions
371
        //
372
        //      These are calculated externally, within the prefetch module.
373
        //
374
 
375
        //
376
        //      PIPELINE STAGE #2 :: Instruction Decode
377
        //              Calculate stall conditions
378
`ifdef  OPT_PIPELINED
379
        assign          dcd_ce = ((~dcdvalid)||(~dcd_stalled))&&(~clear_pipeline);
380
`else
381
        assign          dcd_ce = 1'b1;
382
`endif
383
`ifdef  OPT_PIPELINED
384
        assign          dcd_stalled = (dcdvalid)&&(op_stall);
385
`else
386
        // If not pipelined, there will be no opvalid_ anything, and the
387
        // op_stall will be false, dcdX_stall will be false, thus we can simply
388
        // do a ...
389
        assign          dcd_stalled = 1'b0;
390
`endif
391
        //
392
        //      PIPELINE STAGE #3 :: Read Operands
393
        //              Calculate stall conditions
394
        wire    op_lock_stall;
395
`ifdef  OPT_PIPELINED
396
        assign  op_stall = (opvalid)&&( // Only stall if we're loaded w/validins
397
                        // Stall if we're stopped, and not allowed to execute
398
                        // an instruction
399
                        // (~master_ce)         // Already captured in alu_stall
400
                        //
401
                        // Stall if going into the ALU and the ALU is stalled
402
                        //      i.e. if the memory is busy, or we are single
403
                        //      stepping.  This also includes our stalls for
404
                        //      op_break and op_lock, so we don't need to
405
                        //      include those as well here.
406
                        // This also includes whether or not the divide or
407
                        // floating point units are busy.
408
                        (alu_stall)
409
                        //
410
                        // Stall if we are going into memory with an operation
411
                        //      that cannot be pipelined, and the memory is
412
                        //      already busy
413
                        ||(mem_stalled) // &&(opvalid_mem) part of mem_stalled
414
                        )
415
                        ||(dcdvalid)&&(
416
                                // Stall if we need to wait for an operand A
417
                                // to be ready to read
418
                                (dcdA_stall)
419
                                // Likewise for B, also includes logic
420
                                // regarding immediate offset (register must
421
                                // be in register file if we need to add to
422
                                // an immediate)
423
                                ||(dcdB_stall)
424
                                // Or if we need to wait on flags to work on the
425
                                // CC register
426
                                ||(dcdF_stall)
427
                        );
428
        assign  op_ce = ((dcdvalid)||(dcd_illegal))&&(~op_stall)&&(~clear_pipeline);
429
`else
430
        assign  op_stall = (opvalid)&&(~master_ce);
431
        assign  op_ce = ((dcdvalid)||(dcd_illegal));
432
`endif
433
 
434
        //
435
        //      PIPELINE STAGE #4 :: ALU / Memory
436
        //              Calculate stall conditions
437
        //
438
        // 1. Basic stall is if the previous stage is valid and the next is
439
        //      busy.  
440
        // 2. Also stall if the prior stage is valid and the master clock enable
441
        //      is de-selected
442
        // 3. Stall if someone on the other end is writing the CC register,
443
        //      since we don't know if it'll put us to sleep or not.
444
        // 4. Last case: Stall if we would otherwise move a break instruction
445
        //      through the ALU.  Break instructions are not allowed through
446
        //      the ALU.
447
`ifdef  OPT_PIPELINED
448
        assign  alu_stall = (((~master_ce)||(mem_rdbusy)||(alu_busy))&&(opvalid_alu)) //Case 1&2
449
                        // Old case #3--this isn't an ALU stall though ...
450
                        ||((opvalid_alu)&&(wr_reg_ce)&&(wr_reg_id[4] == op_gie)
451
                                &&(wr_write_cc)) // Case 3
452
                        ||((opvalid)&&(op_lock)&&(op_lock_stall))
453
                        ||((opvalid)&&(op_break))
454
                        ||(div_busy)||(fpu_busy);
455
        assign  alu_ce = (master_ce)&&((opvalid_alu)||(op_illegal))
456
                                &&(~alu_stall)
457
                                &&(~clear_pipeline);
458
`else
459
        assign  alu_stall = ((~master_ce)&&(opvalid_alu))
460
                                ||((opvalid_alu)&&(op_break));
461
        assign  alu_ce = (master_ce)&&((opvalid_alu)||(op_illegal))&&(~alu_stall);
462
`endif
463
        //
464
 
465
        //
466
        // Note: if you change the conditions for mem_ce, you must also change
467
        // alu_pc_valid.
468
        //
469
`ifdef  OPT_PIPELINED
470
        assign  mem_ce = (master_ce)&&(opvalid_mem)&&(~mem_stalled)
471
                        &&(~clear_pipeline);
472
`else
473
        // If we aren't pipelined, then no one will be changing what's in the
474
        // pipeline (i.e. clear_pipeline), while our only instruction goes
475
        // through the ... pipeline.
476
        assign  mem_ce = (master_ce)&&(opvalid_mem)&&(~mem_stalled);
477
`endif
478
`ifdef  OPT_PIPELINED_BUS_ACCESS
479
        assign  mem_stalled = (~master_ce)||(alu_busy)||((opvalid_mem)&&(
480
                                (mem_pipe_stalled)
481
                                ||((~op_pipe)&&(mem_busy))
482
                                ||(div_busy)
483
                                ||(fpu_busy)
484
                                // Stall waiting for flags to be valid
485
                                // Or waiting for a write to the PC register
486
                                // Or CC register, since that can change the
487
                                //  PC as well
488
                                ||((wr_reg_ce)&&(wr_reg_id[4] == op_gie)
489
                                        &&((wr_write_pc)||(wr_write_cc)))));
490
`else
491
`ifdef  OPT_PIPELINED
492
        assign  mem_stalled = (mem_busy)||((opvalid_mem)&&(
493
                                (~master_ce)
494
                                // Stall waiting for flags to be valid
495
                                // Or waiting for a write to the PC register
496
                                // Or CC register, since that can change the
497
                                //  PC as well
498
                                ||((wr_reg_ce)&&(wr_reg_id[4] == op_gie)&&((wr_write_pc)||(wr_write_cc)))));
499
`else
500
        assign  mem_stalled = (opvalid_mem)&&(~master_ce);
501
`endif
502
`endif
503
 
504
 
505
        //
506
        //
507
        //      PIPELINE STAGE #1 :: Prefetch
508
        //
509
        //
510
`ifdef  OPT_SINGLE_FETCH
511
        wire            pf_ce;
512
 
513
        assign          pf_ce = (~pf_valid)&&(~dcdvalid)&&(~opvalid)&&(~alu_valid);
514
        prefetch        #(ADDRESS_WIDTH)
515
                        pf(i_clk, i_rst, (pf_ce), (~dcd_stalled), pf_pc, gie,
516
                                instruction, instruction_pc, instruction_gie,
517
                                        pf_valid, pf_illegal,
518
                                pf_cyc, pf_stb, pf_we, pf_addr, pf_data,
519
                                pf_ack, pf_stall, pf_err, i_wb_data);
520
 
521
        initial r_dcdvalid = 1'b0;
522
        always @(posedge i_clk)
523
                if (i_rst)
524
                        r_dcdvalid <= 1'b0;
525
                else if (dcd_ce)
526
                        r_dcdvalid <= (pf_valid);
527
                else if (op_ce)
528
                        r_dcdvalid <= 1'b0;
529
        assign  dcdvalid = r_dcdvalid;
530
 
531
`else // Pipe fetch
532
 
533
`ifdef  OPT_TRADITIONAL_PFCACHE
534
        pfcache #(LGICACHE, ADDRESS_WIDTH)
535
                pf(i_clk, i_rst, (new_pc)||((dcd_early_branch)&&(~clear_pipeline)),
536
                                        i_clear_pf_cache,
537
                                // dcd_pc,
538
                                ~dcd_stalled,
539
                                ((dcd_early_branch)&&(~clear_pipeline))
540
                                        ? dcd_branch_pc:pf_pc,
541
                                instruction, instruction_pc, pf_valid,
542
                                pf_cyc, pf_stb, pf_we, pf_addr, pf_data,
543
                                        pf_ack, pf_stall, pf_err, i_wb_data,
544
                                pf_illegal);
545
`else
546
        pipefetch       #(RESET_ADDRESS, LGICACHE, ADDRESS_WIDTH)
547
                        pf(i_clk, i_rst, (new_pc)||((dcd_early_branch)&&(~clear_pipeline)),
548
                                        i_clear_pf_cache, ~dcd_stalled,
549
                                        (new_pc)?pf_pc:dcd_branch_pc,
550
                                        instruction, instruction_pc, pf_valid,
551
                                pf_cyc, pf_stb, pf_we, pf_addr, pf_data,
552
                                        pf_ack, pf_stall, pf_err, i_wb_data,
553
//`ifdef        OPT_PRECLEAR_BUS
554
                                //((dcd_clear_bus)&&(dcdvalid))
555
                                //||((op_clear_bus)&&(opvalid))
556
                                //||
557
//`endif
558
                                (mem_cyc_lcl)||(mem_cyc_gbl),
559
                                pf_illegal);
560
`endif
561
        assign  instruction_gie = gie;
562
 
