1 |
4 |
dgisselq |
////////////////////////////////////////////////////////////////////////////////
|
2 |
2 |
dgisselq |
//
|
3 |
|
|
// Filename: txuart.v
|
4 |
|
|
//
|
5 |
46 |
dgisselq |
// Project: wbuart32, a full featured UART with simulator
|
6 |
2 |
dgisselq |
//
|
7 |
|
|
// Purpose: Transmit outputs over a single UART line.
|
8 |
|
|
//
|
9 |
|
|
// To interface with this module, connect it to your system clock,
|
10 |
|
|
// pass it the 32 bit setup register (defined below) and the byte
|
11 |
|
|
// of data you wish to transmit. Strobe the i_wr line high for one
|
12 |
|
|
// clock cycle, and your data will be off. Wait until the 'o_busy'
|
13 |
|
|
// line is low before strobing the i_wr line again--this implementation
|
14 |
|
|
// has NO BUFFER, so strobing i_wr while the core is busy will just
|
15 |
|
|
// cause your data to be lost. The output will be placed on the o_txuart
|
16 |
|
|
// output line. If you wish to set/send a break condition, assert the
|
17 |
|
|
// i_break line otherwise leave it low.
|
18 |
|
|
//
|
19 |
|
|
// There is a synchronous reset line, logic high.
|
20 |
|
|
//
|
21 |
|
|
// Now for the setup register. The register is 32 bits, so that this
|
22 |
|
|
// UART may be set up over a 32-bit bus.
|
23 |
|
|
//
|
24 |
46 |
dgisselq |
// i_setup[30] Set this to zero to use hardware flow control, and to
|
25 |
|
|
// one to ignore hardware flow control. Only works if the hardware
|
26 |
|
|
// flow control has been properly wired.
|
27 |
|
|
//
|
28 |
|
|
// If you don't want hardware flow control, fix the i_rts bit to
|
29 |
|
|
// 1'b1, and let the synthesys tools optimize out the logic.
|
30 |
|
|
//
|
31 |
2 |
dgisselq |
// i_setup[29:28] Indicates the number of data bits per word. This will
|
32 |
46 |
dgisselq |
// either be 2'b00 for an 8-bit word, 2'b01 for a 7-bit word, 2'b10
|
33 |
|
|
// for a six bit word, or 2'b11 for a five bit word.
|
34 |
2 |
dgisselq |
//
|
35 |
|
|
// i_setup[27] Indicates whether or not to use one or two stop bits.
|
36 |
|
|
// Set this to one to expect two stop bits, zero for one.
|
37 |
|
|
//
|
38 |
|
|
// i_setup[26] Indicates whether or not a parity bit exists. Set this
|
39 |
|
|
// to 1'b1 to include parity.
|
40 |
|
|
//
|
41 |
|
|
// i_setup[25] Indicates whether or not the parity bit is fixed. Set
|
42 |
|
|
// to 1'b1 to include a fixed bit of parity, 1'b0 to allow the
|
43 |
|
|
// parity to be set based upon data. (Both assume the parity
|
44 |
|
|
// enable value is set.)
|
45 |
|
|
//
|
46 |
|
|
// i_setup[24] This bit is ignored if parity is not used. Otherwise,
|
47 |
|
|
// in the case of a fixed parity bit, this bit indicates whether
|
48 |
|
|
// mark (1'b1) or space (1'b0) parity is used. Likewise if the
|
49 |
|
|
// parity is not fixed, a 1'b1 selects even parity, and 1'b0
|
50 |
|
|
// selects odd.
|
51 |
|
|
//
|
52 |
|
|
// i_setup[23:0] Indicates the speed of the UART in terms of clocks.
|
53 |
|
|
// So, for example, if you have a 200 MHz clock and wish to
|
54 |
|
|
// run your UART at 9600 baud, you would take 200 MHz and divide
|
55 |
|
|
// by 9600 to set this value to 24'd20834. Likewise if you wished
|
56 |
|
|
// to run this serial port at 115200 baud from a 200 MHz clock,
|
57 |
|
|
// you would set the value to 24'd1736
|
58 |
|
|
//
|
59 |
|
|
// Thus, to set the UART for the common setting of an 8-bit word,
|
60 |
|
|
// one stop bit, no parity, and 115200 baud over a 200 MHz clock, you
|
61 |
|
|
// would want to set the setup value to:
|
62 |
|
|
//
|
63 |
|
|
// 32'h0006c8 // For 115,200 baud, 8 bit, no parity
|
64 |
|
|
// 32'h005161 // For 9600 baud, 8 bit, no parity
|
65 |
|
|
//
|
66 |
46 |
dgisselq |
//
|
67 |
|
|
// Creator: Dan Gisselquist, Ph.D.
