1 |
2 |
dgisselq |
/////////////////////////////////////////////////////////////////////////
|
2 |
|
|
//
|
3 |
|
|
//
|
4 |
|
|
// Filename: txuart.v
|
5 |
|
|
//
|
6 |
|
|
// Project: FPGA library development (Spartan 3E development board)
|
7 |
|
|
//
|
8 |
|
|
// Purpose: Transmit outputs over a single UART line.
|
9 |
|
|
//
|
10 |
|
|
// To interface with this module, connect it to your system clock,
|
11 |
|
|
// pass it the 32 bit setup register (defined below) and the byte
|
12 |
|
|
// of data you wish to transmit. Strobe the i_wr line high for one
|
13 |
|
|
// clock cycle, and your data will be off. Wait until the 'o_busy'
|
14 |
|
|
// line is low before strobing the i_wr line again--this implementation
|
15 |
|
|
// has NO BUFFER, so strobing i_wr while the core is busy will just
|
16 |
|
|
// cause your data to be lost. The output will be placed on the o_txuart
|
17 |
|
|
// output line. If you wish to set/send a break condition, assert the
|
18 |
|
|
// i_break line otherwise leave it low.
|
19 |
|
|
//
|
20 |
|
|
// There is a synchronous reset line, logic high.
|
21 |
|
|
//
|
22 |
|
|
// Now for the setup register. The register is 32 bits, so that this
|
23 |
|
|
// UART may be set up over a 32-bit bus.
|
24 |
|
|
//
|
25 |
|
|
// i_setup[29:28] Indicates the number of data bits per word. This will
|
26 |
|
|
// either be 2'b00 for an 8-bit word, 2'b01 for a 7-bit word, 2'b10
|
27 |
|
|
// for a six bit word, or 2'b11 for a five bit word.
|
28 |
|
|
//
|
29 |
|
|
// i_setup[27] Indicates whether or not to use one or two stop bits.
|
30 |
|
|
// Set this to one to expect two stop bits, zero for one.
|
31 |
|
|
//
|
32 |
|
|
// i_setup[26] Indicates whether or not a parity bit exists. Set this
|
33 |
|
|
// to 1'b1 to include parity.
|
34 |
|
|
//
|
35 |
|
|
// i_setup[25] Indicates whether or not the parity bit is fixed. Set
|
36 |
|
|
// to 1'b1 to include a fixed bit of parity, 1'b0 to allow the
|
37 |
|
|
// parity to be set based upon data. (Both assume the parity
|
38 |
|
|
// enable value is set.)
|
39 |
|
|
//
|
40 |
|
|
// i_setup[24] This bit is ignored if parity is not used. Otherwise,
|
41 |
|
|
// in the case of a fixed parity bit, this bit indicates whether
|
42 |
|
|
// mark (1'b1) or space (1'b0) parity is used. Likewise if the
|
43 |
|
|
// parity is not fixed, a 1'b1 selects even parity, and 1'b0
|
44 |
|
|
// selects odd.
|
45 |
|
|
//
|
46 |
|
|
// i_setup[23:0] Indicates the speed of the UART in terms of clocks.
|
47 |
|
|
// So, for example, if you have a 200 MHz clock and wish to
|
48 |
|
|
// run your UART at 9600 baud, you would take 200 MHz and divide
|
49 |
|
|
// by 9600 to set this value to 24'd20834. Likewise if you wished
|
50 |
|
|
// to run this serial port at 115200 baud from a 200 MHz clock,
|
51 |
|
|
// you would set the value to 24'd1736
|
52 |
|
|
//
|
53 |
|
|
// Thus, to set the UART for the common setting of an 8-bit word,
|
54 |
|
|
// one stop bit, no parity, and 115200 baud over a 200 MHz clock, you
|
55 |
|
|
// would want to set the setup value to:
|
56 |
|
|
//
|
57 |
|
|
// 32'h0006c8 // For 115,200 baud, 8 bit, no parity
|
58 |
|
|
// 32'h005161 // For 9600 baud, 8 bit, no parity
|
59 |
|
|
//
|
60 |
|
|
// Creator: Dan Gisselquist
|
61 |
|
|
// Gisselquist Technology, LLC
|
62 |
|
|
//
|
63 |
|
|
// Copyright: 2015
|
64 |
|
|
//
|
65 |
|
|
//
|
66 |
|
|
/////////////////////////////////////////////////////////////////////////
|
67 |
|
|
//
|
68 |
|
|
// This software is the ownership of Gisselquist Technology, LLC, and as
|
69 |
|
|
// such it is proprietary. It is provided without any warrantees, either
|
70 |
|
|
// express or implied, so that it may be tested. Upon completion, I ask
|
71 |
|
|
// that working code be returned and not further distributed beyond those
|
72 |
|
|
// that it is originally offered to.