563
        initial r_dcdvalid = 1'b0;
564
        always @(posedge i_clk)
565
                if ((i_rst)||(clear_pipeline))
566
                        r_dcdvalid <= 1'b0;
567
                else if (dcd_ce)
568
                        r_dcdvalid <= (pf_valid)&&(~clear_pipeline)&&(~dcd_ljmp)&&((~r_dcdvalid)||(~dcd_early_branch));
569
                else if (op_ce)
570
                        r_dcdvalid <= 1'b0;
571
        assign  dcdvalid = r_dcdvalid;
572
`endif
573
 
574
`ifdef  OPT_NEW_INSTRUCTION_SET
575
        idecode #(AW, IMPLEMENT_MPY, EARLY_BRANCHING, IMPLEMENT_DIVIDE,
576
                        IMPLEMENT_FPU)
577
                instruction_decoder(i_clk, (i_rst)||(clear_pipeline),
578
                        dcd_ce, dcd_stalled, instruction, instruction_gie,
579
                        instruction_pc, pf_valid, pf_illegal, dcd_phase,
580
                        dcd_illegal, dcd_pc, dcd_gie,
581
                        { dcdR_cc, dcdR_pc, dcdR },
582
                        { dcdA_cc, dcdA_pc, dcdA },
583
                        { dcdB_cc, dcdB_pc, dcdB },
584
                        dcdI, dcd_zI, dcdF, dcdF_wr, dcdOp,
585
                        dcdALU, dcdM, dcdDV, dcdFP, dcd_break, dcd_lock,
586
                        dcdR_wr,dcdA_rd, dcdB_rd,
587
                        dcd_early_branch,
588
                        dcd_branch_pc, dcd_ljmp,
589
                        dcd_pipe);
590
`else
591
        idecode_deprecated
592
                #(AW, IMPLEMENT_MPY, EARLY_BRANCHING, IMPLEMENT_DIVIDE,
593
                        IMPLEMENT_FPU)
594
                instruction_decoder(i_clk, (i_rst)||(clear_pipeline),
595
                        dcd_ce, dcd_stalled, instruction, instruction_gie,
596
                        instruction_pc, pf_valid, pf_illegal, dcd_phase,
597
                        dcd_illegal, dcd_pc, dcd_gie,
598
                        { dcdR_cc, dcdR_pc, dcdR },
599
                        { dcdA_cc, dcdA_pc, dcdA },
600
                        { dcdB_cc, dcdB_pc, dcdB },
601
                        dcdI, dcd_zI, dcdF, dcdF_wr, dcdOp,
602
                        dcdALU, dcdM, dcdDV, dcdFP, dcd_break, dcd_lock,
603
                        dcdR_wr,dcdA_rd, dcdB_rd,
604
                        dcd_early_branch,
605
                        dcd_branch_pc,
606
                        dcd_pipe);
607
        assign  dcd_ljmp = 1'b0;
608
`endif
609
 
610
`ifdef  OPT_PIPELINED_BUS_ACCESS
611 7 dgisselq
        reg             r_op_pipe;
612 2 dgisselq
 
613 7 dgisselq
        initial r_op_pipe = 1'b0;
614 2 dgisselq
        // To be a pipeable operation, there must be 
615
        //      two valid adjacent instructions
616
        //      Both must be memory instructions
617
        //      Both must be writes, or both must be reads
618
        //      Both operations must be to the same identical address,
619
        //              or at least a single (one) increment above that address
620
        //
621
        // However ... we need to know this before this clock, hence this is
622
        // calculated in the instruction decoder.
623
        always @(posedge i_clk)
624
                if (op_ce)
625 7 dgisselq
                        r_op_pipe <= dcd_pipe;
626
        assign  op_pipe = r_op_pipe;
627
`else
628
        assign  op_pipe = 1'b0;
629 2 dgisselq
`endif
630
 
631
        //
632
        //
633
        //      PIPELINE STAGE #3 :: Read Operands (Registers)
634
        //
635
        //
636
        assign  w_opA = regset[dcdA];
637
        assign  w_opB = regset[dcdB];
638
 
639 7 dgisselq
        wire    [8:0]    w_cpu_info;
640
        assign  w_cpu_info = {
641
`ifdef  OPT_ILLEGAL_INSTRUCTION
642
        1'b1,
643
`else
644
        1'b0,
645
`endif
646
`ifdef  OPT_MULTIPLY
647
        1'b1,
648
`else
649
        1'b0,
650
`endif
651
`ifdef  OPT_DIVIDE
652
        1'b1,
653
`else
654
        1'b0,
655
`endif
656
`ifdef  OPT_IMPLEMENT_FPU
657
        1'b1,
658
`else
659
        1'b0,
660
`endif
661
`ifdef  OPT_PIPELINED
662
        1'b1,
663
`else
664
        1'b0,
665
`endif
666
`ifdef  OPT_TRADITIONAL_CACHE
667
        1'b1,
668
`else
669
        1'b0,
670
`endif
671
`ifdef  OPT_EARLY_BRANCHING
672
        1'b1,
673
`else
674
        1'b0,
675
`endif
676
`ifdef  OPT_PIPELINED_BUS_ACCESS
677
        1'b1,
678
`else
679
        1'b0,
680
`endif
681
`ifdef  OPT_VLIW
682
        1'b1
683
`else
684
        1'b0
685
`endif
686
        };
687
 
688 2 dgisselq
        wire    [31:0]   w_pcA_v;
689
        generate
690
        if (AW < 32)
691
                assign  w_pcA_v = {{(32-AW){1'b0}}, (dcdA[4] == dcd_gie)?dcd_pc:upc };
692
        else
693
                assign  w_pcA_v = (dcdA[4] == dcd_gie)?dcd_pc:upc;
694
        endgenerate
695
 
696
`ifdef  OPT_PIPELINED
697
        reg     [4:0]    opA_id, opB_id;
698
        reg             opA_rd, opB_rd;
699
        always @(posedge i_clk)
700
                if (op_ce)
701
                begin
702
                        opA_id <= dcdA;
703
                        opB_id <= dcdB;
704
                        opA_rd <= dcdA_rd;
705
                        opB_rd <= dcdB_rd;
706
                end
707
`endif
708
 
709
        always @(posedge i_clk)
710
                if (op_ce) // &&(dcdvalid))
711
                begin
712
                        if ((wr_reg_ce)&&(wr_reg_id == dcdA))
713
                                r_opA <= wr_reg_vl;
714
                        else if (dcdA_pc)
715
                                r_opA <= w_pcA_v;
716
                        else if (dcdA_cc)
717 7 dgisselq
                                r_opA <= { w_cpu_info, w_opA[22:14], (dcdA[4])?w_uflags:w_iflags };
718 2 dgisselq
                        else
719
                                r_opA <= w_opA;
720
`ifdef  OPT_PIPELINED
721
                end else
722
                begin // We were going to pick these up when they became valid,
723
                        // but for some reason we're stuck here as they became
724
                        // valid.  Pick them up now anyway
725
                        // if (((opA_alu)&&(alu_wr))||((opA_mem)&&(mem_valid)))
726
                                // r_opA <= wr_reg_vl;
727
                        if ((wr_reg_ce)&&(wr_reg_id == opA_id)&&(opA_rd))
728
                                r_opA <= wr_reg_vl;
729
`endif
730
                end
731
 
732
        wire    [31:0]   w_opBnI, w_pcB_v;
733
        generate
734
        if (AW < 32)
735
                assign  w_pcB_v = {{(32-AW){1'b0}}, (dcdB[4] == dcd_gie)?dcd_pc:upc };
736
        else
737
                assign  w_pcB_v = (dcdB[4] == dcd_gie)?dcd_pc:upc;
738
        endgenerate
739
 
740
        assign  w_opBnI = (~dcdB_rd) ? 32'h00
741
                : (((wr_reg_ce)&&(wr_reg_id == dcdB)) ? wr_reg_vl
742
                : ((dcdB_pc) ? w_pcB_v
743 7 dgisselq
                : ((dcdB_cc) ? { w_cpu_info, w_opB[22:14], // w_opB[31:14],
744
                        (dcdB[4])?w_uflags:w_iflags}
745 2 dgisselq
                : w_opB)));
746
 