|
68 |
2 |
dgisselq |
// Gisselquist Technology, LLC
|
69 |
|
|
//
|
70 |
4 |
dgisselq |
////////////////////////////////////////////////////////////////////////////////
|
71 |
2 |
dgisselq |
//
|
72 |
46 |
dgisselq |
// Copyright (C) 2015-2017, Gisselquist Technology, LLC
|
73 |
2 |
dgisselq |
//
|
74 |
4 |
dgisselq |
// This program is free software (firmware): you can redistribute it and/or
|
75 |
|
|
// modify it under the terms of the GNU General Public License as published
|
76 |
|
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
77 |
|
|
// your option) any later version.
|
78 |
2 |
dgisselq |
//
|
79 |
4 |
dgisselq |
// This program is distributed in the hope that it will be useful, but WITHOUT
|
80 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
81 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
82 |
|
|
// for more details.
|
83 |
2 |
dgisselq |
//
|
84 |
4 |
dgisselq |
// You should have received a copy of the GNU General Public License along
|
85 |
46 |
dgisselq |
// with this program. (It's in the $(ROOT)/doc directory. Run make with no
|
86 |
4 |
dgisselq |
// target there if the PDF file isn't present.) If not, see
|
87 |
|
|
// <http://www.gnu.org/licenses/> for a copy.
|
88 |
2 |
dgisselq |
//
|
89 |
4 |
dgisselq |
// License: GPL, v3, as defined and found on www.gnu.org,
|
90 |
|
|
// http://www.gnu.org/licenses/gpl.html
|
91 |
|
|
//
|
92 |
|
|
//
|
93 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
94 |
|
|
//
|
95 |
|
|
//
|
96 |
2 |
dgisselq |
`define TXU_BIT_ZERO 4'h0
|
97 |
|
|
`define TXU_BIT_ONE 4'h1
|
98 |
|
|
`define TXU_BIT_TWO 4'h2
|
99 |
|
|
`define TXU_BIT_THREE 4'h3
|
100 |
|
|
`define TXU_BIT_FOUR 4'h4
|
101 |
|
|
`define TXU_BIT_FIVE 4'h5
|
102 |
|
|
`define TXU_BIT_SIX 4'h6
|
103 |
|
|
`define TXU_BIT_SEVEN 4'h7
|
104 |
|
|
`define TXU_PARITY 4'h8 // Constant 1
|
105 |
|
|
`define TXU_STOP 4'h9 // Constant 1
|
106 |
|
|
`define TXU_SECOND_STOP 4'ha
|
107 |
|
|
// 4'hb // Unused
|
108 |
|
|
// 4'hc // Unused
|
109 |
|
|
// `define TXU_START 4'hd // An unused state
|
110 |
|
|
`define TXU_BREAK 4'he
|
111 |
|
|
`define TXU_IDLE 4'hf
|
112 |
4 |
dgisselq |
//
|
113 |
|
|
//
|
114 |
46 |
dgisselq |
module txuart(i_clk, i_reset, i_setup, i_break, i_wr, i_data,
|
115 |
|
|
i_cts_n, o_uart_tx, o_busy);
|
116 |
|
|
parameter [30:0] INITIAL_SETUP = 31'd868;
|
117 |
2 |
dgisselq |
input i_clk, i_reset;
|
118 |
46 |
dgisselq |
input [30:0] i_setup;
|
119 |
2 |
dgisselq |
input i_break;
|
120 |
|
|
input i_wr;
|
121 |
|
|
input [7:0] i_data;
|
122 |
46 |
dgisselq |
// Hardware flow control Ready-To-Send bit. Set this to one to use
|
123 |
|
|
// the core without flow control. (A more appropriate name would be
|
124 |
|
|
// the Ready-To-Receive bit ...)
