OpenCores
URL https://opencores.org/ocsvn/s80186/s80186/trunk

Subversion Repositories s80186

[/] [s80186/] [trunk/] [vendor/] [googletest/] [googlemock/] [include/] [gmock/] [gmock-matchers.h] - Blame information for rev 2

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 2 jamieiles
// Copyright 2007, Google Inc.
2
// All rights reserved.
3
//
4
// Redistribution and use in source and binary forms, with or without
5
// modification, are permitted provided that the following conditions are
6
// met:
7
//
8
//     * Redistributions of source code must retain the above copyright
9
// notice, this list of conditions and the following disclaimer.
10
//     * Redistributions in binary form must reproduce the above
11
// copyright notice, this list of conditions and the following disclaimer
12
// in the documentation and/or other materials provided with the
13
// distribution.
14
//     * Neither the name of Google Inc. nor the names of its
15
// contributors may be used to endorse or promote products derived from
16
// this software without specific prior written permission.
17
//
18
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
//
30
// Author: wan@google.com (Zhanyong Wan)
31
 
32
// Google Mock - a framework for writing C++ mock classes.
33
//
34
// This file implements some commonly used argument matchers.  More
35
// matchers can be defined by the user implementing the
36
// MatcherInterface<T> interface if necessary.
37
 
38
#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
39
#define GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
40
 
41
#include <math.h>
42
#include <algorithm>
43
#include <iterator>
44
#include <limits>
45
#include <ostream>  // NOLINT
46
#include <sstream>
47
#include <string>
48
#include <utility>
49
#include <vector>
50
 
51
#include "gmock/internal/gmock-internal-utils.h"
52
#include "gmock/internal/gmock-port.h"
53
#include "gtest/gtest.h"
54
 
55
#if GTEST_HAS_STD_INITIALIZER_LIST_
56
# include <initializer_list>  // NOLINT -- must be after gtest.h
57
#endif
58
 
59
namespace testing {
60
 
61
// To implement a matcher Foo for type T, define:
62
//   1. a class FooMatcherImpl that implements the
63
//      MatcherInterface<T> interface, and
64
//   2. a factory function that creates a Matcher<T> object from a
65
//      FooMatcherImpl*.
66
//
67
// The two-level delegation design makes it possible to allow a user
68
// to write "v" instead of "Eq(v)" where a Matcher is expected, which
69
// is impossible if we pass matchers by pointers.  It also eases
70
// ownership management as Matcher objects can now be copied like
71
// plain values.
72
 
73
// MatchResultListener is an abstract class.  Its << operator can be
74
// used by a matcher to explain why a value matches or doesn't match.
75
//
76
// TODO(wan@google.com): add method
77
//   bool InterestedInWhy(bool result) const;
78
// to indicate whether the listener is interested in why the match
79
// result is 'result'.
80
class MatchResultListener {
81
 public:
82
  // Creates a listener object with the given underlying ostream.  The
83
  // listener does not own the ostream, and does not dereference it
84
  // in the constructor or destructor.
85
  explicit MatchResultListener(::std::ostream* os) : stream_(os) {}
86
  virtual ~MatchResultListener() = 0;  // Makes this class abstract.
87
 
88
  // Streams x to the underlying ostream; does nothing if the ostream
89
  // is NULL.
90
  template <typename T>
91
  MatchResultListener& operator<<(const T& x) {
92
    if (stream_ != NULL)
93
      *stream_ << x;
94
    return *this;
95
  }
96
 
97
  // Returns the underlying ostream.
98
  ::std::ostream* stream() { return stream_; }
99
 
100
  // Returns true iff the listener is interested in an explanation of
101
  // the match result.  A matcher's MatchAndExplain() method can use
102
  // this information to avoid generating the explanation when no one
103
  // intends to hear it.
104
  bool IsInterested() const { return stream_ != NULL; }
105
 
106
 private:
107
  ::std::ostream* const stream_;
108
 
109
  GTEST_DISALLOW_COPY_AND_ASSIGN_(MatchResultListener);
110
};
111
 
112
inline MatchResultListener::~MatchResultListener() {
113
}
114
 
115
// An instance of a subclass of this knows how to describe itself as a
116
// matcher.
117
class MatcherDescriberInterface {
118
 public:
119
  virtual ~MatcherDescriberInterface() {}
120
 
121
  // Describes this matcher to an ostream.  The function should print
122
  // a verb phrase that describes the property a value matching this
123
  // matcher should have.  The subject of the verb phrase is the value
124
  // being matched.  For example, the DescribeTo() method of the Gt(7)
125
  // matcher prints "is greater than 7".
126
  virtual void DescribeTo(::std::ostream* os) const = 0;
127
 
128
  // Describes the negation of this matcher to an ostream.  For
129
  // example, if the description of this matcher is "is greater than
130
  // 7", the negated description could be "is not greater than 7".
131
  // You are not required to override this when implementing
132
  // MatcherInterface, but it is highly advised so that your matcher
133
  // can produce good error messages.
134
  virtual void DescribeNegationTo(::std::ostream* os) const {
135
    *os << "not (";
136
    DescribeTo(os);
137
    *os << ")";
138
  }
139
};
140
 