747
        always @(posedge i_clk)
748
                if (op_ce) // &&(dcdvalid))
749
                        r_opB <= w_opBnI + dcdI;
750
`ifdef  OPT_PIPELINED
751
                else if ((wr_reg_ce)&&(opB_id == wr_reg_id)&&(opB_rd))
752
                        r_opB <= wr_reg_vl;
753
`endif
754
 
755
        // The logic here has become more complex than it should be, no thanks
756
        // to Xilinx's Vivado trying to help.  The conditions are supposed to
757
        // be two sets of four bits: the top bits specify what bits matter, the
758
        // bottom specify what those top bits must equal.  However, two of
759
        // conditions check whether bits are on, and those are the only two
760
        // conditions checking those bits.  Therefore, Vivado complains that
761
        // these two bits are redundant.  Hence the convoluted expression
762
        // below, arriving at what we finally want in the (now wire net)
763
        // opF.
764
        always @(posedge i_clk)
765
                if (op_ce)
766
                begin // Set the flag condition codes, bit order is [3:0]=VNCZ
767
                        case(dcdF[2:0])
768
                        3'h0:   r_opF <= 6'h00; // Always
769
`ifdef  OPT_NEW_INSTRUCTION_SET
770
                        // These were remapped as part of the new instruction
771
                        // set in order to make certain that the low order
772
                        // two bits contained the most commonly used 
773
                        // conditions: Always, LT, Z, and NZ.
774
                        3'h1:   r_opF <= 6'h24; // LT
775
                        3'h2:   r_opF <= 6'h11; // Z
776
                        3'h3:   r_opF <= 6'h10; // NE
777
                        3'h4:   r_opF <= 6'h30; // GT (!N&!Z)
778
                        3'h5:   r_opF <= 6'h20; // GE (!N)
779
`else
780
                        3'h1:   r_opF <= 6'h11; // Z
781
                        3'h2:   r_opF <= 6'h10; // NE
782
                        3'h3:   r_opF <= 6'h20; // GE (!N)
783
                        3'h4:   r_opF <= 6'h30; // GT (!N&!Z)
784
                        3'h5:   r_opF <= 6'h24; // LT
785
`endif
786
                        3'h6:   r_opF <= 6'h02; // C
787
                        3'h7:   r_opF <= 6'h08; // V
788
                        endcase
789
                end // Bit order is { (flags_not_used), VNCZ mask, VNCZ value }
790
        assign  opF = { r_opF[3], r_opF[5], r_opF[1], r_opF[4:0] };
791
 
792
        wire    w_opvalid;
793
        assign  w_opvalid = (~clear_pipeline)&&(dcdvalid)&&(~dcd_ljmp);
794
        initial opvalid     = 1'b0;
795
        initial opvalid_alu = 1'b0;
796
        initial opvalid_mem = 1'b0;
797
        initial opvalid_div = 1'b0;
798
        initial opvalid_fpu = 1'b0;
799
        always @(posedge i_clk)
800
                if (i_rst)
801
                begin
802
                        opvalid     <= 1'b0;
803
                        opvalid_alu <= 1'b0;
804
                        opvalid_mem <= 1'b0;
805
                end else if (op_ce)
806
                begin
807
                        // Do we have a valid instruction?
808
                        //   The decoder may vote to stall one of its
809
                        //   instructions based upon something we currently
810
                        //   have in our queue.  This instruction must then
811
                        //   move forward, and get a stall cycle inserted.
812
                        //   Hence, the test on dcd_stalled here.  If we must
813
                        //   wait until our operands are valid, then we aren't
814
                        //   valid yet until then.
815
                        opvalid<= w_opvalid;
816
`ifdef  OPT_ILLEGAL_INSTRUCTION
817
                        opvalid_alu <= ((dcdALU)||(dcd_illegal))&&(w_opvalid);
818
                        opvalid_mem <= (dcdM)&&(~dcd_illegal)&&(w_opvalid);
819
                        opvalid_div <= (dcdDV)&&(~dcd_illegal)&&(w_opvalid);
820
                        opvalid_fpu <= (dcdFP)&&(~dcd_illegal)&&(w_opvalid);
821
`else
822
                        opvalid_alu <= (dcdALU)&&(w_opvalid);
823
                        opvalid_mem <= (dcdM)&&(w_opvalid);
824
                        opvalid_div <= (dcdDV)&&(w_opvalid);
825
                        opvalid_fpu <= (dcdFP)&&(w_opvalid);
826
`endif
827
                end else if ((clear_pipeline)||(alu_ce)||(mem_ce)||(div_ce)||(fpu_ce))
828
                begin
829
                        opvalid     <= 1'b0;
830
                        opvalid_alu <= 1'b0;
831
                        opvalid_mem <= 1'b0;
832
                        opvalid_div <= 1'b0;
833
                        opvalid_fpu <= 1'b0;
834
                end
835
 
836
        // Here's part of our debug interface.  When we recognize a break
837
        // instruction, we set the op_break flag.  That'll prevent this
838
        // instruction from entering the ALU, and cause an interrupt before
839
        // this instruction.  Thus, returning to this code will cause the
840
        // break to repeat and continue upon return.  To get out of this
841
        // condition, replace the break instruction with what it is supposed
842
        // to be, step through it, and then replace it back.  In this fashion,
843
        // a debugger can step through code.
844
        // assign w_op_break = (dcd_break)&&(r_dcdI[15:0] == 16'h0001);
845
        initial op_break = 1'b0;
846
        always @(posedge i_clk)
847
                if (i_rst)      op_break <= 1'b0;
848
                else if (op_ce) op_break <= (dcd_break);
849
                else if ((clear_pipeline)||(~opvalid))
850
                                op_break <= 1'b0;
851
 
852
`ifdef  OPT_PIPELINED
853
        generate
854
        if (IMPLEMENT_LOCK != 0)
855
        begin
856
                reg     r_op_lock, r_op_lock_stall;
857
 
858
                initial r_op_lock_stall = 1'b0;
859
                always @(posedge i_clk)
860
                        if (i_rst)
861
                                r_op_lock_stall <= 1'b0;
862
                        else
863
                                r_op_lock_stall <= (~opvalid)||(~op_lock)
864
                                                ||(~dcdvalid)||(~pf_valid);
865
 
866
                assign  op_lock_stall = r_op_lock_stall;
867
 
868
                initial r_op_lock = 1'b0;
869
                always @(posedge i_clk)
870
                        if (i_rst)
871
                                r_op_lock <= 1'b0;
872
                        else if ((op_ce)&&(dcd_lock))
873
                                r_op_lock <= 1'b1;
874
                        else if ((op_ce)||(clear_pipeline))
875
                                r_op_lock <= 1'b0;
876
                assign  op_lock = r_op_lock;
877
 
878
        end else begin
879
                assign  op_lock_stall = 1'b0;
880
                assign  op_lock = 1'b0;
881
        end endgenerate
882
 
883
`else
884
        assign op_lock_stall = 1'b0;
885
        assign op_lock       = 1'b0;
886
`endif
887
 
888
`ifdef  OPT_ILLEGAL_INSTRUCTION
889
        initial op_illegal = 1'b0;
890
        always @(posedge i_clk)
891
                if ((i_rst)||(clear_pipeline))
892
                        op_illegal <= 1'b0;
893
                else if(op_ce)
894
`ifdef  OPT_PIPELINED
895
                        op_illegal <=(dcd_illegal)||((dcd_lock)&&(IMPLEMENT_LOCK == 0));
896
`else
897
                        op_illegal <= (dcd_illegal)||(dcd_lock);
898
`endif
899
`endif
900
 
901
        // No generate on EARLY_BRANCHING here, since if EARLY_BRANCHING is not
902
        // set, dcd_early_branch will simply be a wire connected to zero and
903
        // this logic should just optimize.
904
        always @(posedge i_clk)
905
                if (op_ce)
906
                begin
907
                        opF_wr <= (dcdF_wr)&&((~dcdR_cc)||(~dcdR_wr))
908
                                &&(~dcd_early_branch)&&(~dcd_illegal);
909
                        opR_wr <= (dcdR_wr)&&(~dcd_early_branch)&&(~dcd_illegal);
910
                end
911
 
912
        always @(posedge i_clk)
913
                if (op_ce)
914
                begin
915
                        opn    <= dcdOp;        // Which ALU operation?
916
                        // opM  <= dcdM;        // Is this a memory operation?
917
                        // What register will these results be written into?
918
                        opR    <= dcdR;
919
                        opR_cc <= (dcdR_cc)&&(dcdR_wr)&&(dcdR[4]==dcd_gie);
920
                        // User level (1), vs supervisor (0)/interrupts disabled
921
                        op_gie <= dcd_gie;
922
 
923
 
924
                        //
925
                        op_pc  <= (dcd_early_branch)?dcd_branch_pc:dcd_pc;
926
                end
927
        assign  opFl = (op_gie)?(w_uflags):(w_iflags);
928
 
