1 |
2 |
dgisselq |
/////////////////////////////////////////////////////////////////////////
|
2 |
|
|
//
|
3 |
|
|
//
|
4 |
|
|
// Filename: rxuart.v
|
5 |
|
|
//
|
6 |
|
|
// Project: FPGA library development (Spartan 3E development board)
|
7 |
|
|
//
|
8 |
|
|
// Purpose: Receive and decode inputs from a single UART line.
|
9 |
|
|
//
|
10 |
|
|
//
|
11 |
|
|
// To interface with this module, connect it to your system clock,
|
12 |
|
|
// pass it the 32 bit setup register (defined below) and the UART
|
13 |
|
|
// input. When data becomes available, the o_wr line will be asserted
|
14 |
|
|
// for one clock cycle. On parity or frame errors, the o_parity_err
|
15 |
|
|
// or o_frame_err lines will be asserted. Likewise, on a break
|
16 |
|
|
// condition, o_break will be asserted. These lines are self clearing.
|
17 |
|
|
//
|
18 |
|
|
// There is a synchronous reset line, logic high.
|
19 |
|
|
//
|
20 |
|
|
// Now for the setup register. The register is 32 bits, so that this
|
21 |
|
|
// UART may be set up over a 32-bit bus.
|
22 |
|
|
//
|
23 |
|
|
// i_setup[29:28] Indicates the number of data bits per word. This will
|
24 |
|
|
// either be 2'b00 for an 8-bit word, 2'b01 for a 7-bit word, 2'b10
|
25 |
|
|
// for a six bit word, or 2'b11 for a five bit word.
|
26 |
|
|
//
|
27 |
|
|
// i_setup[27] Indicates whether or not to use one or two stop bits.
|
28 |
|
|
// Set this to one to expect two stop bits, zero for one.
|
29 |
|
|
//
|
30 |
|
|
// i_setup[26] Indicates whether or not a parity bit exists. Set this
|
31 |
|
|
// to 1'b1 to include parity.
|
32 |
|
|
//
|
33 |
|
|
// i_setup[25] Indicates whether or not the parity bit is fixed. Set
|
34 |
|
|
// to 1'b1 to include a fixed bit of parity, 1'b0 to allow the
|
35 |
|
|
// parity to be set based upon data. (Both assume the parity
|
36 |
|
|
// enable value is set.)
|
37 |
|
|
//
|
38 |
|
|
// i_setup[24] This bit is ignored if parity is not used. Otherwise,
|
39 |
|
|
// in the case of a fixed parity bit, this bit indicates whether
|
40 |
|
|
// mark (1'b1) or space (1'b0) parity is used. Likewise if the
|
41 |
|
|
// parity is not fixed, a 1'b1 selects even parity, and 1'b0
|
42 |
|
|
// selects odd.
|
43 |
|
|
//
|
44 |
|
|
// i_setup[23:0] Indicates the speed of the UART in terms of clocks.
|
45 |
|
|
// So, for example, if you have a 200 MHz clock and wish to
|
46 |
|
|
// run your UART at 9600 baud, you would take 200 MHz and divide
|
47 |
|
|
// by 9600 to set this value to 24'd20834. Likewise if you wished
|
48 |
|
|
// to run this serial port at 115200 baud from a 200 MHz clock,
|
49 |
|
|
// you would set the value to 24'd1736
|
50 |
|
|
//
|
51 |
|
|
// Thus, to set the UART for the common setting of an 8-bit word,
|
52 |
|
|
// one stop bit, no parity, and 115200 baud over a 200 MHz clock, you
|
53 |
|
|
// would want to set the setup value to:
|
54 |
|
|
//
|
55 |
|
|
// 32'h0006c8 // For 115,200 baud, 8 bit, no parity
|
56 |
|
|
// 32'h005161 // For 9600 baud, 8 bit, no parity
|
57 |
|
|
//
|
58 |
|
|
//
|
59 |
|
|
//
|
60 |
|
|
// Creator: Dan Gisselquist, Ph.D.
|
61 |
|
|
// Gisselquist Technology, LLC
|
62 |
|
|
//
|
63 |
|
|
// Copyright: 2015
|
64 |
|
|
//
|
65 |
|
|
//
|
66 |
|
|
/////////////////////////////////////////////////////////////////////////
|
67 |
|
|
//
|
68 |
|
|
// This software is the ownership of Gisselquist Technology, LLC, and as
|
69 |
|
|
// such it is proprietary. It is provided without any warrantees, either
|
70 |
|
|
// express or implied, so that it may be tested. Upon completion, I ask
|
71 |
|
|
// that working code be returned and not further distributed beyond those
|
72 |
|
|
// that it is originally offered to.
|
73 |
|
|
//
|
74 |
|
|
// Thank you.