141
// The implementation of a matcher.
142
template <typename T>
143
class MatcherInterface : public MatcherDescriberInterface {
144
 public:
145
  // Returns true iff the matcher matches x; also explains the match
146
  // result to 'listener' if necessary (see the next paragraph), in
147
  // the form of a non-restrictive relative clause ("which ...",
148
  // "whose ...", etc) that describes x.  For example, the
149
  // MatchAndExplain() method of the Pointee(...) matcher should
150
  // generate an explanation like "which points to ...".
151
  //
152
  // Implementations of MatchAndExplain() should add an explanation of
153
  // the match result *if and only if* they can provide additional
154
  // information that's not already present (or not obvious) in the
155
  // print-out of x and the matcher's description.  Whether the match
156
  // succeeds is not a factor in deciding whether an explanation is
157
  // needed, as sometimes the caller needs to print a failure message
158
  // when the match succeeds (e.g. when the matcher is used inside
159
  // Not()).
160
  //
161
  // For example, a "has at least 10 elements" matcher should explain
162
  // what the actual element count is, regardless of the match result,
163
  // as it is useful information to the reader; on the other hand, an
164
  // "is empty" matcher probably only needs to explain what the actual
165
  // size is when the match fails, as it's redundant to say that the
166
  // size is 0 when the value is already known to be empty.
167
  //
168
  // You should override this method when defining a new matcher.
169
  //
170
  // It's the responsibility of the caller (Google Mock) to guarantee
171
  // that 'listener' is not NULL.  This helps to simplify a matcher's
172
  // implementation when it doesn't care about the performance, as it
173
  // can talk to 'listener' without checking its validity first.
174
  // However, in order to implement dummy listeners efficiently,
175
  // listener->stream() may be NULL.
176
  virtual bool MatchAndExplain(T x, MatchResultListener* listener) const = 0;
177
 
178
  // Inherits these methods from MatcherDescriberInterface:
179
  //   virtual void DescribeTo(::std::ostream* os) const = 0;
180
  //   virtual void DescribeNegationTo(::std::ostream* os) const;
181
};
182
 
183
// A match result listener that stores the explanation in a string.
184
class StringMatchResultListener : public MatchResultListener {
185
 public:
186
  StringMatchResultListener() : MatchResultListener(&ss_) {}
187
 
188
  // Returns the explanation accumulated so far.
189
  internal::string str() const { return ss_.str(); }
190
 
191
  // Clears the explanation accumulated so far.
192
  void Clear() { ss_.str(""); }
193
 
194
 private:
195
  ::std::stringstream ss_;
196
 
197
  GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener);
198
};
199
 
200
namespace internal {
201
 
202
struct AnyEq {
203
  template <typename A, typename B>
204
  bool operator()(const A& a, const B& b) const { return a == b; }
205
};
206
struct AnyNe {
207
  template <typename A, typename B>
208
  bool operator()(const A& a, const B& b) const { return a != b; }
209
};
210
struct AnyLt {
211
  template <typename A, typename B>
212
  bool operator()(const A& a, const B& b) const { return a < b; }
213
};
214
struct AnyGt {
215
  template <typename A, typename B>
216
  bool operator()(const A& a, const B& b) const { return a > b; }
217
};
218
struct AnyLe {
219
  template <typename A, typename B>
220
  bool operator()(const A& a, const B& b) const { return a <= b; }
221
};
222
struct AnyGe {
223
  template <typename A, typename B>
224
  bool operator()(const A& a, const B& b) const { return a >= b; }
225
};
226
 
227
// A match result listener that ignores the explanation.
228
class DummyMatchResultListener : public MatchResultListener {
229
 public:
230
  DummyMatchResultListener() : MatchResultListener(NULL) {}
231
 
232
 private:
233
  GTEST_DISALLOW_COPY_AND_ASSIGN_(DummyMatchResultListener);
234
};
235
 
236
// A match result listener that forwards the explanation to a given
237
// ostream.  The difference between this and MatchResultListener is
238
// that the former is concrete.
239
class StreamMatchResultListener : public MatchResultListener {
240
 public:
241
  explicit StreamMatchResultListener(::std::ostream* os)
242
      : MatchResultListener(os) {}
243
 
244
 private:
245
  GTEST_DISALLOW_COPY_AND_ASSIGN_(StreamMatchResultListener);
246
};
247
 
248
// An internal class for implementing Matcher<T>, which will derive
249
// from it.  We put functionalities common to all Matcher<T>
250
// specializations here to avoid code duplication.
251
template <typename T>
252
class MatcherBase {
253
 public:
254
  // Returns true iff the matcher matches x; also explains the match
255
  // result to 'listener'.
256
  bool MatchAndExplain(T x, MatchResultListener* listener) const {
257
    return impl_->MatchAndExplain(x, listener);
258
  }
259
 
260
  // Returns true iff this matcher matches x.
261
  bool Matches(T x) const {
262
    DummyMatchResultListener dummy;
263
    return MatchAndExplain(x, &dummy);
264
  }
265
 
266
  // Describes this matcher to an ostream.
267
  void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); }
268
 
269
  // Describes the negation of this matcher to an ostream.
270
  void DescribeNegationTo(::std::ostream* os) const {
271
    impl_->DescribeNegationTo(os);
272
  }
273
 
274
  // Explains why x matches, or doesn't match, the matcher.
275
  void ExplainMatchResultTo(T x, ::std::ostream* os) const {
276
    StreamMatchResultListener listener(os);
277
    MatchAndExplain(x, &listener);
278
  }
279
 
280
  // Returns the describer for this matcher object; retains ownership
281
  // of the describer, which is only guaranteed to be alive when
282
  // this matcher object is alive.
283
  const MatcherDescriberInterface* GetDescriber() const {
284
    return impl_.get();
285
  }
286
 