929
`ifdef  OPT_VLIW
930
        reg     r_op_phase;
931
        initial r_op_phase = 1'b0;
932
        always @(posedge i_clk)
933
                if ((i_rst)||(clear_pipeline))
934
                        r_op_phase <= 1'b0;
935
                else if (op_ce)
936
                        r_op_phase <= dcd_phase;
937
        assign  op_phase = r_op_phase;
938
`else
939
        assign  op_phase = 1'b0;
940
`endif
941
 
942
        // This is tricky.  First, the PC and Flags registers aren't kept in
943
        // register set but in special registers of their own.  So step one
944
        // is to select the right register.  Step to is to replace that
945
        // register with the results of an ALU or memory operation, if such
946
        // results are now available.  Otherwise, we'd need to insert a wait
947
        // state of some type.
948
        //
949
        // The alternative approach would be to define some sort of
950
        // op_stall wire, which would stall any upstream stage.
951
        // We'll create a flag here to start our coordination.  Once we
952
        // define this flag to something other than just plain zero, then
953
        // the stalls will already be in place.
954
`ifdef  OPT_PIPELINED
955
        assign  opA = ((wr_reg_ce)&&(wr_reg_id == opA_id)) // &&(opA_rd))
956
                        ?  wr_reg_vl : r_opA;
957
`else
958
        assign  opA = r_opA;
959
`endif
960
 
961
`ifdef  OPT_PIPELINED
962
        // Stall if we have decoded an instruction that will read register A
963
        //      AND ... something that may write a register is running
964
        //      AND (series of conditions here ...)
965
        //              The operation might set flags, and we wish to read the
966
        //                      CC register
967
        //              OR ... (No other conditions)
968
        assign  dcdA_stall = (dcdA_rd) // &&(dcdvalid) is checked for elsewhere
969
                                &&((opvalid)||(mem_rdbusy)
970
                                        ||(div_busy)||(fpu_busy))
971
                                &&((opF_wr)&&(dcdA_cc));
972
`else
973
        // There are no pipeline hazards, if we aren't pipelined
974
        assign  dcdA_stall = 1'b0;
975
`endif
976
 
977
`ifdef  OPT_PIPELINED
978
        assign  opB = ((wr_reg_ce)&&(wr_reg_id == opB_id)&&(opB_rd))
979
                        ? wr_reg_vl: r_opB;
980
`else
981
        assign  opB = r_opB;
982
`endif
983
 
984
`ifdef  OPT_PIPELINED
985
        // Stall if we have decoded an instruction that will read register B
986
        //      AND ... something that may write a (unknown) register is running
987
        //      AND (series of conditions here ...)
988
        //              The operation might set flags, and we wish to read the
989
        //                      CC register
990
        //              OR the operation might set register B, and we still need
991
        //                      a clock to add the offset to it
992
        assign  dcdB_stall = (dcdB_rd) // &&(dcdvalid) is checked for elsewhere
993
                                // If the op stage isn't valid, yet something
994
                                // is running, then it must have been valid.
995
                                // We'll use the last values from that stage
996
                                // (opR_wr, opF_wr, opR) in our logic below.
997
                                &&((opvalid)||(mem_rdbusy)
998 7 dgisselq
                                        ||(div_busy)||(fpu_busy)||(alu_busy))
999 2 dgisselq
                                &&(
1000
                                // Stall on memory ops writing to my register
1001
                                //      (i.e. loads), or on any write to my
1002
                                //      register if I have an immediate offset
1003 7 dgisselq
                                //      Actually, this is worse.  I can't tell
1004
                                //      whether or not my register is going to
1005
                                //      be written to, so 
1006 2 dgisselq
                                // Note the exception for writing to the PC:
1007
                                //      if I write to the PC, the whole next
1008
                                //      instruction is invalid, not just the
1009
                                //      operand.  That'll get wiped in the
1010
                                //      next operation anyway, so don't stall
1011
                                //      here.  This keeps a BC X, BNZ Y from
1012
                                //      stalling between the two branches.
1013
                                //      BC X, BRA Y is still clear, since BRA Y
1014
                                //      is an early branch instruction.
1015
                                //      (This exception is commented out in
1016
                                //      order to help keep our logic simple, and
1017
                                //      because multiple conditional branches
1018
                                //      following each other constitutes a
1019
                                //      fairly unusualy code structure.)
1020
                                //      
1021 7 dgisselq
                                ((~dcd_zI)&&(
1022
                                        ((opR == dcdB)&&(opR_wr))
1023
                                        ||(((opvalid_mem)||(mem_rdbusy))
1024
                                        &&(op_pipe))))
1025 2 dgisselq
                                // Stall following any instruction that will
1026
                                // set the flags, if we're going to need the
1027
                                // flags (CC) register for opB.
1028
                                ||((opF_wr)&&(dcdB_cc))
1029
                                // Stall on any ongoing memory operation that
1030
                                // will write to opB -- captured above
1031
                                // ||((mem_busy)&&(~mem_we)&&(mem_last_reg==dcdB)&&(~dcd_zI))
1032
                                );
1033
        assign  dcdF_stall = ((~dcdF[3])
1034
                                        ||((dcdA_rd)&&(dcdA_cc))
1035
                                        ||((dcdB_rd)&&(dcdB_cc)))
1036
                                        &&(opvalid)&&(opR_cc);
1037
                                // &&(dcdvalid) is checked for elsewhere
1038
`else
1039
        // No stalls without pipelining, 'cause how can you have a pipeline
1040
        // hazard without the pipeline?
1041
        assign  dcdB_stall = 1'b0;
1042
        assign  dcdF_stall = 1'b0;
1043
`endif
1044
        //
1045
        //
1046
        //      PIPELINE STAGE #4 :: Apply Instruction
1047
        //
1048
        //
1049
`ifdef  OPT_NEW_INSTRUCTION_SET
1050
        cpuops  #(IMPLEMENT_MPY) doalu(i_clk, i_rst, alu_ce,
1051
                        (opvalid_alu), opn, opA, opB,
1052
                        alu_result, alu_flags, alu_valid, alu_illegal_op,
1053
                        alu_busy);
1054
`else
1055
        cpuops_deprecated       #(IMPLEMENT_MPY) doalu(i_clk, i_rst, alu_ce,
1056
                        (opvalid_alu), opn, opA, opB,
1057
                        alu_result, alu_flags, alu_valid, alu_illegal_op);
1058
        assign  alu_busy = 1'b0;
1059
`endif
1060
 
1061
        generate
1062
        if (IMPLEMENT_DIVIDE != 0)
1063
        begin
1064
                div thedivide(i_clk, (i_rst)||(clear_pipeline), div_ce, opn[0],
1065
                        opA, opB, div_busy, div_valid, div_error, div_result,
1066
                        div_flags);
1067
        end else begin
1068
                assign  div_error = 1'b1;
1069
                assign  div_busy  = 1'b0;
1070
                assign  div_valid = 1'b0;
1071
                assign  div_result= 32'h00;
1072
                assign  div_flags = 4'h0;
1073
        end endgenerate
1074
 
1075
        generate
1076
        if (IMPLEMENT_FPU != 0)
1077
        begin
1078
                //
1079
                // sfpu thefpu(i_clk, i_rst, fpu_ce,
1080
                //      opA, opB, fpu_busy, fpu_valid, fpu_err, fpu_result,
1081
                //      fpu_flags);
1082
                //
1083
                assign  fpu_error = 1'b1;
1084
                assign  fpu_busy  = 1'b0;
1085
                assign  fpu_valid = 1'b0;
1086
                assign  fpu_result= 32'h00;
1087
                assign  fpu_flags = 4'h0;
1088
        end else begin
1089
                assign  fpu_error = 1'b1;
1090
                assign  fpu_busy  = 1'b0;
1091
                assign  fpu_valid = 1'b0;
1092
                assign  fpu_result= 32'h00;
1093
                assign  fpu_flags = 4'h0;
1094
        end endgenerate
1095
 
1096
 
1097
        assign  set_cond = ((opF[7:4]&opFl[3:0])==opF[3:0]);
1098
        initial alF_wr   = 1'b0;
1099
        initial alu_wr   = 1'b0;
1100
        always @(posedge i_clk)
1101
                if (i_rst)
1102
                begin
1103
                        alu_wr   <= 1'b0;
1104
                        alF_wr   <= 1'b0;
1105
                end else if (alu_ce)
1106
                begin
1107
                        // alu_reg <= opR;
1108
                        alu_wr  <= (opR_wr)&&(set_cond);
1109
                        alF_wr  <= (opF_wr)&&(set_cond);
1110
                end else if (~alu_busy) begin
1111
                        // These are strobe signals, so clear them if not
1112
                        // set for any particular clock
1113
                        alu_wr <= (i_halt)&&(i_dbg_we);
1114
                        alF_wr <= 1'b0;
1115
                end
1116
 