|
75 |
|
|
//
|
76 |
|
|
|
77 |
|
|
// States: (@ baud counter == 0)
|
78 |
|
|
// 0 First bit arrives
|
79 |
|
|
// ..7 Bits arrive
|
80 |
|
|
// 8 Stop bit (x1)
|
81 |
|
|
// 9 Stop bit (x2)
|
82 |
|
|
/// c break condition
|
83 |
|
|
// d Waiting for the channel to go high
|
84 |
|
|
// e Waiting for the reset to complete
|
85 |
|
|
// f Idle state
|
86 |
|
|
`define RXU_BIT_ZERO 4'h0
|
87 |
|
|
`define RXU_BIT_ONE 4'h1
|
88 |
|
|
`define RXU_BIT_TWO 4'h2
|
89 |
|
|
`define RXU_BIT_THREE 4'h3
|
90 |
|
|
`define RXU_BIT_FOUR 4'h4
|
91 |
|
|
`define RXU_BIT_FIVE 4'h5
|
92 |
|
|
`define RXU_BIT_SIX 4'h6
|
93 |
|
|
`define RXU_BIT_SEVEN 4'h7
|
94 |
|
|
`define RXU_PARITY 4'h8
|
95 |
|
|
`define RXU_STOP 4'h9
|
96 |
|
|
`define RXU_SECOND_STOP 4'ha
|
97 |
|
|
// Unused 4'hb
|
98 |
|
|
// Unused 4'hc
|
99 |
|
|
`define RXU_BREAK 4'hd
|
100 |
|
|
`define RXU_RESET_IDLE 4'he
|
101 |
|
|
`define RXU_IDLE 4'hf
|
102 |
|
|
|
103 |
|
|
module rxuart(i_clk, i_reset, i_setup, i_uart, o_wr, o_data, o_break,
|
104 |
|
|
o_parity_err, o_frame_err, o_ck_uart);
|
105 |
|
|
// parameter // CLOCKS_PER_BAUD = 25'd004340,
|
106 |
|
|
// BREAK_CONDITION = CLOCKS_PER_BAUD * 12,
|
107 |
|
|
// CLOCKS_PER_HALF_BAUD = CLOCKS_PER_BAUD/2;
|
108 |
|
|
// 8 data bits, no parity, (at least 1) stop bit
|
109 |
|
|
input i_clk, i_reset;
|
110 |
|
|
input [29:0] i_setup;
|
111 |
|
|
input i_uart;
|
112 |
|
|
output reg o_wr;
|
113 |
|
|
output reg [7:0] o_data;
|
114 |
|
|
output reg o_break;
|
115 |
|
|
output reg o_parity_err, o_frame_err;
|
116 |
|
|
output wire o_ck_uart;
|
117 |
|
|
|
118 |
|
|
|
119 |
|
|
wire [27:0] clocks_per_baud, break_condition, half_baud;
|
120 |
|
|
wire [1:0] data_bits;
|
121 |
|
|
wire use_parity, parity_even, dblstop, fixd_parity;
|
122 |
|
|
reg [29:0] r_setup;
|
123 |
|
|
assign clocks_per_baud = { 4'h0, r_setup[23:0] };
|
124 |
|
|
assign data_bits = r_setup[29:28];
|
125 |
|
|
assign dblstop = r_setup[27];
|
126 |
|
|
assign use_parity = r_setup[26];
|
127 |
|
|
assign fixd_parity = r_setup[25];
|
128 |
|
|
assign parity_even = r_setup[24];
|
129 |
|
|
assign break_condition = { r_setup[23:0], 4'h0 };
|
130 |
|
|
assign half_baud = { 5'h00, r_setup[23:1] };
|
131 |
|
|
|
132 |
|
|
reg q_uart, qq_uart, ck_uart;
|
133 |
|
|
initial q_uart = 1'b0;
|
134 |
|
|
initial qq_uart = 1'b0;
|
135 |
|
|
initial ck_uart = 1'b0;
|
136 |
|
|
always @(posedge i_clk)
|
137 |
|
|
begin
|
138 |
|
|
q_uart <= i_uart;
|
139 |
|
|
qq_uart <= q_uart;
|
140 |
|
|
ck_uart <= qq_uart;
|
141 |
|
|
end
|
142 |
|
|
assign o_ck_uart = ck_uart;
|
143 |
|
|
|
144 |
|
|
reg [27:0] chg_counter;
|
145 |
|
|
initial chg_counter = 28'h00;
|
146 |
|
|
always @(posedge i_clk)
|
147 |
|
|
if (i_reset)
|
148 |
|
|
chg_counter <= 28'h00;
|
149 |
|
|
else if (qq_uart != ck_uart)
|
150 |
|
|
chg_counter <= 28'h00;
|
151 |
|
|
else if (chg_counter < break_condition)
|
152 |
|
|
chg_counter <= chg_counter + 1;
|
153 |
|
|
|
154 |
|
|
always @(posedge i_clk)
|
155 |
|
|
o_break <=((chg_counter >= break_condition)&&(~ck_uart))? 1'b1:1'b0;
|
156 |
|
|
|
157 |
|
|
reg [3:0] state;
|
158 |
|
|
reg [27:0] baud_counter;
|
159 |