|
125 |
|
|
input i_cts_n;
|
126 |
|
|
// And the UART input line itself
|
127 |
|
|
output reg o_uart_tx;
|
128 |
|
|
// A line to tell others when we are ready to accept data. If
|
129 |
|
|
// (i_wr)&&(!o_busy) is ever true, then the core has accepted a byte
|
130 |
|
|
// for transmission.
|
131 |
4 |
dgisselq |
output wire o_busy;
|
132 |
2 |
dgisselq |
|
133 |
|
|
wire [27:0] clocks_per_baud, break_condition;
|
134 |
|
|
wire [1:0] data_bits;
|
135 |
46 |
dgisselq |
wire use_parity, parity_even, dblstop, fixd_parity,
|
136 |
|
|
fixdp_value, hw_flow_control;
|
137 |
|
|
reg [30:0] r_setup;
|
138 |
2 |
dgisselq |
assign clocks_per_baud = { 4'h0, r_setup[23:0] };
|
139 |
|
|
assign break_condition = { r_setup[23:0], 4'h0 };
|
140 |
46 |
dgisselq |
assign hw_flow_control = !r_setup[30];
|
141 |
|
|
assign data_bits = r_setup[29:28];
|
142 |
|
|
assign dblstop = r_setup[27];
|
143 |
|
|
assign use_parity = r_setup[26];
|
144 |
|
|
assign fixd_parity = r_setup[25];
|
145 |
|
|
assign parity_even = r_setup[24];
|
146 |
|
|
assign fixdp_value = r_setup[24];
|
147 |
2 |
dgisselq |
|
148 |
|
|
reg [27:0] baud_counter;
|
149 |
|
|
reg [3:0] state;
|
150 |
|
|
reg [7:0] lcl_data;
|
151 |
46 |
dgisselq |
reg calc_parity, r_busy, zero_baud_counter;
|
152 |
2 |
dgisselq |
|
153 |
46 |
dgisselq |
|
154 |
|
|
// First step ... handle any hardware flow control, if so enabled.
|
155 |
|
|
//
|
156 |
|
|
// Clock in the flow control data, two clocks to avoid metastability
|
157 |
|
|
// Default to using hardware flow control (uart_setup[30]==0 to use it).
|
158 |
|
|
// Set this high order bit off if you do not wish to use it.
|
159 |
|
|
reg q_cts_n, qq_cts_n, ck_cts;
|
160 |
|
|
// While we might wish to give initial values to q_rts and ck_cts,
|
161 |
|
|
// 1) it's not required since the transmitter starts in a long wait
|
162 |
|
|
// state, and 2) doing so will prevent the synthesizer from optimizing
|
163 |
|
|
// this pin in the case it is hard set to 1'b1 external to this
|
164 |
|
|
// peripheral.
|
165 |
|
|
//
|
166 |
|
|
// initial q_cts_n = 1'b1;
|
167 |
|
|
// initial qq_cts_n = 1'b1;
|
168 |
|
|
// initial ck_cts = 1'b0;
|
169 |
|
|
always @(posedge i_clk)
|
170 |
|
|
q_cts_n <= i_cts_n;
|
171 |
|
|
always @(posedge i_clk)
|
172 |
|
|
qq_cts_n <= q_cts_n;
|
173 |
|
|
always @(posedge i_clk)
|
174 |
|
|
ck_cts <= (!qq_cts_n)||(!hw_flow_control);
|
175 |
|
|
|
176 |
|
|
initial o_uart_tx = 1'b1;
|
177 |
4 |
dgisselq |
initial r_busy = 1'b1;
|
178 |
2 |
dgisselq |
initial state = `TXU_IDLE;
|
179 |
33 |
dgisselq |
initial lcl_data= 8'h0;
|
180 |
|
|
initial calc_parity = 1'b0;
|
181 |
46 |
dgisselq |
// initial baud_counter = clocks_per_baud;//ILLEGAL--not constant
|
182 |
2 |
dgisselq |
always @(posedge i_clk)
|
183 |
|
|
begin
|
184 |
|
|
if (i_reset)
|
185 |
|
|
begin
|
186 |
4 |
dgisselq |
r_busy <= 1'b1;
|
187 |
2 |
dgisselq |
state <= `TXU_IDLE;
|
188 |
|