1117
`ifdef  OPT_VLIW
1118
        reg     r_alu_phase;
1119
        initial r_alu_phase = 1'b0;
1120
        always @(posedge i_clk)
1121
                if (i_rst)
1122
                        r_alu_phase <= 1'b0;
1123
                else if ((alu_ce)||(mem_ce)||(div_ce)||(fpu_ce))
1124
                        r_alu_phase <= op_phase;
1125
        assign  alu_phase = r_alu_phase;
1126
`else
1127
        assign  alu_phase = 1'b0;
1128
`endif
1129
 
1130
        always @(posedge i_clk)
1131
                if ((alu_ce)||(div_ce)||(fpu_ce))
1132
                        alu_reg <= opR;
1133
                else if ((i_halt)&&(i_dbg_we))
1134
                        alu_reg <= i_dbg_reg;
1135
 
1136 7 dgisselq
        //
1137
        // DEBUG Register write access starts here
1138
        //
1139 2 dgisselq
        reg             dbgv;
1140
        initial dbgv = 1'b0;
1141
        always @(posedge i_clk)
1142
                dbgv <= (~i_rst)&&(~alu_ce)&&((i_halt)&&(i_dbg_we));
1143 7 dgisselq
        reg     [31:0]   dbg_val;
1144 2 dgisselq
        always @(posedge i_clk)
1145 7 dgisselq
                dbg_val <= i_dbg_data;
1146
        always @(posedge i_clk)
1147 2 dgisselq
                if ((alu_ce)||(mem_ce))
1148
                        alu_gie  <= op_gie;
1149
        always @(posedge i_clk)
1150
                if ((alu_ce)||((master_ce)&&(opvalid_mem)&&(~clear_pipeline)
1151
                                &&(~mem_stalled)))
1152
                        alu_pc  <= op_pc;
1153
 
1154
`ifdef  OPT_ILLEGAL_INSTRUCTION
1155
        reg     r_alu_illegal;
1156
        initial r_alu_illegal = 0;
1157
        always @(posedge i_clk)
1158
                if (clear_pipeline)
1159
                        r_alu_illegal <= 1'b0;
1160
                else if ((alu_ce)||(mem_ce))
1161
                        r_alu_illegal <= op_illegal;
1162
        assign  alu_illegal = (alu_illegal_op)||(r_alu_illegal);
1163
`endif
1164
 
1165
        initial alu_pc_valid = 1'b0;
1166 7 dgisselq
        initial mem_pc_valid = 1'b0;
1167 2 dgisselq
        always @(posedge i_clk)
1168 7 dgisselq
                if (i_rst)
1169
                        alu_pc_valid <= 1'b0;
1170
                else
1171
                        alu_pc_valid <= (alu_ce);
1172
        always @(posedge i_clk)
1173
                if (i_rst)
1174
                        mem_pc_valid <= 1'b0;
1175
                else
1176
                        mem_pc_valid <= (mem_ce);
1177 2 dgisselq
 
1178
        wire    bus_lock;
1179
`ifdef  OPT_PIPELINED
1180
        generate
1181
        if (IMPLEMENT_LOCK != 0)
1182
        begin
1183
                reg     r_bus_lock;
1184
                initial r_bus_lock = 1'b0;
1185
                always @(posedge i_clk)
1186
                        if (i_rst)
1187
                                r_bus_lock <= 1'b0;
1188
                        else if ((op_ce)&&(op_lock))
1189
                                r_bus_lock <= 1'b1;
1190
                        else if (~opvalid_mem)
1191
                                r_bus_lock <= 1'b0;
1192
                assign  bus_lock = r_bus_lock;
1193
        end else begin
1194
                assign  bus_lock = 1'b0;
1195
        end endgenerate
1196
`else
1197
        assign  bus_lock = 1'b0;
1198
`endif
1199
 
1200
`ifdef  OPT_PIPELINED_BUS_ACCESS
1201
        pipemem #(AW,IMPLEMENT_LOCK) domem(i_clk, i_rst,(mem_ce)&&(set_cond), bus_lock,
1202
                                (opn[0]), opB, opA, opR,
1203
                                mem_busy, mem_pipe_stalled,
1204
                                mem_valid, bus_err, mem_wreg, mem_result,
1205
                        mem_cyc_gbl, mem_cyc_lcl,
1206
                                mem_stb_gbl, mem_stb_lcl,
1207
                                mem_we, mem_addr, mem_data,
1208
                                mem_ack, mem_stall, mem_err, i_wb_data);
1209
 
1210
`else // PIPELINED_BUS_ACCESS
1211
        memops  #(AW,IMPLEMENT_LOCK) domem(i_clk, i_rst,(mem_ce)&&(set_cond), bus_lock,
1212
                                (opn[0]), opB, opA, opR,
1213
                                mem_busy,
1214
                                mem_valid, bus_err, mem_wreg, mem_result,
1215
                        mem_cyc_gbl, mem_cyc_lcl,
1216
                                mem_stb_gbl, mem_stb_lcl,
1217
                                mem_we, mem_addr, mem_data,
1218
                                mem_ack, mem_stall, mem_err, i_wb_data);
1219
`endif // PIPELINED_BUS_ACCESS
1220
        assign  mem_rdbusy = ((mem_busy)&&(~mem_we));
1221
 
1222
        // Either the prefetch or the instruction gets the memory bus, but 
1223
        // never both.
1224
        wbdblpriarb     #(32,AW) pformem(i_clk, i_rst,
1225
                // Memory access to the arbiter, priority position
1226
                mem_cyc_gbl, mem_cyc_lcl, mem_stb_gbl, mem_stb_lcl,
1227
                        mem_we, mem_addr, mem_data, mem_ack, mem_stall, mem_err,
1228
                // Prefetch access to the arbiter
1229
                pf_cyc, 1'b0, pf_stb, 1'b0, pf_we, pf_addr, pf_data,
1230
                        pf_ack, pf_stall, pf_err,
1231
                // Common wires, in and out, of the arbiter
1232
                o_wb_gbl_cyc, o_wb_lcl_cyc, o_wb_gbl_stb, o_wb_lcl_stb,
1233
                        o_wb_we, o_wb_addr, o_wb_data,
1234
                        i_wb_ack, i_wb_stall, i_wb_err);
1235
 
1236 7 dgisselq
 
1237
 
1238 2 dgisselq
        //
1239
        //
1240 7 dgisselq
        //
1241
        //
1242
        //
1243
        //
1244
        //
1245
        //
1246 2 dgisselq
        //      PIPELINE STAGE #5 :: Write-back results
1247
        //
1248
        //
1249
        // This stage is not allowed to stall.  If results are ready to be
1250
        // written back, they are written back at all cost.  Sleepy CPU's
1251
        // won't prevent write back, nor debug modes, halting the CPU, nor
1252
        // anything else.  Indeed, the (master_ce) bit is only as relevant
1253
        // as knowinig something is available for writeback.
1254
 
1255
        //
1256
        // Write back to our generic register set ...
1257
        // When shall we write back?  On one of two conditions
1258
        //      Note that the flags needed to be checked before issuing the
1259
        //      bus instruction, so they don't need to be checked here.
1260
        //      Further, alu_wr includes (set_cond), so we don't need to
1261
        //      check for that here either.
1262
`ifdef  OPT_ILLEGAL_INSTRUCTION
1263 7 dgisselq
        assign  wr_reg_ce = (dbgv)||(~alu_illegal)&&
1264 2 dgisselq
                        (((alu_wr)&&(~clear_pipeline)
1265
                                &&((alu_valid)||(div_valid)||(fpu_valid)))
1266
                        ||(mem_valid));
1267
`else
1268 7 dgisselq
        assign  wr_reg_ce = (dbgv)||((alu_wr)&&(~clear_pipeline))||(mem_valid)||(div_valid)||(fpu_valid);
1269 2 dgisselq
`endif
1270
        // Which register shall be written?
1271
        //      COULD SIMPLIFY THIS: by adding three bits to these registers,
1272
        //              One or PC, one for CC, and one for GIE match
1273
        //      Note that the alu_reg is the register to write on a divide or
1274
        //      FPU operation.
1275
        assign  wr_reg_id = (alu_wr)?alu_reg:mem_wreg;
1276
        // Are we writing to the CC register?
1277
        assign  wr_write_cc = (wr_reg_id[3:0] == `CPU_CC_REG);
1278
        // Are we writing to the PC?
1279
        assign  wr_write_pc = (wr_reg_id[3:0] == `CPU_PC_REG);
1280
        // What value to write?
1281
        assign  wr_reg_vl = ((mem_valid) ? mem_result
1282
                                :((div_valid|fpu_valid))
1283
                                        ? ((div_valid) ? div_result:fpu_result)
1284
                                :((dbgv) ? dbg_val : alu_result));
1285
        always @(posedge i_clk)
1286
                if (wr_reg_ce)
1287
                        regset[wr_reg_id] <= wr_reg_vl;
1288
 