|
|
reg [7:0] data_reg;
|
160 |
|
|
reg calc_parity;
|
161 |
|
|
initial o_wr = 1'b0;
|
162 |
|
|
initial state = `RXU_RESET_IDLE;
|
163 |
|
|
initial o_parity_err = 1'b0;
|
164 |
|
|
initial o_frame_err = 1'b0;
|
165 |
|
|
// initial baud_counter = clocks_per_baud;
|
166 |
|
|
always @(posedge i_clk)
|
167 |
|
|
begin
|
168 |
|
|
if (i_reset)
|
169 |
|
|
begin
|
170 |
|
|
o_wr <= 1'b0;
|
171 |
|
|
o_data <= 8'h00;
|
172 |
|
|
state <= `RXU_RESET_IDLE;
|
173 |
|
|
baud_counter <= clocks_per_baud; // Set, not reset
|
174 |
|
|
data_reg <= 8'h00;
|
175 |
|
|
calc_parity <= 1'b0;
|
176 |
|
|
o_parity_err <= 1'b0;
|
177 |
|
|
o_frame_err <= 1'b0;
|
178 |
|
|
end else if (state == `RXU_RESET_IDLE)
|
179 |
|
|
begin
|
180 |
|
|
r_setup <= i_setup;
|
181 |
|
|
data_reg <= 8'h00; o_data <= 8'h00; o_wr <= 1'b0;
|
182 |
|
|
baud_counter <= clocks_per_baud-28'h01;// Set, not reset
|
183 |
|
|
if ((ck_uart)&&(chg_counter >= break_condition))
|
184 |
|
|
// Goto idle state from a reset
|
185 |
|
|
state <= `RXU_IDLE;
|
186 |
|
|
else // Otherwise, stay in this condition 'til reset
|
187 |
|
|
state <= `RXU_RESET_IDLE;
|
188 |
|
|
calc_parity <= 1'b0;
|
189 |
|
|
o_parity_err <= 1'b0;
|
190 |
|
|
o_frame_err <= 1'b0;
|
191 |
|
|
end else if ((~ck_uart)&&(chg_counter >= break_condition))
|
192 |
|
|
begin // We are in a break condition
|
193 |
|
|
state <= `RXU_BREAK;
|
194 |
|
|
o_wr <= 1'b0;
|
195 |
|
|
o_data <= 8'h00;
|
196 |
|
|
baud_counter <= clocks_per_baud-28'h01;// Set, not reset
|
197 |
|
|
data_reg <= 8'h00;
|
198 |
|
|
calc_parity <= 1'b0;
|
199 |
|
|
o_parity_err <= 1'b0;
|
200 |
|
|
o_frame_err <= 1'b0;
|
201 |
|
|
r_setup <= i_setup;
|
202 |
|
|
end else if (state == `RXU_BREAK)
|
203 |
|
|
begin // Goto idle state following return ck_uart going high
|
204 |
|
|
data_reg <= 8'h00; o_data <= 8'h00; o_wr <= 1'b0;
|
205 |
|
|
baud_counter <= clocks_per_baud - 28'h01;
|
206 |
|
|
if (ck_uart)
|
207 |
|
|
state <= `RXU_IDLE;
|
208 |
|
|
else
|
209 |
|
|
state <= `RXU_BREAK;
|
210 |
|
|
calc_parity <= 1'b0;
|
211 |
|
|
o_parity_err <= 1'b0;
|
212 |
|
|
o_frame_err <= 1'b0;
|
213 |
|
|
r_setup <= i_setup;
|
214 |
|
|
end else if (state == `RXU_IDLE)
|
215 |
|
|
begin // Idle state, independent of baud counter
|
216 |
|
|
data_reg <= 8'h00; o_data <= 8'h00; o_wr <= 1'b0;
|
217 |
|
|
baud_counter <= clocks_per_baud - 28'h01;
|
218 |
|
|
if ((ck_uart == 1'b0)&&(chg_counter > half_baud))
|
219 |
|
|
begin
|
220 |
|
|
// We are in the center of a valid start bit
|
221 |
|
|
case (data_bits)
|
222 |
|
|
2'b00: state <= `RXU_BIT_ZERO;
|
223 |
|
|
2'b01: state <= `RXU_BIT_ONE;
|
224 |
|
|
2'b10: state <= `RXU_BIT_TWO;
|
225 |
|
|
2'b11: state <= `RXU_BIT_THREE;
|
226 |
|
|
endcase
|
227 |
|
|
end else // Otherwise, just stay here in idle
|
228 |
|
|
state <= `RXU_IDLE;
|
229 |
|
|
calc_parity <= 1'b0;
|
230 |
|
|
o_parity_err <= 1'b0;
|
231 |
|
|
o_frame_err <= 1'b0;
|
232 |
|
|
end else if (baud_counter == 0)
|
233 |
|
|
begin
|
234 |
|
|
baud_counter <= clocks_per_baud-28'h1;
|
235 |
|
|
if (state < `RXU_BIT_SEVEN)
|
236 |
|
|
begin
|
237 |
|
|
// Data arrives least significant bit first.