287
 protected:
288
  MatcherBase() {}
289
 
290
  // Constructs a matcher from its implementation.
291
  explicit MatcherBase(const MatcherInterface<T>* impl)
292
      : impl_(impl) {}
293
 
294
  virtual ~MatcherBase() {}
295
 
296
 private:
297
  // shared_ptr (util/gtl/shared_ptr.h) and linked_ptr have similar
298
  // interfaces.  The former dynamically allocates a chunk of memory
299
  // to hold the reference count, while the latter tracks all
300
  // references using a circular linked list without allocating
301
  // memory.  It has been observed that linked_ptr performs better in
302
  // typical scenarios.  However, shared_ptr can out-perform
303
  // linked_ptr when there are many more uses of the copy constructor
304
  // than the default constructor.
305
  //
306
  // If performance becomes a problem, we should see if using
307
  // shared_ptr helps.
308
  ::testing::internal::linked_ptr<const MatcherInterface<T> > impl_;
309
};
310
 
311
}  // namespace internal
312
 
313
// A Matcher<T> is a copyable and IMMUTABLE (except by assignment)
314
// object that can check whether a value of type T matches.  The
315
// implementation of Matcher<T> is just a linked_ptr to const
316
// MatcherInterface<T>, so copying is fairly cheap.  Don't inherit
317
// from Matcher!
318
template <typename T>
319
class Matcher : public internal::MatcherBase<T> {
320
 public:
321
  // Constructs a null matcher.  Needed for storing Matcher objects in STL
322
  // containers.  A default-constructed matcher is not yet initialized.  You
323
  // cannot use it until a valid value has been assigned to it.
324
  explicit Matcher() {}  // NOLINT
325
 
326
  // Constructs a matcher from its implementation.
327
  explicit Matcher(const MatcherInterface<T>* impl)
328
      : internal::MatcherBase<T>(impl) {}
329
 
330
  // Implicit constructor here allows people to write
331
  // EXPECT_CALL(foo, Bar(5)) instead of EXPECT_CALL(foo, Bar(Eq(5))) sometimes
332
  Matcher(T value);  // NOLINT
333
};
334
 
335
// The following two specializations allow the user to write str
336
// instead of Eq(str) and "foo" instead of Eq("foo") when a string
337
// matcher is expected.
338
template <>
339
class GTEST_API_ Matcher<const internal::string&>
340
    : public internal::MatcherBase<const internal::string&> {
341
 public:
342
  Matcher() {}
343
 
344
  explicit Matcher(const MatcherInterface<const internal::string&>* impl)
345
      : internal::MatcherBase<const internal::string&>(impl) {}
346
 
347
  // Allows the user to write str instead of Eq(str) sometimes, where
348
  // str is a string object.
349
  Matcher(const internal::string& s);  // NOLINT
350
 
351
  // Allows the user to write "foo" instead of Eq("foo") sometimes.
352
  Matcher(const char* s);  // NOLINT
353
};
354
 
355
template <>
356
class GTEST_API_ Matcher<internal::string>
357
    : public internal::MatcherBase<internal::string> {
358
 public:
359
  Matcher() {}
360
 
361
  explicit Matcher(const MatcherInterface<internal::string>* impl)
362
      : internal::MatcherBase<internal::string>(impl) {}
363
 
364
  // Allows the user to write str instead of Eq(str) sometimes, where
365
  // str is a string object.
366
  Matcher(const internal::string& s);  // NOLINT
367
 
368
  // Allows the user to write "foo" instead of Eq("foo") sometimes.
369
  Matcher(const char* s);  // NOLINT
370
};
371
 
372
#if GTEST_HAS_STRING_PIECE_
373
// The following two specializations allow the user to write str
374
// instead of Eq(str) and "foo" instead of Eq("foo") when a StringPiece
375
// matcher is expected.
376
template <>
377
class GTEST_API_ Matcher<const StringPiece&>
378
    : public internal::MatcherBase<const StringPiece&> {
379
 public:
380
  Matcher() {}
381
 
382
  explicit Matcher(const MatcherInterface<const StringPiece&>* impl)
383
      : internal::MatcherBase<const StringPiece&>(impl) {}
384
 
385
  // Allows the user to write str instead of Eq(str) sometimes, where
386
  // str is a string object.
387
  Matcher(const internal::string& s);  // NOLINT
388
 
389
  // Allows the user to write "foo" instead of Eq("foo") sometimes.
390
  Matcher(const char* s);  // NOLINT
391
 
392
  // Allows the user to pass StringPieces directly.
393
  Matcher(StringPiece s);  // NOLINT
394
};
395
 
396
template <>
397
class GTEST_API_ Matcher<StringPiece>
398
    : public internal::MatcherBase<StringPiece> {
399
 public:
400
  Matcher() {}
401
 
402
  explicit Matcher(const MatcherInterface<StringPiece>* impl)
403
      : internal::MatcherBase<StringPiece>(impl) {}
404
 
405
  // Allows the user to write str instead of Eq(str) sometimes, where
406
  // str is a string object.
407
  Matcher(const internal::string& s);  // NOLINT
408
 
409
  // Allows the user to write "foo" instead of Eq("foo") sometimes.
410
  Matcher(const char* s);  // NOLINT
411
 
412
  // Allows the user to pass StringPieces directly.
413
  Matcher(StringPiece s);  // NOLINT
414
};
415
#endif  // GTEST_HAS_STRING_PIECE_
416
 