1289
        //
1290
        // Write back to the condition codes/flags register ...
1291
        // When shall we write to our flags register?  alF_wr already
1292
        // includes the set condition ...
1293
        assign  wr_flags_ce = ((alF_wr)||(div_valid)||(fpu_valid))&&(~clear_pipeline)&&(~alu_illegal);
1294
        assign  w_uflags = { uhalt_phase, ufpu_err_flag,
1295
                        udiv_err_flag, ubus_err_flag, trap, ill_err_u,
1296
                        1'b0, step, 1'b1, sleep,
1297
                        ((wr_flags_ce)&&(alu_gie))?alu_flags:flags };
1298
        assign  w_iflags = { ihalt_phase, ifpu_err_flag,
1299
                        idiv_err_flag, ibus_err_flag, trap, ill_err_i,
1300
                        break_en, 1'b0, 1'b0, sleep,
1301
                        ((wr_flags_ce)&&(~alu_gie))?alu_flags:iflags };
1302
 
1303
 
1304
        // What value to write?
1305
        always @(posedge i_clk)
1306
                // If explicitly writing the register itself
1307
                if ((wr_reg_ce)&&(wr_reg_id[4])&&(wr_write_cc))
1308
                        flags <= wr_reg_vl[3:0];
1309
                // Otherwise if we're setting the flags from an ALU operation
1310
                else if ((wr_flags_ce)&&(alu_gie))
1311
                        flags <= (div_valid)?div_flags:((fpu_valid)?fpu_flags
1312
                                : alu_flags);
1313
 
1314
        always @(posedge i_clk)
1315
                if ((wr_reg_ce)&&(~wr_reg_id[4])&&(wr_write_cc))
1316
                        iflags <= wr_reg_vl[3:0];
1317
                else if ((wr_flags_ce)&&(~alu_gie))
1318
                        iflags <= (div_valid)?div_flags:((fpu_valid)?fpu_flags
1319
                                : alu_flags);
1320
 
1321
        // The 'break' enable  bit.  This bit can only be set from supervisor
1322
        // mode.  It control what the CPU does upon encountering a break
1323
        // instruction.
1324
        //
1325
        // The goal, upon encountering a break is that the CPU should stop and
1326
        // not execute the break instruction, choosing instead to enter into
1327
        // either interrupt mode or halt first.  
1328
        //      if ((break_en) AND (break_instruction)) // user mode or not
1329
        //              HALT CPU
1330
        //      else if (break_instruction) // only in user mode
1331
        //              set an interrupt flag, go to supervisor mode
1332
        //              allow supervisor to step the CPU.
1333
        //      Upon a CPU halt, any break condition will be reset.  The
1334
        //      external debugger will then need to deal with whatever
1335
        //      condition has taken place.
1336
        initial break_en = 1'b0;
1337
        always @(posedge i_clk)
1338
                if ((i_rst)||(i_halt))
1339
                        break_en <= 1'b0;
1340
                else if ((wr_reg_ce)&&(~wr_reg_id[4])&&(wr_write_cc))
1341
                        break_en <= wr_reg_vl[`CPU_BREAK_BIT];
1342
`ifdef  OPT_ILLEGAL_INSTRUCTION
1343
        assign  o_break = ((break_en)||(~op_gie))&&(op_break)
1344
                                &&(~alu_valid)&&(~mem_valid)&&(~mem_busy)
1345
                                &&(~div_busy)&&(~fpu_busy)
1346
                                &&(~clear_pipeline)
1347
                        ||((~alu_gie)&&(bus_err))
1348
                        ||((~alu_gie)&&(div_valid)&&(div_error))
1349
                        ||((~alu_gie)&&(fpu_valid)&&(fpu_error))
1350
                        ||((~alu_gie)&&(alu_pc_valid)&&(alu_illegal));
1351
`else
1352
        assign  o_break = (((break_en)||(~op_gie))&&(op_break)
1353
                                &&(~alu_valid)&&(~mem_valid)&&(~mem_busy)
1354
                                &&(~clear_pipeline))
1355 7 dgisselq
                        ||((~alu_gie)&&(bus_err))
1356
                        ||((~alu_gie)&&(div_valid)&&(div_error))
1357
                        ||((~alu_gie)&&(fpu_valid)&&(fpu_error));
1358 2 dgisselq
`endif
1359
 
1360
 
1361
        // The sleep register.  Setting the sleep register causes the CPU to
1362
        // sleep until the next interrupt.  Setting the sleep register within
1363
        // interrupt mode causes the processor to halt until a reset.  This is
1364
        // a panic/fault halt.  The trick is that you cannot be allowed to
1365
        // set the sleep bit and switch to supervisor mode in the same 
1366
        // instruction: users are not allowed to halt the CPU.
1367
        always @(posedge i_clk)
1368
                if ((i_rst)||(w_switch_to_interrupt))
1369
                        sleep <= 1'b0;
1370
                else if ((wr_reg_ce)&&(wr_write_cc)&&(~alu_gie))
1371
                        // In supervisor mode, we have no protections.  The
1372
                        // supervisor can set the sleep bit however he wants.
1373
                        // Well ... not quite.  Switching to user mode and
1374
                        // sleep mode shouold only be possible if the interrupt
1375
                        // flag isn't set.
1376
                        //      Thus: if (i_interrupt)&&(wr_reg_vl[GIE])
1377
                        //              don't set the sleep bit
1378
                        //      otherwise however it would o.w. be set
1379
                        sleep <= (wr_reg_vl[`CPU_SLEEP_BIT])
1380
                                &&((~i_interrupt)||(~wr_reg_vl[`CPU_GIE_BIT]));
1381
                else if ((wr_reg_ce)&&(wr_write_cc)&&(wr_reg_vl[`CPU_GIE_BIT]))
1382
                        // In user mode, however, you can only set the sleep
1383
                        // mode while remaining in user mode.  You can't switch
1384
                        // to sleep mode *and* supervisor mode at the same
1385
                        // time, lest you halt the CPU.
1386
                        sleep <= wr_reg_vl[`CPU_SLEEP_BIT];
1387
 
1388
        always @(posedge i_clk)
1389
                if ((i_rst)||(w_switch_to_interrupt))
1390
                        step <= 1'b0;
1391
                else if ((wr_reg_ce)&&(~alu_gie)&&(wr_reg_id[4])&&(wr_write_cc))
1392
                        step <= wr_reg_vl[`CPU_STEP_BIT];
1393 7 dgisselq
                else if (((alu_pc_valid)||(mem_pc_valid))&&(step)&&(gie))
1394 2 dgisselq
                        step <= 1'b0;
1395
 
1396
        // The GIE register.  Only interrupts can disable the interrupt register
1397
        assign  w_switch_to_interrupt = (gie)&&(
1398
                        // On interrupt (obviously)
1399
                        ((i_interrupt)&&(~alu_phase)&&(~bus_lock))
1400
                        // If we are stepping the CPU
1401 7 dgisselq
                        ||(((alu_pc_valid)||(mem_pc_valid))&&(step)&&(~alu_phase)&&(~bus_lock))
1402 2 dgisselq
                        // If we encounter a break instruction, if the break
1403
                        //      enable isn't set.
1404
                        ||((master_ce)&&(~mem_rdbusy)&&(~div_busy)&&(~fpu_busy)
1405
                                &&(op_break)&&(~break_en))
1406
`ifdef  OPT_ILLEGAL_INSTRUCTION
1407
                        // On an illegal instruction
1408
                        ||((alu_pc_valid)&&(alu_illegal))
1409
`endif
1410
                        // On division by zero.  If the divide isn't
1411
                        // implemented, div_valid and div_error will be short
1412
                        // circuited and that logic will be bypassed
1413
                        ||((div_valid)&&(div_error))
1414
                        // Same thing on a floating point error.
1415
                        ||((fpu_valid)&&(fpu_error))
1416
                        //      
1417
                        ||(bus_err)
1418
                        // If we write to the CC register
1419
                        ||((wr_reg_ce)&&(~wr_reg_vl[`CPU_GIE_BIT])
1420
                                &&(wr_reg_id[4])&&(wr_write_cc))
1421
                        );
1422
        assign  w_release_from_interrupt = (~gie)&&(~i_interrupt)
1423
                        // Then if we write the CC register
1424
                        &&(((wr_reg_ce)&&(wr_reg_vl[`CPU_GIE_BIT])
1425
                                &&(~wr_reg_id[4])&&(wr_write_cc))
1426
                        );
1427
        always @(posedge i_clk)
1428
                if (i_rst)
1429
                        gie <= 1'b0;
1430
                else if (w_switch_to_interrupt)
1431
                        gie <= 1'b0;
1432
                else if (w_release_from_interrupt)
1433
                        gie <= 1'b1;
1434
 
