1 |
2 |
dgisselq |
///////////////////////////////////////////////////////////////////////////
|
2 |
|
|
//
|
3 |
|
|
// Filename: wbpwmaudio.v
|
4 |
|
|
//
|
5 |
|
|
// Project: A Wishbone Controlled PWM (audio) controller
|
6 |
|
|
//
|
7 |
|
|
// Purpose: This PWM controller was designed with audio in mind, although
|
8 |
|
|
// it should be sufficient for many other purposes. Specifically,
|
9 |
|
|
// it creates a pulse-width modulated output, where the amount of time
|
10 |
|
|
// the output is 'high' is determined by the pulse width data given to
|
11 |
|
|
// it. Further, the 'high' time is spread out in bit reversed order.
|
12 |
|
|
// In this fashion, a halfway point will alternate between high and low,
|
13 |
|
|
// rather than the normal fashion of being high for half the time and then
|
14 |
|
|
// low. This approach was chosen to move the PWM artifacts to higher,
|
15 |
|
|
// inaudible frequencies and hence improve the sound quality.
|
16 |
|
|
//
|
17 |
|
|
// The interface supports two addresses:
|
18 |
|
|
//
|
19 |
|
|
// Addr[0] is the data register. Writes to this register will set
|
20 |
|
|
// a 16-bit sample value to be produced by the PWM logic.
|
21 |
|
|
// Reads will also produce, in the 17th bit, whether the interrupt
|
22 |
|
|
// is set or not. (If set, it's time to write a new data value
|
23 |
|
|
// ...)
|
24 |
|
|
//
|
25 |
|
|
// Addr[1] is a timer reload value, used to determine how often the
|
26 |
|
|
// PWM logic needs its next value. This number should be set
|
27 |
|
|
// to the number of clock cycles between reload values. So,
|
28 |
|
|
// for example, an 80 MHz clock can generate a 44.1 kHz audio
|
29 |
|
|
// stream by reading in a new sample every (80e6/44.1e3 = 1814)
|
30 |
|
|
// samples. After loading a sample, the device is immediately
|
31 |
|
|
// ready to load a second. Once the first sample completes,
|
32 |
|
|
// the second sample will start going to the output, and an
|
33 |
|
|
// interrupt will be generated indicating that the device is
|
34 |
|
|
// now ready for the third sample. (The one sample buffer
|
35 |
|
|
// allows some flexibility in getting the new sample there fast
|
36 |
|
|
// enough ...)
|
37 |
|
|
//
|
38 |
|
|
//
|
39 |
|
|
// If you read through the code below, you'll notice that you can also
|
40 |
|
|
// set the timer reload value to an immutable constant by changing the
|
41 |
|
|
// VARIABLE_RATE parameter to 0. When VARIABLE_RATE is set to zero,
|
42 |
|
|
// both addresses become the same, Addr[0] or the data register, and the
|
43 |
|
|
// reload value can no longer be changed--forcing the sample rate to
|
44 |
|
|
// stay constant.
|
45 |
|
|
//
|
46 |
|
|
//
|
47 |
|
|
// Of course, if you don't want to deal with the interrupts or sample
|
48 |
|
|
// rates, you can still get a pseudo analog output by just setting the
|
49 |
|
|
// value to the analog output you would like and then not updating
|
50 |
|
|
// it. In this case, you could also shut the interrupt down at the
|
51 |
|
|
// controller, to keep that from bothering you as well.
|
52 |
|
|
//
|
53 |
|
|
// Creator: Dan Gisselquist, Ph.D.
|
54 |
|
|
// Gisselquist Technology, LLC
|
55 |
|
|
//
|
56 |
|
|
///////////////////////////////////////////////////////////////////////////
|
57 |
|
|
//
|
58 |
|
|
// Copyright (C) 2015, Gisselquist Technology, LLC
|
59 |
|
|
//
|
60 |
|
|
// This program is free software (firmware): you can redistribute it and/or
|
61 |
|
|
// modify it under the terms of the GNU General Public License as published
|
62 |
|
|
// by the Free Software Foundation, either version 3 of the License, or (at
|
63 |
|
|
// your option) any later version.
|
64 |
|
|
//
|
65 |
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
66 |
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
|
67 |
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
68 |
|
|
// for more details.