|
73 |
|
|
//
|
74 |
|
|
// Thank you.
|
75 |
|
|
//
|
76 |
|
|
`define TXU_BIT_ZERO 4'h0
|
77 |
|
|
`define TXU_BIT_ONE 4'h1
|
78 |
|
|
`define TXU_BIT_TWO 4'h2
|
79 |
|
|
`define TXU_BIT_THREE 4'h3
|
80 |
|
|
`define TXU_BIT_FOUR 4'h4
|
81 |
|
|
`define TXU_BIT_FIVE 4'h5
|
82 |
|
|
`define TXU_BIT_SIX 4'h6
|
83 |
|
|
`define TXU_BIT_SEVEN 4'h7
|
84 |
|
|
`define TXU_PARITY 4'h8 // Constant 1
|
85 |
|
|
`define TXU_STOP 4'h9 // Constant 1
|
86 |
|
|
`define TXU_SECOND_STOP 4'ha
|
87 |
|
|
// 4'hb // Unused
|
88 |
|
|
// 4'hc // Unused
|
89 |
|
|
// `define TXU_START 4'hd // An unused state
|
90 |
|
|
`define TXU_BREAK 4'he
|
91 |
|
|
`define TXU_IDLE 4'hf
|
92 |
|
|
|
93 |
|
|
module txuart(i_clk, i_reset, i_setup, i_break, i_wr, i_data, o_uart, o_busy);
|
94 |
|
|
input i_clk, i_reset;
|
95 |
|
|
input [29:0] i_setup;
|
96 |
|
|
input i_break;
|
97 |
|
|
input i_wr;
|
98 |
|
|
input [7:0] i_data;
|
99 |
|
|
output reg o_uart, o_busy;
|
100 |
|
|
|
101 |
|
|
wire [27:0] clocks_per_baud, break_condition;
|
102 |
|
|
wire [1:0] data_bits;
|
103 |
|
|
wire use_parity, parity_even, dblstop, fixd_parity;
|
104 |
|
|
reg [29:0] r_setup;
|
105 |
|
|
assign clocks_per_baud = { 4'h0, r_setup[23:0] };
|
106 |
|
|
assign break_condition = { r_setup[23:0], 4'h0 };
|
107 |
|
|
assign data_bits = r_setup[29:28];
|
108 |
|
|
assign dblstop = r_setup[27];
|
109 |
|
|
assign use_parity = r_setup[26];
|
110 |
|
|
assign fixd_parity = r_setup[25];
|
111 |
|
|
assign parity_even = r_setup[24];
|
112 |
|
|
|
113 |
|
|
reg [27:0] baud_counter;
|
114 |
|
|
reg [3:0] state;
|
115 |
|
|
reg [7:0] lcl_data;
|
116 |
|
|
reg calc_parity;
|
117 |
|
|
|
118 |
|
|
initial o_uart = 1'b1;
|
119 |
|
|
initial o_busy = 1'b1;
|
120 |
|
|
initial state = `TXU_IDLE;
|
121 |
|
|
// initial baud_counter = clocks_per_baud;
|
122 |
|
|
always @(posedge i_clk)
|
123 |
|
|
begin
|
124 |
|
|
if (i_reset)
|
125 |
|
|
begin
|
126 |
|
|
baud_counter <= clocks_per_baud;
|
127 |
|
|
o_uart <= 1'b1;
|
128 |
|
|
o_busy <= 1'b1;
|
129 |
|
|
state <= `TXU_IDLE;
|
130 |
|
|
lcl_data <= 8'h0;
|
131 |
|
|
calc_parity <= 1'b0;
|
132 |
|
|
end else if (i_break)
|
133 |
|
|
begin
|
134 |
|
|
baud_counter <= break_condition;
|
135 |
|
|
o_uart <= 1'b0;
|
136 |
|
|
state <= `TXU_BREAK;
|
137 |
|
|
calc_parity <= 1'b0;
|
138 |
|
|
o_busy <= 1'b1;
|
139 |
|
|
end else if (baud_counter != 0)
|
140 |
|
|
begin // o_busy needs to be set coming into here
|
141 |
|
|
baud_counter <= baud_counter - 28'h01;
|
142 |
|
|
o_busy <= 1'b1;
|
143 |
|
|