417
// The PolymorphicMatcher class template makes it easy to implement a
418
// polymorphic matcher (i.e. a matcher that can match values of more
419
// than one type, e.g. Eq(n) and NotNull()).
420
//
421
// To define a polymorphic matcher, a user should provide an Impl
422
// class that has a DescribeTo() method and a DescribeNegationTo()
423
// method, and define a member function (or member function template)
424
//
425
//   bool MatchAndExplain(const Value& value,
426
//                        MatchResultListener* listener) const;
427
//
428
// See the definition of NotNull() for a complete example.
429
template <class Impl>
430
class PolymorphicMatcher {
431
 public:
432
  explicit PolymorphicMatcher(const Impl& an_impl) : impl_(an_impl) {}
433
 
434
  // Returns a mutable reference to the underlying matcher
435
  // implementation object.
436
  Impl& mutable_impl() { return impl_; }
437
 
438
  // Returns an immutable reference to the underlying matcher
439
  // implementation object.
440
  const Impl& impl() const { return impl_; }
441
 
442
  template <typename T>
443
  operator Matcher<T>() const {
444
    return Matcher<T>(new MonomorphicImpl<T>(impl_));
445
  }
446
 
447
 private:
448
  template <typename T>
449
  class MonomorphicImpl : public MatcherInterface<T> {
450
   public:
451
    explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
452
 
453
    virtual void DescribeTo(::std::ostream* os) const {
454
      impl_.DescribeTo(os);
455
    }
456
 
457
    virtual void DescribeNegationTo(::std::ostream* os) const {
458
      impl_.DescribeNegationTo(os);
459
    }
460
 
461
    virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
462
      return impl_.MatchAndExplain(x, listener);
463
    }
464
 
465
   private:
466
    const Impl impl_;
467
 
468
    GTEST_DISALLOW_ASSIGN_(MonomorphicImpl);
469
  };
470
 
471
  Impl impl_;
472
 
473
  GTEST_DISALLOW_ASSIGN_(PolymorphicMatcher);
474
};
475
 
476
// Creates a matcher from its implementation.  This is easier to use
477
// than the Matcher<T> constructor as it doesn't require you to
478
// explicitly write the template argument, e.g.
479
//
480
//   MakeMatcher(foo);
481
// vs
482
//   Matcher<const string&>(foo);
483
template <typename T>
484
inline Matcher<T> MakeMatcher(const MatcherInterface<T>* impl) {
485
  return Matcher<T>(impl);
486
}
487
 
488
// Creates a polymorphic matcher from its implementation.  This is
489
// easier to use than the PolymorphicMatcher<Impl> constructor as it
490
// doesn't require you to explicitly write the template argument, e.g.
491
//
492
//   MakePolymorphicMatcher(foo);
493
// vs
494
//   PolymorphicMatcher<TypeOfFoo>(foo);
495
template <class Impl>
496
inline PolymorphicMatcher<Impl> MakePolymorphicMatcher(const Impl& impl) {
497
  return PolymorphicMatcher<Impl>(impl);
498
}
499
 
500
// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
501
// and MUST NOT BE USED IN USER CODE!!!
502
namespace internal {
503
 
504
// The MatcherCastImpl class template is a helper for implementing
505
// MatcherCast().  We need this helper in order to partially
506
// specialize the implementation of MatcherCast() (C++ allows
507
// class/struct templates to be partially specialized, but not
508
// function templates.).
509
 
510
// This general version is used when MatcherCast()'s argument is a
511
// polymorphic matcher (i.e. something that can be converted to a
512
// Matcher but is not one yet; for example, Eq(value)) or a value (for
513
// example, "hello").
514
template <typename T, typename M>
515
class MatcherCastImpl {
516
 public:
517
  static Matcher<T> Cast(const M& polymorphic_matcher_or_value) {
518
    // M can be a polymorhic matcher, in which case we want to use
519
    // its conversion operator to create Matcher<T>.  Or it can be a value
520
    // that should be passed to the Matcher<T>'s constructor.
521
    //
522
    // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a
523
    // polymorphic matcher because it'll be ambiguous if T has an implicit
524
    // constructor from M (this usually happens when T has an implicit
525
    // constructor from any type).
526
    //
527
    // It won't work to unconditionally implict_cast
528
    // polymorphic_matcher_or_value to Matcher<T> because it won't trigger
529
    // a user-defined conversion from M to T if one exists (assuming M is
530
    // a value).
531
    return CastImpl(
532
        polymorphic_matcher_or_value,
533
        BooleanConstant<
534
            internal::ImplicitlyConvertible<M, Matcher<T> >::value>());
535
  }
536
 
537
 private:
538
  static Matcher<T> CastImpl(const M& value, BooleanConstant<false>) {
539
    // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic
540
    // matcher.  It must be a value then.  Use direct initialization to create
541
    // a matcher.
542
    return Matcher<T>(ImplicitCast_<T>(value));
543
  }
544
 
545
  static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value,
546
                             BooleanConstant<true>) {
547
    // M is implicitly convertible to Matcher<T>, which means that either
548
    // M is a polymorhpic matcher or Matcher<T> has an implicit constructor
549
    // from M.  In both cases using the implicit conversion will produce a
550
    // matcher.
551
    //
552
    // Even if T has an implicit constructor from M, it won't be called because
553
    // creating Matcher<T> would require a chain of two user-defined conversions
554
    // (first to create T from M and then to create Matcher<T> from T).
555
    return polymorphic_matcher_or_value;
556
  }
557
};
558
 
