1 |
11 |
dgisselq |
////////////////////////////////////////////////////////////////////////////////
|
2 |
|
|
//
|
3 |
|
|
// Filename: deppbyte.v
|
4 |
|
|
//
|
5 |
|
|
// Project: CMod S6 System on a Chip, ZipCPU demonstration project
|
6 |
|
|
//
|
7 |
|
|
// Purpose: This is a very simple DEPP to synchronous byte transfer. It
|
8 |
|
|
// is used in place of a serial port.
|
9 |
|
|
//
|
10 |
|
|
// This approach uses address zero *only*.
|
11 |
|
|
//
|
12 |
|
|
// Creator: Dan Gisselquist, Ph.D.
|
13 |
|
|
// Gisselquist Technology, LLC
|
14 |
|
|
//
|
15 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
16 |
|
|
//
|
17 |
46 |
dgisselq |
// Copyright (C) 2015-2017, Gisselquist Technology, LLC
|
18 |
11 |
dgisselq |
//
|
19 |
|
|
// This program is free software (firmware): you can redistribute it and/or
|
20 |
|
|
// modify it under the terms of the GNU General Public License as published
|
21 |
|
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
22 |
|
|
// your option) any later version.
|
23 |
|
|
//
|
24 |
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
25 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
26 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
27 |
|
|
// for more details.
|
28 |
|
|
//
|
29 |
|
|
// You should have received a copy of the GNU General Public License along
|
30 |
46 |
dgisselq |
// with this program. (It's in the $(ROOT)/doc directory. Run make with no
|
31 |
11 |
dgisselq |
// target there if the PDF file isn't present.) If not, see
|
32 |
|
|
// <http://www.gnu.org/licenses/> for a copy.
|
33 |
|
|
//
|
34 |
|
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
35 |
|
|
// http://www.gnu.org/licenses/gpl.html
|
36 |
|
|
//
|
37 |
|
|
//
|
38 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
39 |
|
|
//
|
40 |
|
|
//
|
41 |
|
|
module deppbyte(i_clk,
|
42 |
|
|
i_astb_n, i_dstb_n, i_write_n,i_depp, o_depp, o_wait,
|
43 |
|
|
o_rx_stb, o_rx_data,
|
44 |
|
|
i_tx_stb, i_tx_data, o_tx_busy);
|
45 |
|
|
input i_clk;
|
46 |
|
|
// DEPP interface
|
47 |
|
|
input i_astb_n, i_dstb_n, i_write_n;
|
48 |
|
|
input [7:0] i_depp;
|
49 |
|
|
output reg [7:0] o_depp;
|
50 |
|
|
output wire o_wait;
|
51 |
|
|
// Byte-wise interface to the rest of the world
|
52 |
|
|
output reg o_rx_stb;
|
53 |
|
|
output reg [7:0] o_rx_data;
|
54 |
|
|
input i_tx_stb;
|
55 |
|
|
input [7:0] i_tx_data;
|
56 |
|
|
output reg o_tx_busy;
|
57 |
|
|
|
58 |
|
|
// Synchronize the incoming signals
|
59 |
|
|
reg x_dstb_n, x_astb_n, x_write_n,
|
60 |
|
|
r_dstb_n, r_astb_n, r_write_n,
|
61 |
|
|
l_dstb_n, l_astb_n, l_write_n;
|
62 |
|
|
reg [7:0] x_depp, r_depp;
|
63 |
|
|
initial x_dstb_n = 1'b1;
|
64 |
|
|
initial r_dstb_n = 1'b1;
|
65 |
|
|
initial l_dstb_n = 1'b1;
|
66 |
|
|
initial x_astb_n = 1'b1;
|
67 |
|
|
initial r_astb_n = 1'b1;
|
68 |
|
|
initial l_astb_n = 1'b1;
|
69 |
|
|
always @(posedge i_clk)
|
70 |
|
|
begin
|
71 |
|
|