1435
        initial trap = 1'b0;
1436
        always @(posedge i_clk)
1437
                if (i_rst)
1438
                        trap <= 1'b0;
1439 7 dgisselq
                else if (w_release_from_interrupt)
1440
                        trap <= 1'b0;
1441 2 dgisselq
                else if ((alu_gie)&&(wr_reg_ce)&&(~wr_reg_vl[`CPU_GIE_BIT])
1442
                                &&(wr_write_cc)) // &&(wr_reg_id[4]) implied
1443
                        trap <= 1'b1;
1444 7 dgisselq
                else if ((wr_reg_ce)&&(wr_write_cc)&&(wr_reg_id[4]))
1445
                        trap <= wr_reg_vl[`CPU_TRAP_BIT];
1446 2 dgisselq
 
1447
`ifdef  OPT_ILLEGAL_INSTRUCTION
1448
        initial ill_err_i = 1'b0;
1449
        always @(posedge i_clk)
1450
                if (i_rst)
1451
                        ill_err_i <= 1'b0;
1452 7 dgisselq
                // Only the debug interface can clear this bit
1453 2 dgisselq
                else if ((dbgv)&&(wr_reg_id == {1'b0, `CPU_CC_REG})
1454
                                &&(~wr_reg_vl[`CPU_ILL_BIT]))
1455
                        ill_err_i <= 1'b0;
1456
                else if ((alu_pc_valid)&&(alu_illegal)&&(~alu_gie))
1457
                        ill_err_i <= 1'b1;
1458
        initial ill_err_u = 1'b0;
1459
        always @(posedge i_clk)
1460
                if (i_rst)
1461
                        ill_err_u <= 1'b0;
1462
                // The bit is automatically cleared on release from interrupt
1463
                else if (w_release_from_interrupt)
1464
                        ill_err_u <= 1'b0;
1465
                // If the supervisor writes to this register, clearing the
1466
                // bit, then clear it
1467
                else if (((~alu_gie)||(dbgv))
1468
                                &&(wr_reg_ce)&&(~wr_reg_vl[`CPU_ILL_BIT])
1469
                                &&(wr_reg_id[4])&&(wr_write_cc))
1470
                        ill_err_u <= 1'b0;
1471
                else if ((alu_pc_valid)&&(alu_illegal)&&(alu_gie))
1472
                        ill_err_u <= 1'b1;
1473
`else
1474
        assign ill_err_u = 1'b0;
1475
        assign ill_err_i = 1'b0;
1476
`endif
1477
        // Supervisor/interrupt bus error flag -- this will crash the CPU if
1478
        // ever set.
1479
        initial ibus_err_flag = 1'b0;
1480
        always @(posedge i_clk)
1481
                if (i_rst)
1482
                        ibus_err_flag <= 1'b0;
1483
                else if ((dbgv)&&(wr_reg_id == {1'b0, `CPU_CC_REG})
1484
                                &&(~wr_reg_vl[`CPU_BUSERR_BIT]))
1485
                        ibus_err_flag <= 1'b0;
1486
                else if ((bus_err)&&(~alu_gie))
1487
                        ibus_err_flag <= 1'b1;
1488
        // User bus error flag -- if ever set, it will cause an interrupt to
1489
        // supervisor mode.  
1490
        initial ubus_err_flag = 1'b0;
1491
        always @(posedge i_clk)
1492
                if (i_rst)
1493
                        ubus_err_flag <= 1'b0;
1494
                else if (w_release_from_interrupt)
1495
                        ubus_err_flag <= 1'b0;
1496
                else if (((~alu_gie)||(dbgv))&&(wr_reg_ce)
1497
                                &&(~wr_reg_vl[`CPU_BUSERR_BIT])
1498
                                &&(wr_reg_id[4])&&(wr_write_cc))
1499
                        ubus_err_flag <= 1'b0;
1500
                else if ((bus_err)&&(alu_gie))
1501
                        ubus_err_flag <= 1'b1;
1502
 
1503
        generate
1504
        if (IMPLEMENT_DIVIDE != 0)
1505
        begin
1506
                reg     r_idiv_err_flag, r_udiv_err_flag;
1507
 
1508
                // Supervisor/interrupt divide (by zero) error flag -- this will
1509
                // crash the CPU if ever set.  This bit is thus available for us
1510
                // to be able to tell if/why the CPU crashed.
1511
                initial r_idiv_err_flag = 1'b0;
1512
                always @(posedge i_clk)
1513
                        if (i_rst)
1514
                                r_idiv_err_flag <= 1'b0;
1515
                        else if ((dbgv)&&(wr_reg_id == {1'b0, `CPU_CC_REG})
1516
                                        &&(~wr_reg_vl[`CPU_DIVERR_BIT]))
1517
                                r_idiv_err_flag <= 1'b0;
1518
                        else if ((div_error)&&(div_valid)&&(~alu_gie))
1519
                                r_idiv_err_flag <= 1'b1;
1520
                // User divide (by zero) error flag -- if ever set, it will
1521
                // cause a sudden switch interrupt to supervisor mode.  
1522
                initial r_udiv_err_flag = 1'b0;
1523
                always @(posedge i_clk)
1524
                        if (i_rst)
1525
                                r_udiv_err_flag <= 1'b0;
1526
                        else if (w_release_from_interrupt)
1527
                                r_udiv_err_flag <= 1'b0;
1528
                        else if (((~alu_gie)||(dbgv))&&(wr_reg_ce)
1529
                                        &&(~wr_reg_vl[`CPU_DIVERR_BIT])
1530
                                        &&(wr_reg_id[4])&&(wr_write_cc))
1531
                                r_udiv_err_flag <= 1'b0;
1532
                        else if ((div_error)&&(alu_gie)&&(div_valid))
1533
                                r_udiv_err_flag <= 1'b1;
1534
 
1535
                assign  idiv_err_flag = r_idiv_err_flag;
1536
                assign  udiv_err_flag = r_udiv_err_flag;
1537
        end else begin
1538
                assign  idiv_err_flag = 1'b0;
1539
                assign  udiv_err_flag = 1'b0;
1540
        end endgenerate
1541
 
1542
        generate
1543
        if (IMPLEMENT_FPU !=0)
1544
        begin
1545
                // Supervisor/interrupt floating point error flag -- this will
1546
                // crash the CPU if ever set.
1547
                reg             r_ifpu_err_flag, r_ufpu_err_flag;
1548
                initial r_ifpu_err_flag = 1'b0;
1549
                always @(posedge i_clk)
1550
                        if (i_rst)
1551
                                r_ifpu_err_flag <= 1'b0;
1552
                        else if ((dbgv)&&(wr_reg_id == {1'b0, `CPU_CC_REG})
1553
                                        &&(~wr_reg_vl[`CPU_FPUERR_BIT]))
1554
                                r_ifpu_err_flag <= 1'b0;
1555
                        else if ((fpu_error)&&(fpu_valid)&&(~alu_gie))
1556
                                r_ifpu_err_flag <= 1'b1;
1557
                // User floating point error flag -- if ever set, it will cause
1558
                // a sudden switch interrupt to supervisor mode.  
1559
                initial r_ufpu_err_flag = 1'b0;
1560
                always @(posedge i_clk)
1561
                        if (i_rst)
1562
                                r_ufpu_err_flag <= 1'b0;
1563
                        else if (w_release_from_interrupt)
1564
                                r_ufpu_err_flag <= 1'b0;
1565
                        else if (((~alu_gie)||(dbgv))&&(wr_reg_ce)
1566
                                        &&(~wr_reg_vl[`CPU_FPUERR_BIT])
1567
                                        &&(wr_reg_id[4])&&(wr_write_cc))
1568
                                r_ufpu_err_flag <= 1'b0;
1569
                        else if ((fpu_error)&&(alu_gie)&&(fpu_valid))
1570
                                r_ufpu_err_flag <= 1'b1;
1571
 
1572
                assign  ifpu_err_flag = r_ifpu_err_flag;
1573
                assign  ufpu_err_flag = r_ufpu_err_flag;
1574
        end else begin
1575
                assign  ifpu_err_flag = 1'b0;
1576
                assign  ufpu_err_flag = 1'b0;
1577
        end endgenerate
1578
 
1579
`ifdef  OPT_VLIW
1580
        reg             r_ihalt_phase, r_uhalt_phase;
1581
 
1582
        initial r_ihalt_phase = 0;
1583
        initial r_uhalt_phase = 0;
1584
        always @(posedge i_clk)
1585
                if (~alu_gie)
1586
                        r_ihalt_phase <= alu_phase;
1587
        always @(posedge i_clk)
1588
                if (alu_gie)
1589
                        r_uhalt_phase <= alu_phase;
1590
                else if (w_release_from_interrupt)
1591
                        r_uhalt_phase <= 1'b0;
1592
 