559
// This more specialized version is used when MatcherCast()'s argument
560
// is already a Matcher.  This only compiles when type T can be
561
// statically converted to type U.
562
template <typename T, typename U>
563
class MatcherCastImpl<T, Matcher<U> > {
564
 public:
565
  static Matcher<T> Cast(const Matcher<U>& source_matcher) {
566
    return Matcher<T>(new Impl(source_matcher));
567
  }
568
 
569
 private:
570
  class Impl : public MatcherInterface<T> {
571
   public:
572
    explicit Impl(const Matcher<U>& source_matcher)
573
        : source_matcher_(source_matcher) {}
574
 
575
    // We delegate the matching logic to the source matcher.
576
    virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
577
      return source_matcher_.MatchAndExplain(static_cast<U>(x), listener);
578
    }
579
 
580
    virtual void DescribeTo(::std::ostream* os) const {
581
      source_matcher_.DescribeTo(os);
582
    }
583
 
584
    virtual void DescribeNegationTo(::std::ostream* os) const {
585
      source_matcher_.DescribeNegationTo(os);
586
    }
587
 
588
   private:
589
    const Matcher<U> source_matcher_;
590
 
591
    GTEST_DISALLOW_ASSIGN_(Impl);
592
  };
593
};
594
 
595
// This even more specialized version is used for efficiently casting
596
// a matcher to its own type.
597
template <typename T>
598
class MatcherCastImpl<T, Matcher<T> > {
599
 public:
600
  static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; }
601
};
602
 
603
}  // namespace internal
604
 
605
// In order to be safe and clear, casting between different matcher
606
// types is done explicitly via MatcherCast<T>(m), which takes a
607
// matcher m and returns a Matcher<T>.  It compiles only when T can be
608
// statically converted to the argument type of m.
609
template <typename T, typename M>
610
inline Matcher<T> MatcherCast(const M& matcher) {
611
  return internal::MatcherCastImpl<T, M>::Cast(matcher);
612
}
613
 
614
// Implements SafeMatcherCast().
615
//
616
// We use an intermediate class to do the actual safe casting as Nokia's
617
// Symbian compiler cannot decide between
618
// template <T, M> ... (M) and
619
// template <T, U> ... (const Matcher<U>&)
620
// for function templates but can for member function templates.
621
template <typename T>
622
class SafeMatcherCastImpl {
623
 public:
624
  // This overload handles polymorphic matchers and values only since
625
  // monomorphic matchers are handled by the next one.
626
  template <typename M>
627
  static inline Matcher<T> Cast(const M& polymorphic_matcher_or_value) {
628
    return internal::MatcherCastImpl<T, M>::Cast(polymorphic_matcher_or_value);
629
  }
630
 
631
  // This overload handles monomorphic matchers.
632
  //
633
  // In general, if type T can be implicitly converted to type U, we can
634
  // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is
635
  // contravariant): just keep a copy of the original Matcher<U>, convert the
636
  // argument from type T to U, and then pass it to the underlying Matcher<U>.
637
  // The only exception is when U is a reference and T is not, as the
638
  // underlying Matcher<U> may be interested in the argument's address, which
639
  // is not preserved in the conversion from T to U.
640
  template <typename U>
641
  static inline Matcher<T> Cast(const Matcher<U>& matcher) {
642
    // Enforce that T can be implicitly converted to U.
643
    GTEST_COMPILE_ASSERT_((internal::ImplicitlyConvertible<T, U>::value),
644
                          T_must_be_implicitly_convertible_to_U);
645
    // Enforce that we are not converting a non-reference type T to a reference
646
    // type U.
647
    GTEST_COMPILE_ASSERT_(
648
        internal::is_reference<T>::value || !internal::is_reference<U>::value,
649
        cannot_convert_non_referentce_arg_to_reference);
650
    // In case both T and U are arithmetic types, enforce that the
651
    // conversion is not lossy.
652
    typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT;
653
    typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU;
654
    const bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther;
655
    const bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther;
656
    GTEST_COMPILE_ASSERT_(
657
        kTIsOther || kUIsOther ||
658
        (internal::LosslessArithmeticConvertible<RawT, RawU>::value),
659
        conversion_of_arithmetic_types_must_be_lossless);
660
    return MatcherCast<T>(matcher);
661
  }
662
};
663
 
664
template <typename T, typename M>
665
inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher) {
666
  return SafeMatcherCastImpl<T>::Cast(polymorphic_matcher);
667
}
668
 
669
// A<T>() returns a matcher that matches any value of type T.
670
template <typename T>
671
Matcher<T> A();
672
 
673
// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
674
// and MUST NOT BE USED IN USER CODE!!!
675
namespace internal {
676
 
677
// If the explanation is not empty, prints it to the ostream.
678
inline void PrintIfNotEmpty(const internal::string& explanation,
679
                            ::std::ostream* os) {
680
  if (explanation != "" && os != NULL) {
681
    *os << ", " << explanation;
682
  }
683
}
684
 
685
// Returns true if the given type name is easy to read by a human.
686
// This is used to decide whether printing the type of a value might
687
// be helpful.
688
inline bool IsReadableTypeName(const string& type_name) {
689
  // We consider a type name readable if it's short or doesn't contain
690
  // a template or function type.
691
  return (type_name.length() <= 20 ||
692
          type_name.find_first_of("<(") == string::npos);
693
}
694
 
