1 |
51 |
dgisselq |
////////////////////////////////////////////////////////////////////////////////
|
2 |
|
|
//
|
3 |
|
|
// Filename: txuartlite.v
|
4 |
|
|
//
|
5 |
|
|
// Project: wbuart32, a full featured UART with simulator
|
6 |
|
|
//
|
7 |
|
|
// Purpose: Transmit outputs over a single UART line. This particular UART
|
8 |
|
|
// implementation has been extremely simplified: it does not handle
|
9 |
|
|
// generating break conditions, nor does it handle anything other than the
|
10 |
|
|
// 8N1 (8 data bits, no parity, 1 stop bit) UART sub-protocol.
|
11 |
|
|
//
|
12 |
|
|
// To interface with this module, connect it to your system clock, and
|
13 |
|
|
// pass it the byte of data you wish to transmit. Strobe the i_wr line
|
14 |
|
|
// high for one cycle, and your data will be off. Wait until the 'o_busy'
|
15 |
|
|
// line is low before strobing the i_wr line again--this implementation
|
16 |
|
|
// has NO BUFFER, so strobing i_wr while the core is busy will just
|
17 |
|
|
// get ignored. The output will be placed on the o_txuart output line.
|
18 |
|
|
//
|
19 |
|
|
// (I often set both data and strobe on the same clock, and then just leave
|
20 |
|
|
// them set until the busy line is low. Then I move on to the next piece
|
21 |
|
|
// of data.)
|
22 |
|
|
//
|
23 |
|
|
// Creator: Dan Gisselquist, Ph.D.
|
24 |
|
|
// Gisselquist Technology, LLC
|
25 |
|
|
//
|
26 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
27 |
|
|
//
|
28 |
|
|
// Copyright (C) 2015-2017, Gisselquist Technology, LLC
|
29 |
|
|
//
|
30 |
|
|
// This program is free software (firmware): you can redistribute it and/or
|
31 |
|
|
// modify it under the terms of the GNU General Public License as published
|
32 |
|
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
33 |
|
|
// your option) any later version.
|
34 |
|
|
//
|
35 |
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
36 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
37 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
38 |
|
|
// for more details.
|
39 |
|
|
//
|
40 |
|
|
// You should have received a copy of the GNU General Public License along
|
41 |
|
|
// with this program. (It's in the $(ROOT)/doc directory. Run make with no
|
42 |
|
|
// target there if the PDF file isn't present.) If not, see
|
43 |
|
|
// <http://www.gnu.org/licenses/> for a copy.
|
44 |
|
|
//
|
45 |
|
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
46 |
|
|
// http://www.gnu.org/licenses/gpl.html
|
47 |
|
|
//
|
48 |
|
|
//
|
49 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
50 |
|
|
//
|
51 |
|
|
//
|
52 |
|
|
`define TXU_BIT_ZERO 4'h0
|
53 |
|
|
`define TXU_BIT_ONE 4'h1
|
54 |
|
|
`define TXU_BIT_TWO 4'h2
|
55 |
|
|
`define TXU_BIT_THREE 4'h3
|
56 |
|
|
`define TXU_BIT_FOUR 4'h4
|
57 |
|
|
`define TXU_BIT_FIVE 4'h5
|
58 |
|
|
`define TXU_BIT_SIX 4'h6
|
59 |
|
|
`define TXU_BIT_SEVEN 4'h7
|
60 |
|
|
`define TXU_STOP 4'h8
|
61 |
|
|
`define TXU_IDLE 4'hf
|
62 |
|
|
//
|
63 |
|
|
//
|
64 |
|
|
module txuartlite(i_clk, i_wr, i_data, o_uart_tx, o_busy);
|
65 |
|
|
parameter [23:0] CLOCKS_PER_BAUD = 24'd868;
|
66 |
|
|
input i_clk;
|
67 |
|
|
input i_wr;
|
68 |
|
|
input [7:0] i_data;
|
69 |
|
|
// And the UART input line itself
|
70 |
|
|
output reg o_uart_tx;
|
71 |
|
|
// A line to tell others when we are ready to accept data. If
|
72 |
|
|
// (i_wr)&&(!o_busy) is ever true, then the core has accepted a byte
|
73 |
|
|
// for transmission.