|
end else if (i_break)
|
189 |
|
|
begin
|
190 |
|
|
state <= `TXU_BREAK;
|
191 |
4 |
dgisselq |
r_busy <= 1'b1;
|
192 |
46 |
dgisselq |
end else if (!zero_baud_counter)
|
193 |
4 |
dgisselq |
begin // r_busy needs to be set coming into here
|
194 |
|
|
r_busy <= 1'b1;
|
195 |
2 |
dgisselq |
end else if (state == `TXU_BREAK)
|
196 |
|
|
begin
|
197 |
|
|
state <= `TXU_IDLE;
|
198 |
4 |
dgisselq |
r_busy <= 1'b1;
|
199 |
2 |
dgisselq |
end else if (state == `TXU_IDLE) // STATE_IDLE
|
200 |
|
|
begin
|
201 |
46 |
dgisselq |
if ((i_wr)&&(!r_busy))
|
202 |
2 |
dgisselq |
begin // Immediately start us off with a start bit
|
203 |
4 |
dgisselq |
r_busy <= 1'b1;
|
204 |
2 |
dgisselq |
case(data_bits)
|
205 |
|
|
2'b00: state <= `TXU_BIT_ZERO;
|
206 |
|
|
2'b01: state <= `TXU_BIT_ONE;
|
207 |
|
|
2'b10: state <= `TXU_BIT_TWO;
|
208 |
|
|
2'b11: state <= `TXU_BIT_THREE;
|
209 |
|
|
endcase
|
210 |
|
|
end else begin // Stay in idle
|
211 |
46 |
dgisselq |
r_busy <= !ck_cts;
|
212 |
2 |
dgisselq |
end
|
213 |
|
|
end else begin
|
214 |
|
|
// One clock tick in each of these states ...
|
215 |
46 |
dgisselq |
// baud_counter <= clocks_per_baud - 28'h01;
|
216 |
4 |
dgisselq |
r_busy <= 1'b1;
|
217 |
2 |
dgisselq |
if (state[3] == 0) // First 8 bits
|
218 |
|
|
begin
|
219 |
|
|
if (state == `TXU_BIT_SEVEN)
|
220 |
|
|
state <= (use_parity)?`TXU_PARITY:`TXU_STOP;
|
221 |
|
|
else
|
222 |
|
|
state <= state + 1;
|
223 |
|
|
end else if (state == `TXU_PARITY)
|
224 |
|
|
begin
|
225 |
|
|
state <= `TXU_STOP;
|
226 |
|
|
end else if (state == `TXU_STOP)
|
227 |
|
|
begin // two stop bit(s)
|
228 |
|
|
if (dblstop)
|
229 |
|
|
state <= `TXU_SECOND_STOP;
|
230 |
|
|
else
|
231 |
|
|
state <= `TXU_IDLE;
|
232 |
|
|
end else // `TXU_SECOND_STOP and default:
|
233 |
|
|
begin
|
234 |
|
|
state <= `TXU_IDLE; // Go back to idle
|
235 |
4 |
dgisselq |
// Still r_busy, since we need to wait
|
236 |
2 |
dgisselq |
// for the baud clock to finish counting
|
237 |
|
|
// out this last bit.
|
238 |
|
|
end
|
239 |
|
|
end
|
240 |
|
|
end
|
241 |
|
|
|
242 |
46 |
dgisselq |
// o_busy
|
243 |
|
|
//
|
244 |
|
|
// This is a wire, designed to be true is we are ever busy above.
|
245 |
|
|
// originally, this was going to be true if we were ever not in the
|
246 |
|
|
// idle state. The logic has since become more complex, hence we have
|
247 |
|
|
// a register dedicated to this and just copy out that registers value.
|
248 |
4 |
dgisselq |
assign o_busy = (r_busy);
|
249 |
46 |
dgisselq |
|
250 |
|
|
|
251 |
|
|
// r_setup
|
252 |
|
|
//
|
253 |
|
|
// Our setup register. Accept changes between any pair of transmitted
|
254 |
|
|
// words. The register itself has many fields to it. These are
|
255 |
|
|
// broken out up top, and indicate what 1) our baud rate is, 2) our
|
256 |
|
|
// number of stop bits, 3) what type of parity we are using, and 4)
|
257 |
|
|
// the size of our data word.