695
// Matches the value against the given matcher, prints the value and explains
696
// the match result to the listener. Returns the match result.
697
// 'listener' must not be NULL.
698
// Value cannot be passed by const reference, because some matchers take a
699
// non-const argument.
700
template <typename Value, typename T>
701
bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher,
702
                          MatchResultListener* listener) {
703
  if (!listener->IsInterested()) {
704
    // If the listener is not interested, we do not need to construct the
705
    // inner explanation.
706
    return matcher.Matches(value);
707
  }
708
 
709
  StringMatchResultListener inner_listener;
710
  const bool match = matcher.MatchAndExplain(value, &inner_listener);
711
 
712
  UniversalPrint(value, listener->stream());
713
#if GTEST_HAS_RTTI
714
  const string& type_name = GetTypeName<Value>();
715
  if (IsReadableTypeName(type_name))
716
    *listener->stream() << " (of type " << type_name << ")";
717
#endif
718
  PrintIfNotEmpty(inner_listener.str(), listener->stream());
719
 
720
  return match;
721
}
722
 
723
// An internal helper class for doing compile-time loop on a tuple's
724
// fields.
725
template <size_t N>
726
class TuplePrefix {
727
 public:
728
  // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true
729
  // iff the first N fields of matcher_tuple matches the first N
730
  // fields of value_tuple, respectively.
731
  template <typename MatcherTuple, typename ValueTuple>
732
  static bool Matches(const MatcherTuple& matcher_tuple,
733
                      const ValueTuple& value_tuple) {
734
    return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple)
735
        && get<N - 1>(matcher_tuple).Matches(get<N - 1>(value_tuple));
736
  }
737
 
738
  // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os)
739
  // describes failures in matching the first N fields of matchers
740
  // against the first N fields of values.  If there is no failure,
741
  // nothing will be streamed to os.
742
  template <typename MatcherTuple, typename ValueTuple>
743
  static void ExplainMatchFailuresTo(const MatcherTuple& matchers,
744
                                     const ValueTuple& values,
745
                                     ::std::ostream* os) {
746
    // First, describes failures in the first N - 1 fields.
747
    TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os);
748
 
749
    // Then describes the failure (if any) in the (N - 1)-th (0-based)
750
    // field.
751
    typename tuple_element<N - 1, MatcherTuple>::type matcher =
752
        get<N - 1>(matchers);
753
    typedef typename tuple_element<N - 1, ValueTuple>::type Value;
754
    Value value = get<N - 1>(values);
755
    StringMatchResultListener listener;
756
    if (!matcher.MatchAndExplain(value, &listener)) {
757
      // TODO(wan): include in the message the name of the parameter
758
      // as used in MOCK_METHOD*() when possible.
759
      *os << "  Expected arg #" << N - 1 << ": ";
760
      get<N - 1>(matchers).DescribeTo(os);
761
      *os << "\n           Actual: ";
762
      // We remove the reference in type Value to prevent the
763
      // universal printer from printing the address of value, which
764
      // isn't interesting to the user most of the time.  The
765
      // matcher's MatchAndExplain() method handles the case when
766
      // the address is interesting.
767
      internal::UniversalPrint(value, os);
768
      PrintIfNotEmpty(listener.str(), os);
769
      *os << "\n";
770
    }
771
  }
772
};
773
 
774
// The base case.
775
template <>
776
class TuplePrefix<0> {
777
 public:
778
  template <typename MatcherTuple, typename ValueTuple>
779
  static bool Matches(const MatcherTuple& /* matcher_tuple */,
780
                      const ValueTuple& /* value_tuple */) {
781
    return true;
782
  }
783
 
784
  template <typename MatcherTuple, typename ValueTuple>
785
  static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */,
786
                                     const ValueTuple& /* values */,
787
                                     ::std::ostream* /* os */) {}
788
};
789
 
790
// TupleMatches(matcher_tuple, value_tuple) returns true iff all
791
// matchers in matcher_tuple match the corresponding fields in
792
// value_tuple.  It is a compiler error if matcher_tuple and
793
// value_tuple have different number of fields or incompatible field
794
// types.
795
template <typename MatcherTuple, typename ValueTuple>
796
bool TupleMatches(const MatcherTuple& matcher_tuple,
797
                  const ValueTuple& value_tuple) {
798
  // Makes sure that matcher_tuple and value_tuple have the same
799
  // number of fields.
800
  GTEST_COMPILE_ASSERT_(tuple_size<MatcherTuple>::value ==
801
                        tuple_size<ValueTuple>::value,
802
                        matcher_and_value_have_different_numbers_of_fields);
803
  return TuplePrefix<tuple_size<ValueTuple>::value>::
804
      Matches(matcher_tuple, value_tuple);
805
}
806
 
807
// Describes failures in matching matchers against values.  If there
808
// is no failure, nothing will be streamed to os.
809
template <typename MatcherTuple, typename ValueTuple>
810
void ExplainMatchFailureTupleTo(const MatcherTuple& matchers,
811
                                const ValueTuple& values,
812
                                ::std::ostream* os) {
813
  TuplePrefix<tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo(
814
      matchers, values, os);
815
}
816
 
817
// TransformTupleValues and its helper.
818
//
819
// TransformTupleValuesHelper hides the internal machinery that
820
// TransformTupleValues uses to implement a tuple traversal.
821
template <typename Tuple, typename Func, typename OutIter>
822
class TransformTupleValuesHelper {
823
 private:
824
  typedef ::testing::tuple_size<Tuple> TupleSize;
825
 