|
69 |
|
|
//
|
70 |
|
|
// You should have received a copy of the GNU General Public License along
|
71 |
|
|
// with this program. (It's in the $(ROOT)/doc directory. Run make with no
|
72 |
|
|
// target there if the PDF file isn't present.) If not, see
|
73 |
|
|
// <http://www.gnu.org/licenses/> for a copy.
|
74 |
|
|
//
|
75 |
|
|
// License: GPL, v3, as defined and found on www.gnu.org,
|
76 |
|
|
// http://www.gnu.org/licenses/gpl.html
|
77 |
|
|
//
|
78 |
|
|
//
|
79 |
|
|
///////////////////////////////////////////////////////////////////////////
|
80 |
|
|
module wbpwmaudio(i_clk,
|
81 |
|
|
// Wishbone interface
|
82 |
|
|
i_wb_cyc, i_wb_stb, i_wb_we, i_wb_addr, i_wb_data,
|
83 |
|
|
o_wb_ack, o_wb_stall, o_wb_data,
|
84 |
4 |
dgisselq |
o_pwm, o_aux, o_int);
|
85 |
46 |
dgisselq |
parameter DEFAULT_RELOAD = 16'd1814, // about 44.1 kHz @ 80MHz
|
86 |
|
|
//DEFAULT_RELOAD = 16'd2268,//about 44.1 kHz @ 100MHz
|
87 |
2 |
dgisselq |
NAUX=2, // Dev control values
|
88 |
46 |
dgisselq |
VARIABLE_RATE=0,
|
89 |
|
|
TIMING_BITS=16;
|
90 |
|
|
localparam [0:0] BITREVERSE=1;
|
91 |
2 |
dgisselq |
input i_clk;
|
92 |
|
|
input i_wb_cyc, i_wb_stb, i_wb_we;
|
93 |
|
|
input i_wb_addr;
|
94 |
|
|
input [31:0] i_wb_data;
|
95 |
|
|
output reg o_wb_ack;
|
96 |
|
|
output wire o_wb_stall;
|
97 |
|
|
output wire [31:0] o_wb_data;
|
98 |
|
|
output reg o_pwm;
|
99 |
|
|
output reg [(NAUX-1):0] o_aux;
|
100 |
|
|
output reg o_int;
|
101 |
|
|
|
102 |
|
|
|
103 |
|
|
// How often shall we create an interrupt? Every reload_value clocks!
|
104 |
|
|
// If VARIABLE_RATE==0, this value will never change and will be kept
|
105 |
12 |
dgisselq |
// at the default reload rate (defined up top)
|
106 |
4 |
dgisselq |
wire [(TIMING_BITS-1):0] w_reload_value;
|
107 |
2 |
dgisselq |
generate
|
108 |
|
|
if (VARIABLE_RATE != 0)
|
109 |
|
|
begin
|
110 |
4 |
dgisselq |
reg [(TIMING_BITS-1):0] r_reload_value;
|
111 |
2 |
dgisselq |
initial r_reload_value = DEFAULT_RELOAD;
|
112 |
|
|
always @(posedge i_clk) // Data write
|
113 |
46 |
dgisselq |
if ((i_wb_stb)&&(i_wb_addr)&&(i_wb_we))
|
114 |
4 |
dgisselq |
r_reload_value <= i_wb_data[(TIMING_BITS-1):0];
|
115 |
2 |
dgisselq |
assign w_reload_value = r_reload_value;
|
116 |
|
|
end else begin
|
117 |
|
|
assign w_reload_value = DEFAULT_RELOAD;
|
118 |
|
|
end endgenerate
|
119 |
|
|
|
120 |
46 |
dgisselq |
reg ztimer;
|
121 |
4 |
dgisselq |
reg [(TIMING_BITS-1):0] timer;
|
122 |
2 |
dgisselq |
initial timer = DEFAULT_RELOAD;
|
123 |
46 |
dgisselq |
initial ztimer= 1'b0;
|
124 |
2 |
dgisselq |
always @(posedge i_clk)
|
125 |
46 |
dgisselq |