|
258 |
|
|
initial r_setup = INITIAL_SETUP;
|
259 |
|
|
always @(posedge i_clk)
|
260 |
|
|
if (state == `TXU_IDLE)
|
261 |
|
|
r_setup <= i_setup;
|
262 |
|
|
|
263 |
|
|
// lcl_data
|
264 |
|
|
//
|
265 |
|
|
// This is our working copy of the i_data register which we use
|
266 |
|
|
// when transmitting. It is only of interest during transmit, and is
|
267 |
|
|
// allowed to be whatever at any other time. Hence, if r_busy isn't
|
268 |
|
|
// true, we can always set it. On the one clock where r_busy isn't
|
269 |
|
|
// true and i_wr is, we set it and r_busy is true thereafter.
|
270 |
|
|
// Then, on any zero_baud_counter (i.e. change between baud intervals)
|
271 |
|
|
// we simple logically shift the register right to grab the next bit.
|
272 |
|
|
always @(posedge i_clk)
|
273 |
|
|
if (!r_busy)
|
274 |
|
|
lcl_data <= i_data;
|
275 |
|
|
else if (zero_baud_counter)
|
276 |
|
|
lcl_data <= { 1'b0, lcl_data[7:1] };
|
277 |
|
|
|
278 |
|
|
// o_uart_tx
|
279 |
|
|
//
|
280 |
|
|
// This is the final result/output desired of this core. It's all
|
281 |
|
|
// centered about o_uart_tx. This is what finally needs to follow
|
282 |
|
|
// the UART protocol.
|
283 |
|
|
//
|
284 |
|
|
// Ok, that said, our rules are:
|
285 |
|
|
// 1'b0 on any break condition
|
286 |
|
|
// 1'b0 on a start bit (IDLE, write, and not busy)
|
287 |
|
|
// lcl_data[0] during any data transfer, but only at the baud
|
288 |
|
|
// change
|
289 |
|
|
// PARITY -- During the parity bit. This depends upon whether or
|
290 |
|
|
// not the parity bit is fixed, then what it's fixed to,
|
291 |
|
|
// or changing, and hence what it's calculated value is.
|
292 |
|
|
// 1'b1 at all other times (stop bits, idle, etc)
|
293 |
|
|
always @(posedge i_clk)
|
294 |
|
|
if (i_reset)
|
295 |
|
|
o_uart_tx <= 1'b1;
|
296 |
|
|
else if ((i_break)||((i_wr)&&(!r_busy)))
|
297 |
|
|
o_uart_tx <= 1'b0;
|
298 |
|
|
else if (zero_baud_counter)
|
299 |
|
|
casez(state)
|
300 |
|
|
4'b0???: o_uart_tx <= lcl_data[0];
|
301 |
|
|
`TXU_PARITY: o_uart_tx <= calc_parity;
|
302 |
|
|
default: o_uart_tx <= 1'b1;
|
303 |
|
|
endcase
|
304 |
|
|
|
305 |
|
|
|
306 |
|
|
// calc_parity
|
307 |
|
|
//
|
308 |
|
|
// Calculate the parity to be placed into the parity bit. If the
|
309 |
|
|
// parity is fixed, then the parity bit is given by the fixed parity
|
310 |
|
|
// value (r_setup[24]). Otherwise the parity is given by the GF2
|
311 |
|
|
// sum of all the data bits (plus one for even parity).
|
312 |
|
|
always @(posedge i_clk)
|
313 |
|
|
if (fixd_parity)
|
314 |
|
|
calc_parity <= fixdp_value;
|
315 |
|
|
else if (zero_baud_counter)
|
316 |
|
|
begin
|
317 |
|
|
if (state[3] == 0) // First 8 bits of msg
|
318 |
|
|
calc_parity <= calc_parity ^ lcl_data[0];
|
319 |
|
|
else
|
320 |
|
|
calc_parity <= parity_even;
|
321 |
|
|
end else if (!r_busy)
|
322 |
|
|
calc_parity <= parity_even;
|
323 |
|
|
|
324 |
|
|
|
325 |
|
|
// All of the above logic is driven by the baud counter. Bits must last
|
326 |
|
|
// clocks_per_baud in length, and this baud counter is what we use to
|
327 |
|
|
// make certain of that.