|
74 |
|
|
output wire o_busy;
|
75 |
|
|
|
76 |
|
|
reg [23:0] baud_counter;
|
77 |
|
|
reg [3:0] state;
|
78 |
|
|
reg [7:0] lcl_data;
|
79 |
|
|
reg r_busy, zero_baud_counter;
|
80 |
|
|
|
81 |
|
|
initial r_busy = 1'b1;
|
82 |
|
|
initial state = `TXU_IDLE;
|
83 |
|
|
initial lcl_data= 8'h0;
|
84 |
|
|
always @(posedge i_clk)
|
85 |
|
|
begin
|
86 |
|
|
if (!zero_baud_counter)
|
87 |
|
|
// r_busy needs to be set coming into here
|
88 |
|
|
r_busy <= 1'b1;
|
89 |
|
|
else if (state == `TXU_IDLE) // STATE_IDLE
|
90 |
|
|
begin
|
91 |
|
|
r_busy <= 1'b0;
|
92 |
|
|
if ((i_wr)&&(!r_busy))
|
93 |
|
|
begin // Immediately start us off with a start bit
|
94 |
|
|
r_busy <= 1'b1;
|
95 |
|
|
state <= `TXU_BIT_ZERO;
|
96 |
|
|
end
|
97 |
|
|
end else begin
|
98 |
|
|
// One clock tick in each of these states ...
|
99 |
|
|
r_busy <= 1'b1;
|
100 |
|
|
if (state <=`TXU_STOP) // start bit, 8-d bits, stop-b
|
101 |
|
|
state <= state + 1;
|
102 |
|
|
else
|
103 |
|
|
state <= `TXU_IDLE;
|
104 |
|
|
end
|
105 |
|
|
end
|
106 |
|
|
|
107 |
|
|
// o_busy
|
108 |
|
|
//
|
109 |
|
|
// This is a wire, designed to be true is we are ever busy above.
|
110 |
|
|
// originally, this was going to be true if we were ever not in the
|
111 |
|
|
// idle state. The logic has since become more complex, hence we have
|
112 |
|
|
// a register dedicated to this and just copy out that registers value.
|
113 |
|
|
assign o_busy = (r_busy);
|
114 |
|
|
|
115 |
|
|
|
116 |
|
|
// lcl_data
|
117 |
|
|
//
|
118 |
|
|
// This is our working copy of the i_data register which we use
|
119 |
|
|
// when transmitting. It is only of interest during transmit, and is
|
120 |
|
|
// allowed to be whatever at any other time. Hence, if r_busy isn't
|
121 |
|
|
// true, we can always set it. On the one clock where r_busy isn't
|
122 |
|
|
// true and i_wr is, we set it and r_busy is true thereafter.
|
123 |
|
|
// Then, on any zero_baud_counter (i.e. change between baud intervals)
|
124 |
|
|
// we simple logically shift the register right to grab the next bit.
|
125 |
|
|
initial lcl_data = 8'hff;
|
126 |
|
|
always @(posedge i_clk)
|
127 |
|
|
if ((i_wr)&&(!r_busy))
|
128 |
|
|
lcl_data <= i_data;
|
129 |
|
|
else if (zero_baud_counter)
|
130 |
|
|
lcl_data <= { 1'b1, lcl_data[7:1] };
|
131 |
|
|
|
132 |
|
|
// o_uart_tx
|
133 |
|
|
//
|
134 |
|
|
// This is the final result/output desired of this core. It's all
|
135 |
|
|
// centered about o_uart_tx. This is what finally needs to follow
|
136 |
|
|
// the UART protocol.
|
137 |
|
|
//
|
138 |
|
|
initial o_uart_tx = 1'b1;
|
139 |
|
|
always @(posedge i_clk)
|
140 |
|
|
if ((i_wr)&&(!r_busy))
|
141 |
|
|
o_uart_tx <= 1'b0; // Set the start bit on writes
|
142 |
|
|
else if (zero_baud_counter) // Set the data bit.