1593
        assign  ihalt_phase = r_ihalt_phase;
1594
        assign  uhalt_phase = r_uhalt_phase;
1595
`else
1596
        assign  ihalt_phase = 1'b0;
1597
        assign  uhalt_phase = 1'b0;
1598
`endif
1599
 
1600
        //
1601
        // Write backs to the PC register, and general increments of it
1602
        //      We support two: upc and ipc.  If the instruction is normal,
1603
        // we increment upc, if interrupt level we increment ipc.  If
1604
        // the instruction writes the PC, we write whichever PC is appropriate.
1605
        //
1606
        // Do we need to all our partial results from the pipeline?
1607
        // What happens when the pipeline has gie and ~gie instructions within
1608
        // it?  Do we clear both?  What if a gie instruction tries to clear
1609
        // a non-gie instruction?
1610
        always @(posedge i_clk)
1611
                if ((wr_reg_ce)&&(wr_reg_id[4])&&(wr_write_pc))
1612
                        upc <= wr_reg_vl[(AW-1):0];
1613 7 dgisselq
                else if ((alu_gie)&&
1614
                                (((alu_pc_valid)&&(~clear_pipeline))
1615
                                ||(mem_pc_valid)))
1616 2 dgisselq
                        upc <= alu_pc;
1617
 
1618
        always @(posedge i_clk)
1619
                if (i_rst)
1620
                        ipc <= RESET_ADDRESS;
1621
                else if ((wr_reg_ce)&&(~wr_reg_id[4])&&(wr_write_pc))
1622
                        ipc <= wr_reg_vl[(AW-1):0];
1623 7 dgisselq
                else if ((~alu_gie)&&
1624
                                (((alu_pc_valid)&&(~clear_pipeline))
1625
                                ||(mem_pc_valid)))
1626 2 dgisselq
                        ipc <= alu_pc;
1627
 
1628
        always @(posedge i_clk)
1629
                if (i_rst)
1630
                        pf_pc <= RESET_ADDRESS;
1631
                else if (w_switch_to_interrupt)
1632
                        pf_pc <= ipc;
1633
                else if (w_release_from_interrupt)
1634
                        pf_pc <= upc;
1635
                else if ((wr_reg_ce)&&(wr_reg_id[4] == gie)&&(wr_write_pc))
1636
                        pf_pc <= wr_reg_vl[(AW-1):0];
1637
`ifdef  OPT_PIPELINED
1638
                else if ((dcd_early_branch)&&(~clear_pipeline))
1639
                        pf_pc <= dcd_branch_pc + 1;
1640
                else if ((new_pc)||((~dcd_stalled)&&(pf_valid)))
1641
                        pf_pc <= pf_pc + {{(AW-1){1'b0}},1'b1};
1642
`else
1643
                else if ((alu_pc_valid)&&(~clear_pipeline))
1644
                        pf_pc <= alu_pc;
1645
`endif
1646
 
1647
        initial new_pc = 1'b1;
1648
        always @(posedge i_clk)
1649
                if ((i_rst)||(i_clear_pf_cache))
1650
                        new_pc <= 1'b1;
1651
                else if (w_switch_to_interrupt)
1652
                        new_pc <= 1'b1;
1653
                else if (w_release_from_interrupt)
1654
                        new_pc <= 1'b1;
1655
                else if ((wr_reg_ce)&&(wr_reg_id[4] == gie)&&(wr_write_pc))
1656
                        new_pc <= 1'b1;
1657
                else
1658
                        new_pc <= 1'b0;
1659
 
1660
        //
1661
        // The debug interface
1662
        generate
1663
        if (AW<32)
1664
        begin
1665
                always @(posedge i_clk)
1666
                begin
1667
                        o_dbg_reg <= regset[i_dbg_reg];
1668
                        if (i_dbg_reg[3:0] == `CPU_PC_REG)
1669
                                o_dbg_reg <= {{(32-AW){1'b0}},(i_dbg_reg[4])?upc:ipc};
1670
                        else if (i_dbg_reg[3:0] == `CPU_CC_REG)
1671
                        begin
1672
                                o_dbg_reg[13:0] <= (i_dbg_reg[4])?w_uflags:w_iflags;
1673
                                o_dbg_reg[`CPU_GIE_BIT] <= gie;
1674
                        end
1675
                end
1676
        end else begin
1677
                always @(posedge i_clk)
1678
                begin
1679
                        o_dbg_reg <= regset[i_dbg_reg];
1680
                        if (i_dbg_reg[3:0] == `CPU_PC_REG)
1681
                                o_dbg_reg <= (i_dbg_reg[4])?upc:ipc;
1682
                        else if (i_dbg_reg[3:0] == `CPU_CC_REG)
1683
                        begin
1684
                                o_dbg_reg[13:0] <= (i_dbg_reg[4])?w_uflags:w_iflags;
1685
                                o_dbg_reg[`CPU_GIE_BIT] <= gie;
1686
                        end
1687
                end
1688
        end endgenerate
1689
 
1690
        always @(posedge i_clk)
1691
                o_dbg_cc <= { o_break, bus_err, gie, sleep };
1692
 
1693
        always @(posedge i_clk)
1694
                o_dbg_stall <= (i_halt)&&(
1695
                        (pf_cyc)||(mem_cyc_gbl)||(mem_cyc_lcl)||(mem_busy)
1696 7 dgisselq
                        ||((~opvalid)&&(~i_rst)&&(~dcd_illegal))
1697
                        ||((~dcdvalid)&&(~i_rst)&&(~pf_illegal)));
1698 2 dgisselq
 
1699
        //
1700
        //
1701
        // Produce accounting outputs: Account for any CPU stalls, so we can
1702
        // later evaluate how well we are doing.
1703
        //
1704
        //
1705
        assign  o_op_stall = (master_ce)&&(op_stall);
1706
        assign  o_pf_stall = (master_ce)&&(~pf_valid);
1707
        assign  o_i_count  = (alu_pc_valid)&&(~clear_pipeline);
1708
 
1709
`ifdef  DEBUG_SCOPE
1710
        always @(posedge i_clk)
1711
                o_debug <= {
1712 7 dgisselq
                        o_break, i_wb_err, pf_pc[1:0],
1713
                        flags,
1714 2 dgisselq
                        pf_valid, dcdvalid, opvalid, alu_valid, mem_valid,
1715
                        op_ce, alu_ce, mem_ce,
1716
                        //
1717
                        master_ce, opvalid_alu, opvalid_mem,
1718
                        //
1719
                        alu_stall, mem_busy, op_pipe, mem_pipe_stalled,
1720
                        mem_we,
1721
                        // ((opvalid_alu)&&(alu_stall))
1722
                        // ||((opvalid_mem)&&(~op_pipe)&&(mem_busy))
1723
                        // ||((opvalid_mem)&&( op_pipe)&&(mem_pipe_stalled)));
1724
                        // opA[23:20], opA[3:0],
1725 7 dgisselq
                        gie, sleep, wr_reg_ce, wr_reg_vl[4:0]
1726 2 dgisselq
                /*
1727
                        i_rst, master_ce, (new_pc),
1728
                        ((dcd_early_branch)&&(dcdvalid)),
1729
                        pf_valid, pf_illegal,
1730
                        op_ce, dcd_ce, dcdvalid, dcd_stalled,
1731
                        pf_cyc, pf_stb, pf_we, pf_ack, pf_stall, pf_err,
1732
                        pf_pc[7:0], pf_addr[7:0]
1733
                */
1734 7 dgisselq
                /*
1735
                        i_wb_err, gie, alu_illegal,
1736
                              (new_pc)||((dcd_early_branch)&&(~clear_pipeline)),
1737
                        mem_busy,
1738
                                (mem_busy)?{ (o_wb_gbl_stb|o_wb_lcl_stb), o_wb_we,
1739
                                        o_wb_addr[8:0] }
1740
                                        : { instruction[31:21] },
1741
                        pf_valid, (pf_valid) ? alu_pc[14:0]
1742
                                :{ pf_cyc, pf_stb, pf_pc[12:0] }
1743
                */
1744
                /*
1745
                        i_wb_err, gie, new_pc, dcd_early_branch,        // 4
1746
                        pf_valid, pf_cyc, pf_stb, instruction_pc[0],    // 4
1747
                        instruction[30:27],                             // 4
1748
                        dcd_gie, mem_busy, o_wb_gbl_cyc, o_wb_gbl_stb,  // 4
1749
                        dcdvalid,
1750
                        ((dcd_early_branch)&&(~clear_pipeline))         // 15
1751
                                        ? dcd_branch_pc[14:0]:pf_pc[14:0]
1752
                */
1753 2 dgisselq
                        };
1754
`endif
1755
 
1756
endmodule

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.