end else if (state == `TXU_BREAK)
|
144 |
|
|
begin
|
145 |
|
|
state <= `TXU_IDLE;
|
146 |
|
|
o_busy <= 1'b1;
|
147 |
|
|
o_uart <= 1'b1;
|
148 |
|
|
calc_parity <= 1'b0;
|
149 |
|
|
// Give us two stop bits before becoming available
|
150 |
|
|
baud_counter <= clocks_per_baud<<2;
|
151 |
|
|
end else if (state == `TXU_IDLE) // STATE_IDLE
|
152 |
|
|
begin
|
153 |
|
|
// baud_counter <= 0;
|
154 |
|
|
r_setup <= i_setup;
|
155 |
|
|
calc_parity <= 1'b0;
|
156 |
|
|
if ((i_wr)&&(~o_busy))
|
157 |
|
|
begin // Immediately start us off with a start bit
|
158 |
|
|
o_uart <= 1'b0;
|
159 |
|
|
o_busy <= 1'b1;
|
160 |
|
|
case(data_bits)
|
161 |
|
|
2'b00: state <= `TXU_BIT_ZERO;
|
162 |
|
|
2'b01: state <= `TXU_BIT_ONE;
|
163 |
|
|
2'b10: state <= `TXU_BIT_TWO;
|
164 |
|
|
2'b11: state <= `TXU_BIT_THREE;
|
165 |
|
|
endcase
|
166 |
|
|
lcl_data <= i_data;
|
167 |
|
|
baud_counter <= clocks_per_baud-28'h01;
|
168 |
|
|
end else begin // Stay in idle
|
169 |
|
|
o_uart <= 1'b1;
|
170 |
|
|
o_busy <= 0;
|
171 |
|
|
// lcl_data is irrelevant
|
172 |
|
|
// state <= state;
|
173 |
|
|
end
|
174 |
|
|
end else begin
|
175 |
|
|
// One clock tick in each of these states ...
|
176 |
|
|
baud_counter <= clocks_per_baud - 28'h01;
|
177 |
|
|
o_busy <= 1'b1;
|
178 |
|
|
if (state[3] == 0) // First 8 bits
|
179 |
|
|
begin
|
180 |
|
|
o_uart <= lcl_data[0];
|
181 |
|
|
calc_parity <= calc_parity ^ lcl_data[0];
|
182 |
|
|
if (state == `TXU_BIT_SEVEN)
|
183 |
|
|
state <= (use_parity)?`TXU_PARITY:`TXU_STOP;
|
184 |
|
|
else
|
185 |
|
|
state <= state + 1;
|
186 |
|
|
lcl_data <= { 1'b0, lcl_data[7:1] };
|
187 |
|
|
end else if (state == `TXU_PARITY)
|
188 |
|
|
begin
|
189 |
|
|
state <= `TXU_STOP;
|
190 |
|
|
if (fixd_parity)
|
191 |
|
|
o_uart <= parity_even;
|
192 |
|
|
else
|
193 |
|
|
o_uart <= calc_parity^((parity_even)? 1'b1:1'b0);
|
194 |
|
|
end else if (state == `TXU_STOP)
|
195 |
|
|
begin // two stop bit(s)
|
196 |
|
|
o_uart <= 1'b1;
|
197 |
|
|
if (dblstop)
|
198 |
|
|
state <= `TXU_SECOND_STOP;
|
199 |
|
|
else
|
200 |
|
|
state <= `TXU_IDLE;
|
201 |
|
|
calc_parity <= 1'b0;
|
202 |
|
|
end else // `TXU_SECOND_STOP and default:
|
203 |
|
|
begin
|
204 |
|
|
state <= `TXU_IDLE; // Go back to idle
|
205 |
|
|
o_uart <= 1'b1;
|
206 |
|
|
// Still o_busy, since we need to wait
|
207 |
|
|
// for the baud clock to finish counting
|
208 |
|
|
// out this last bit.
|
209 |
|
|
end
|
210 |
|
|
end
|
211 |
|
|
end
|
212 |
|
|
|
213 |
|
|
endmodule
|
214 |
|
|
|
215 |
|
|
|
216 |
|
|
|
217 |
|
|
|