ztimer <= (timer == { {(TIMING_BITS-1){1'b0}}, 1'b1 });
|
126 |
|
|
always @(posedge i_clk)
|
127 |
|
|
if (ztimer)
|
128 |
8 |
dgisselq |
timer <= w_reload_value;
|
129 |
2 |
dgisselq |
else
|
130 |
4 |
dgisselq |
timer <= timer - {{(TIMING_BITS-1){1'b0}},1'b1};
|
131 |
2 |
dgisselq |
|
132 |
|
|
reg [15:0] sample_out;
|
133 |
|
|
always @(posedge i_clk)
|
134 |
46 |
dgisselq |
if (ztimer)
|
135 |
2 |
dgisselq |
sample_out <= next_sample;
|
136 |
|
|
|
137 |
|
|
|
138 |
|
|
reg [15:0] next_sample;
|
139 |
|
|
reg next_valid;
|
140 |
|
|
initial next_valid = 1'b1;
|
141 |
|
|
initial next_sample = 16'h8000;
|
142 |
|
|
always @(posedge i_clk) // Data write
|
143 |
46 |
dgisselq |
if ((i_wb_stb)&&(i_wb_we)
|
144 |
2 |
dgisselq |
&&((~i_wb_addr)||(VARIABLE_RATE==0)))
|
145 |
|
|
begin
|
146 |
|
|
// Write with two's complement data, convert it
|
147 |
|
|
// internally to binary offset
|
148 |
|
|
next_sample <= { ~i_wb_data[15], i_wb_data[14:0] };
|
149 |
|
|
next_valid <= 1'b1;
|
150 |
|
|
if (i_wb_data[16])
|
151 |
|
|
o_aux <= i_wb_data[(NAUX+20-1):20];
|
152 |
46 |
dgisselq |
end else if (ztimer)
|
153 |
2 |
dgisselq |
next_valid <= 1'b0;
|
154 |
|
|
|
155 |
|
|
initial o_int = 1'b0;
|
156 |
|
|
always @(posedge i_clk)
|
157 |
|
|
o_int <= (~next_valid);
|
158 |
|
|
|
159 |
|
|
reg [15:0] pwm_counter;
|
160 |
|
|
initial pwm_counter = 16'h00;
|
161 |
|
|
always @(posedge i_clk)
|
162 |
12 |
dgisselq |
pwm_counter <= pwm_counter + 16'h01;
|
163 |
2 |
dgisselq |
|
164 |
|
|
wire [15:0] br_counter;
|
165 |
|
|
genvar k;
|
166 |
|
|
generate for(k=0; k<16; k=k+1)
|
167 |
|
|
begin : bit_reversal_loop
|
168 |
46 |
dgisselq |
assign br_counter[k] = (BITREVERSE)?pwm_counter[15-k]:pwm_counter[k];
|
169 |
2 |
dgisselq |
end endgenerate
|
170 |
|
|
|
171 |
|
|
always @(posedge i_clk)
|
172 |
|
|
o_pwm <= (sample_out >= br_counter);
|
173 |
|
|
|
174 |
|
|
generate
|
175 |
|
|
if (VARIABLE_RATE == 0)
|
176 |
|
|
begin
|
177 |
|
|
assign o_wb_data = { {(12-NAUX){1'b0}}, o_aux,
|
178 |
|
|
3'h0, o_int, sample_out };
|
179 |
|
|
end else begin
|
180 |
|
|
reg [31:0] r_wb_data;
|
181 |
|
|
always @(posedge i_clk)
|
182 |
|
|
if (i_wb_addr)
|
183 |
4 |
dgisselq |
r_wb_data <= w_reload_value;
|
184 |
2 |
dgisselq |
else
|
185 |
|
|
r_wb_data <= { {(12-NAUX){1'b0}}, o_aux,
|
186 |
|
|
3'h0, o_int, sample_out };
|
187 |
|
|
assign o_wb_data = r_wb_data;
|
188 |
|
|
end endgenerate
|
189 |
|
|
|
190 |
|
|
initial o_wb_ack = 1'b0;
|
191 |
|
|
always @(posedge i_clk)
|
192 |
46 |
dgisselq |
o_wb_ack <= (i_wb_stb);
|
193 |
2 |
dgisselq |
assign o_wb_stall = 1'b0;
|
194 |
|
|
|
195 |
|
|
endmodule
|