|
143 |
|
|
o_uart_tx <= lcl_data[0];
|
144 |
|
|
|
145 |
|
|
|
146 |
|
|
// All of the above logic is driven by the baud counter. Bits must last
|
147 |
|
|
// CLOCKS_PER_BAUD in length, and this baud counter is what we use to
|
148 |
|
|
// make certain of that.
|
149 |
|
|
//
|
150 |
|
|
// The basic logic is this: at the beginning of a bit interval, start
|
151 |
|
|
// the baud counter and set it to count CLOCKS_PER_BAUD. When it gets
|
152 |
|
|
// to zero, restart it.
|
153 |
|
|
//
|
154 |
|
|
// However, comparing a 28'bit number to zero can be rather complex--
|
155 |
|
|
// especially if we wish to do anything else on that same clock. For
|
156 |
|
|
// that reason, we create "zero_baud_counter". zero_baud_counter is
|
157 |
|
|
// nothing more than a flag that is true anytime baud_counter is zero.
|
158 |
|
|
// It's true when the logic (above) needs to step to the next bit.
|
159 |
|
|
// Simple enough?
|
160 |
|
|
//
|
161 |
|
|
// I wish we could stop there, but there are some other (ugly)
|
162 |
|
|
// conditions to deal with that offer exceptions to this basic logic.
|
163 |
|
|
//
|
164 |
|
|
// 1. When the user has commanded a BREAK across the line, we need to
|
165 |
|
|
// wait several baud intervals following the break before we start
|
166 |
|
|
// transmitting, to give any receiver a chance to recognize that we are
|
167 |
|
|
// out of the break condition, and to know that the next bit will be
|
168 |
|
|
// a stop bit.
|
169 |
|
|
//
|
170 |
|
|
// 2. A reset is similar to a break condition--on both we wait several
|
171 |
|
|
// baud intervals before allowing a start bit.
|
172 |
|
|
//
|
173 |
|
|
// 3. In the idle state, we stop our counter--so that upon a request
|
174 |
|
|
// to transmit when idle we can start transmitting immediately, rather
|
175 |
|
|
// than waiting for the end of the next (fictitious and arbitrary) baud
|
176 |
|
|
// interval.
|
177 |
|
|
//
|
178 |
|
|
// When (i_wr)&&(!r_busy)&&(state == `TXU_IDLE) then we're not only in
|
179 |
|
|
// the idle state, but we also just accepted a command to start writing
|
180 |
|
|
// the next word. At this point, the baud counter needs to be reset
|
181 |
|
|
// to the number of CLOCKS_PER_BAUD, and zero_baud_counter set to zero.
|
182 |
|
|
//
|
183 |
|
|
// The logic is a bit twisted here, in that it will only check for the
|
184 |
|
|
// above condition when zero_baud_counter is false--so as to make
|
185 |
|
|
// certain the STOP bit is complete.
|
186 |
|
|
initial zero_baud_counter = 1'b0;
|
187 |
|
|
initial baud_counter = 24'h05;
|
188 |
|
|
always @(posedge i_clk)
|
189 |
|
|
begin
|
190 |
|
|
zero_baud_counter <= (baud_counter == 24'h01);
|
191 |
|
|
if (state == `TXU_IDLE)
|
192 |
|
|
begin
|
193 |
|
|
baud_counter <= 24'h0;
|
194 |
|
|
zero_baud_counter <= 1'b1;
|
195 |
|
|
if ((i_wr)&&(!r_busy))
|
196 |
|
|
begin
|
197 |
|
|
baud_counter <= CLOCKS_PER_BAUD - 24'h01;
|
198 |
|
|
zero_baud_counter <= 1'b0;
|
199 |
|
|
end
|
200 |
|
|
end else if (!zero_baud_counter)
|
201 |
|
|
baud_counter <= baud_counter - 24'h01;
|
202 |
|
|
else
|
203 |
|
|
baud_counter <= CLOCKS_PER_BAUD - 24'h01;
|
204 |
|
|
end
|
205 |
|
|
endmodule
|
206 |
|
|
|