|
238 |
|
|
// By the time this is clocked in, it's what
|
239 |
|
|
// you'll have.
|
240 |
|
|
data_reg <= { ck_uart, data_reg[7:1] };
|
241 |
|
|
calc_parity <= calc_parity ^ ck_uart;
|
242 |
|
|
o_data <= 8'h00;
|
243 |
|
|
o_wr <= 1'b0;
|
244 |
|
|
state <= state + 1;
|
245 |
|
|
o_parity_err <= 1'b0;
|
246 |
|
|
o_frame_err <= 1'b0;
|
247 |
|
|
end else if (state == `RXU_BIT_SEVEN)
|
248 |
|
|
begin
|
249 |
|
|
data_reg <= { ck_uart, data_reg[7:1] };
|
250 |
|
|
calc_parity <= calc_parity ^ ck_uart;
|
251 |
|
|
o_data <= 8'h00;
|
252 |
|
|
o_wr <= 1'b0;
|
253 |
|
|
state <= (use_parity) ? `RXU_PARITY:`RXU_STOP;
|
254 |
|
|
o_parity_err <= 1'b0;
|
255 |
|
|
o_frame_err <= 1'b0;
|
256 |
|
|
end else if (state == `RXU_PARITY)
|
257 |
|
|
begin
|
258 |
|
|
if (fixd_parity)
|
259 |
|
|
o_parity_err <= (ck_uart ^ parity_even);
|
260 |
|
|
else
|
261 |
|
|
o_parity_err <= ((parity_even && (calc_parity != ck_uart))
|
262 |
|
|
||((~parity_even)&&(calc_parity==ck_uart)));
|
263 |
|
|
state <= `RXU_STOP;
|
264 |
|
|
o_frame_err <= 1'b0;
|
265 |
|
|
end else if (state == `RXU_STOP)
|
266 |
|
|
begin // Stop (or parity) bit(s)
|
267 |
|
|
case (data_bits)
|
268 |
|
|
2'b00: o_data <= data_reg;
|
269 |
|
|
2'b01: o_data <= { 1'b0, data_reg[7:1] };
|
270 |
|
|
2'b10: o_data <= { 2'b0, data_reg[7:2] };
|
271 |
|
|
2'b11: o_data <= { 3'b0, data_reg[7:3] };
|
272 |
|
|
endcase
|
273 |
|
|
o_wr <= 1'b1; // Pulse the write
|
274 |
|
|
o_frame_err <= (~ck_uart);
|
275 |
|
|
if (~ck_uart)
|
276 |
|
|
state <= `RXU_RESET_IDLE;
|
277 |
|
|
else if (dblstop)
|
278 |
|
|
state <= `RXU_SECOND_STOP;
|
279 |
|
|
else
|
280 |
|
|
state <= `RXU_IDLE;
|
281 |
|
|
// o_parity_err <= 1'b0;
|
282 |
|
|
end else // state must equal RX_SECOND_STOP
|
283 |
|
|
begin
|
284 |
|
|
if (~ck_uart)
|
285 |
|
|
begin
|
286 |
|
|
o_frame_err <= 1'b1;
|
287 |
|
|
state <= `RXU_RESET_IDLE;
|
288 |
|
|
end else begin
|
289 |
|
|
state <= `RXU_IDLE;
|
290 |
|
|
o_frame_err <= 1'b0;
|
291 |
|
|
end
|
292 |
|
|
o_parity_err <= 1'b0;
|
293 |
|
|
end
|
294 |
|
|
end else begin
|
295 |
|
|
o_wr <= 1'b0; // data_reg = data_reg
|
296 |
|
|
baud_counter <= baud_counter - 28'd1;
|
297 |
|
|
o_parity_err <= 1'b0;
|
298 |
|
|
o_frame_err <= 1'b0;
|
299 |
|
|
end
|
300 |
|
|
end
|
301 |
|
|
|
302 |
|
|
endmodule
|
303 |
|
|
|
304 |
|
|
|