826
 public:
827
  // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'.
828
  // Returns the final value of 'out' in case the caller needs it.
829
  static OutIter Run(Func f, const Tuple& t, OutIter out) {
830
    return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out);
831
  }
832
 
833
 private:
834
  template <typename Tup, size_t kRemainingSize>
835
  struct IterateOverTuple {
836
    OutIter operator() (Func f, const Tup& t, OutIter out) const {
837
      *out++ = f(::testing::get<TupleSize::value - kRemainingSize>(t));
838
      return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out);
839
    }
840
  };
841
  template <typename Tup>
842
  struct IterateOverTuple<Tup, 0> {
843
    OutIter operator() (Func /* f */, const Tup& /* t */, OutIter out) const {
844
      return out;
845
    }
846
  };
847
};
848
 
849
// Successively invokes 'f(element)' on each element of the tuple 't',
850
// appending each result to the 'out' iterator. Returns the final value
851
// of 'out'.
852
template <typename Tuple, typename Func, typename OutIter>
853
OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) {
854
  return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out);
855
}
856
 
857
// Implements A<T>().
858
template <typename T>
859
class AnyMatcherImpl : public MatcherInterface<T> {
860
 public:
861
  virtual bool MatchAndExplain(
862
      T /* x */, MatchResultListener* /* listener */) const { return true; }
863
  virtual void DescribeTo(::std::ostream* os) const { *os << "is anything"; }
864
  virtual void DescribeNegationTo(::std::ostream* os) const {
865
    // This is mostly for completeness' safe, as it's not very useful
866
    // to write Not(A<bool>()).  However we cannot completely rule out
867
    // such a possibility, and it doesn't hurt to be prepared.
868
    *os << "never matches";
869
  }
870
};
871
 
872
// Implements _, a matcher that matches any value of any
873
// type.  This is a polymorphic matcher, so we need a template type
874
// conversion operator to make it appearing as a Matcher<T> for any
875
// type T.
876
class AnythingMatcher {
877
 public:
878
  template <typename T>
879
  operator Matcher<T>() const { return A<T>(); }
880
};
881
 
882
// Implements a matcher that compares a given value with a
883
// pre-supplied value using one of the ==, <=, <, etc, operators.  The
884
// two values being compared don't have to have the same type.
885
//
886
// The matcher defined here is polymorphic (for example, Eq(5) can be
887
// used to match an int, a short, a double, etc).  Therefore we use
888
// a template type conversion operator in the implementation.
889
//
890
// The following template definition assumes that the Rhs parameter is
891
// a "bare" type (i.e. neither 'const T' nor 'T&').
892
template <typename D, typename Rhs, typename Op>
893
class ComparisonBase {
894
 public:
895
  explicit ComparisonBase(const Rhs& rhs) : rhs_(rhs) {}
896
  template <typename Lhs>
897
  operator Matcher<Lhs>() const {
898
    return MakeMatcher(new Impl<Lhs>(rhs_));
899
  }
900
 
901
 private:
902
  template <typename Lhs>
903
  class Impl : public MatcherInterface<Lhs> {
904
   public:
905
    explicit Impl(const Rhs& rhs) : rhs_(rhs) {}
906
    virtual bool MatchAndExplain(
907
        Lhs lhs, MatchResultListener* /* listener */) const {
908
      return Op()(lhs, rhs_);
909
    }
910
    virtual void DescribeTo(::std::ostream* os) const {
911
      *os << D::Desc() << " ";
912
      UniversalPrint(rhs_, os);
913
    }
914
    virtual void DescribeNegationTo(::std::ostream* os) const {
915
      *os << D::NegatedDesc() <<  " ";
916
      UniversalPrint(rhs_, os);
917
    }
918
   private:
919
    Rhs rhs_;
920
    GTEST_DISALLOW_ASSIGN_(Impl);
921
  };
922
  Rhs rhs_;
923
  GTEST_DISALLOW_ASSIGN_(ComparisonBase);
924
};
925
 