{ x_dstb_n, x_astb_n, x_write_n, x_depp }
|
72 |
|
|
<= { i_dstb_n, i_astb_n, i_write_n, i_depp };
|
73 |
|
|
{ r_dstb_n, r_astb_n, r_write_n, r_depp }
|
74 |
|
|
<= { x_dstb_n, x_astb_n, x_write_n, x_depp };
|
75 |
|
|
{ l_dstb_n, l_astb_n, l_write_n } <= { r_dstb_n, r_astb_n, r_write_n };
|
76 |
|
|
end
|
77 |
|
|
|
78 |
|
|
reg [7:0] addr;
|
79 |
|
|
wire astb, dstb, w_write;
|
80 |
46 |
dgisselq |
assign astb = (!r_astb_n)&&(l_astb_n);
|
81 |
|
|
assign dstb = (!r_dstb_n)&&(l_dstb_n);
|
82 |
|
|
assign w_write= (!r_write_n);
|
83 |
11 |
dgisselq |
|
84 |
|
|
|
85 |
|
|
initial addr = 8'h00;
|
86 |
|
|
initial o_rx_stb = 1'b0;
|
87 |
|
|
always @(posedge i_clk)
|
88 |
|
|
begin
|
89 |
|
|
if ((w_write)&&(astb))
|
90 |
|
|
addr <= r_depp;
|
91 |
|
|
|
92 |
|
|
if ((w_write)&&(dstb)&&(addr==0))
|
93 |
|
|
begin
|
94 |
|
|
o_rx_stb <= 1'b1;
|
95 |
|
|
o_rx_data <= r_depp;
|
96 |
|
|
end else
|
97 |
|
|
o_rx_stb <= 1'b0;
|
98 |
|
|
end
|
99 |
|
|
|
100 |
|
|
// Much as I hate to use signals that have not been synchronized with a
|
101 |
|
|
// two clock transfer, this line needs to be brought low within 10ms
|
102 |
|
|
// (less than one clock) of when the strobe lines are brought low, and
|
103 |
|
|
// raised high again within 10 ms of when the strobe lines are raised
|
104 |
|
|
// again.
|
105 |
46 |
dgisselq |
assign o_wait = ((!i_dstb_n)||(!i_astb_n));
|
106 |
11 |
dgisselq |
|
107 |
|
|
// For one clock, following any read from address zero, we allow the
|
108 |
|
|
// port to write one new byte into our interface. This works because
|
109 |
|
|
// the interface will guarantee that the strobe signals are inactive
|
110 |
|
|
// (high) for at least 40ns before attempting a new transaction.
|
111 |
|
|
//
|
112 |
|
|
// Just about nothing else works. 'cause we can't allow changes
|
113 |
|
|
// in the middle of a transaction, and we won't know if the clock
|
114 |
|
|
// involved is in the middle of a transaction until after the time
|
115 |
|
|
// has passed. Therefore, we're going to be busy most of the time
|
116 |
|
|
// and just allow a byte to pass through on the one (and only) clock
|
117 |
|
|
// following a transaction.
|
118 |
|
|
always @(posedge i_clk)
|
119 |
|
|
o_tx_busy <= ((~l_dstb_n)&&(r_dstb_n)&&(l_write_n)&&(addr == 0))
|
120 |
|
|
? 1'b0 : 1'b1;
|
121 |
|
|
|
122 |
|
|
// If we don't have a byte to write, stuff it with all ones. The high
|
123 |
|
|
// bit will then indicate that there's nothing available to the
|
124 |
|
|
// interface when it next reads.
|
125 |
|
|
//
|
126 |
|
|
// Okay, new philosophy. Stuff the high bit with ones, allow the other
|
127 |
|
|
// bits to contain status level information --- should any one wish to
|
128 |
|
|
// send such.
|
129 |
|
|
initial o_depp = 8'hff;
|
130 |
|
|
always @(posedge i_clk)
|
131 |
|
|
if (~o_tx_busy)
|
132 |
|
|
o_depp <= {((i_tx_stb)? i_tx_data[7] : 1'b1),
|
133 |
|
|
i_tx_data[6:0] };
|
134 |
|
|
|
135 |
|
|
endmodule
|