|
328 |
|
|
//
|
329 |
|
|
// The basic logic is this: at the beginning of a bit interval, start
|
330 |
|
|
// the baud counter and set it to count clocks_per_baud. When it gets
|
331 |
|
|
// to zero, restart it.
|
332 |
|
|
//
|
333 |
|
|
// However, comparing a 28'bit number to zero can be rather complex--
|
334 |
|
|
// especially if we wish to do anything else on that same clock. For
|
335 |
|
|
// that reason, we create "zero_baud_counter". zero_baud_counter is
|
336 |
|
|
// nothing more than a flag that is true anytime baud_counter is zero.
|
337 |
|
|
// It's true when the logic (above) needs to step to the next bit.
|
338 |
|
|
// Simple enough?
|
339 |
|
|
//
|
340 |
|
|
// I wish we could stop there, but there are some other (ugly)
|
341 |
|
|
// conditions to deal with that offer exceptions to this basic logic.
|
342 |
|
|
//
|
343 |
|
|
// 1. When the user has commanded a BREAK across the line, we need to
|
344 |
|
|
// wait several baud intervals following the break before we start
|
345 |
|
|
// transmitting, to give any receiver a chance to recognize that we are
|
346 |
|
|
// out of the break condition, and to know that the next bit will be
|
347 |
|
|
// a stop bit.
|
348 |
|
|
//
|
349 |
|
|
// 2. A reset is similar to a break condition--on both we wait several
|
350 |
|
|
// baud intervals before allowing a start bit.
|
351 |
|
|
//
|
352 |
|
|
// 3. In the idle state, we stop our counter--so that upon a request
|
353 |
|
|
// to transmit when idle we can start transmitting immediately, rather
|
354 |
|
|
// than waiting for the end of the next (fictitious and arbitrary) baud
|
355 |
|
|
// interval.
|
356 |
|
|
//
|
357 |
|
|
// When (i_wr)&&(!r_busy)&&(state == `TXU_IDLE) then we're not only in
|
358 |
|
|
// the idle state, but we also just accepted a command to start writing
|
359 |
|
|
// the next word. At this point, the baud counter needs to be reset
|
360 |
|
|
// to the number of clocks per baud, and zero_baud_counter set to zero.
|
361 |
|
|
//
|
362 |
|
|
// The logic is a bit twisted here, in that it will only check for the
|
363 |
|
|
// above condition when zero_baud_counter is false--so as to make
|
364 |
|
|
// certain the STOP bit is complete.
|
365 |
|
|
initial zero_baud_counter = 1'b0;
|
366 |
|
|
initial baud_counter = 28'h05;
|
367 |
|
|
always @(posedge i_clk)
|
368 |
|
|
begin
|
369 |
|
|
zero_baud_counter <= (baud_counter == 28'h01);
|
370 |
|
|
if ((i_reset)||(i_break))
|
371 |
|
|
begin
|
372 |
|
|
// Give ourselves 16 bauds before being ready
|
373 |
|
|
baud_counter <= break_condition;
|
374 |
|
|
zero_baud_counter <= 1'b0;
|
375 |
|
|
end else if (!zero_baud_counter)
|
376 |
|
|
baud_counter <= baud_counter - 28'h01;
|
377 |
|
|
else if (state == `TXU_BREAK)
|
378 |
|
|
// Give us four idle baud intervals before becoming
|
379 |
|
|
// available
|
380 |
|
|
baud_counter <= clocks_per_baud<<2;
|
381 |
|
|
else if (state == `TXU_IDLE)
|
382 |
|
|
begin
|
383 |
|
|
baud_counter <= 28'h0;
|
384 |
|
|
zero_baud_counter <= 1'b1;
|
385 |
|
|
if ((i_wr)&&(!r_busy))
|
386 |
|
|
begin
|
387 |
|
|
baud_counter <= clocks_per_baud - 28'h01;
|
388 |
|
|
zero_baud_counter <= 1'b0;
|
389 |
|
|
end
|
390 |
|
|
end else
|
391 |
|
|
baud_counter <= clocks_per_baud - 28'h01;
|
392 |
|
|
end
|
393 |
2 |
dgisselq |
endmodule
|
394 |
|
|
|