926
template <typename Rhs>
927
class EqMatcher : public ComparisonBase<EqMatcher<Rhs>, Rhs, AnyEq> {
928
 public:
929
  explicit EqMatcher(const Rhs& rhs)
930
      : ComparisonBase<EqMatcher<Rhs>, Rhs, AnyEq>(rhs) { }
931
  static const char* Desc() { return "is equal to"; }
932
  static const char* NegatedDesc() { return "isn't equal to"; }
933
};
934
template <typename Rhs>
935
class NeMatcher : public ComparisonBase<NeMatcher<Rhs>, Rhs, AnyNe> {
936
 public:
937
  explicit NeMatcher(const Rhs& rhs)
938
      : ComparisonBase<NeMatcher<Rhs>, Rhs, AnyNe>(rhs) { }
939
  static const char* Desc() { return "isn't equal to"; }
940
  static const char* NegatedDesc() { return "is equal to"; }
941
};
942
template <typename Rhs>
943
class LtMatcher : public ComparisonBase<LtMatcher<Rhs>, Rhs, AnyLt> {
944
 public:
945
  explicit LtMatcher(const Rhs& rhs)
946
      : ComparisonBase<LtMatcher<Rhs>, Rhs, AnyLt>(rhs) { }
947
  static const char* Desc() { return "is <"; }
948
  static const char* NegatedDesc() { return "isn't <"; }
949
};
950
template <typename Rhs>
951
class GtMatcher : public ComparisonBase<GtMatcher<Rhs>, Rhs, AnyGt> {
952
 public:
953
  explicit GtMatcher(const Rhs& rhs)
954
      : ComparisonBase<GtMatcher<Rhs>, Rhs, AnyGt>(rhs) { }
955
  static const char* Desc() { return "is >"; }
956
  static const char* NegatedDesc() { return "isn't >"; }
957
};
958
template <typename Rhs>
959
class LeMatcher : public ComparisonBase<LeMatcher<Rhs>, Rhs, AnyLe> {
960
 public:
961
  explicit LeMatcher(const Rhs& rhs)
962
      : ComparisonBase<LeMatcher<Rhs>, Rhs, AnyLe>(rhs) { }
963
  static const char* Desc() { return "is <="; }
964
  static const char* NegatedDesc() { return "isn't <="; }
965
};
966
template <typename Rhs>
967
class GeMatcher : public ComparisonBase<GeMatcher<Rhs>, Rhs, AnyGe> {
968
 public:
969
  explicit GeMatcher(const Rhs& rhs)
970
      : ComparisonBase<GeMatcher<Rhs>, Rhs, AnyGe>(rhs) { }
971
  static const char* Desc() { return "is >="; }
972
  static const char* NegatedDesc() { return "isn't >="; }
973
};
974
 
975
// Implements the polymorphic IsNull() matcher, which matches any raw or smart
976
// pointer that is NULL.
977
class IsNullMatcher {
978
 public:
979
  template <typename Pointer>
980
  bool MatchAndExplain(const Pointer& p,
981
                       MatchResultListener* /* listener */) const {
982
#if GTEST_LANG_CXX11
983
    return p == nullptr;
984
#else  // GTEST_LANG_CXX11
985
    return GetRawPointer(p) == NULL;
986
#endif  // GTEST_LANG_CXX11
987
  }
988
 
989
  void DescribeTo(::std::ostream* os) const { *os << "is NULL"; }
990
  void DescribeNegationTo(::std::ostream* os) const {
991
    *os << "isn't NULL";
992
  }
993
};
994
 
995
// Implements the polymorphic NotNull() matcher, which matches any raw or smart
996
// pointer that is not NULL.
997
class NotNullMatcher {
998
 public:
999
  template <typename Pointer>
1000
  bool MatchAndExplain(const Pointer& p,
1001
                       MatchResultListener* /* listener */) const {
1002
#if GTEST_LANG_CXX11
1003
    return p != nullptr;
1004
#else  // GTEST_LANG_CXX11
1005
    return GetRawPointer(p) != NULL;
1006
#endif  // GTEST_LANG_CXX11
1007
  }
1008
 
1009
  void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; }
1010
  void DescribeNegationTo(::std::ostream* os) const {
1011
    *os << "is NULL";
1012
  }
1013
};
1014
 
1015
// Ref(variable) matches any argument that is a reference to
1016
// 'variable'.  This matcher is polymorphic as it can match any
1017
// super type of the type of 'variable'.
1018
//
1019
// The RefMatcher template class implements Ref(variable).  It can
1020
// only be instantiated with a reference type.  This prevents a user
1021
// from mistakenly using Ref(x) to match a non-reference function
1022
// argument.  For example, the following will righteously cause a
1023
// compiler error:
1024
//
1025
//   int n;
1026
//   Matcher<int> m1 = Ref(n);   // This won't compile.
1027
//   Matcher<int&> m2 = Ref(n);  // This will compile.
1028
template <typename T>
1029
class RefMatcher;
1030
 
1031
template <typename T>
1032
class RefMatcher<T&> {
1033
  // Google Mock is a generic framework and thus needs to support
1034
  // mocking any function types, including those that take non-const
1035
  // reference arguments.  Therefore the template parameter T (and
1036
  // Super below) can be instantiated to either a const type or a
1037
  // non-const type.
1038
 public:
1039
  // RefMatcher() takes a T& instead of const T&, as we want the
1040
  // compiler to catch using Ref(const_value) as a matcher for a
1041
  // non-const reference.
1042
  explicit RefMatcher(T& x) : object_(x) {}  // NOLINT
1043
 
1044
  template <typename Super>
1045
  operator Matcher<Super&>() const {
1046
    // By passing object_ (type T&) to Impl(), which expects a Super&,
1047
    // we make sure that Super is a super type of T.  In particular,
1048
    // this catches using Ref(const_value) as a matcher for a
1049
    // non-const reference, as you cannot implicitly convert a const
1050
    // reference to a non-const reference.
1051
    return MakeMatcher(new Impl<Super>(object_));
1052
  }
1053
 
1054
 private:
1055
  template <typename Super>
1056
  class Impl : public MatcherInterface<Super&> {
1057
   public:
1058
    explicit Impl(Super& x) : object_(x) {}  // NOLINT
1059
 
1060
    // MatchAndExplain() takes a Super& (as opposed to const Super&)
1061
    // in order to match the interface MatcherInterface<Super&>.
1062
    virtual bool MatchAndExplain(
1063
        Super& x, MatchResultListener* listener) const {
1064
      *listener << "which is located @" << static_cast<const void*>(&x);
1065
      return &x == &object_;
1066
    }
1067
 
1068
    virtual void DescribeTo(::std::ostream* os) const {
1069
      *os << "references the variable ";
1070
      UniversalPrinter<Super&>::Print(object_, os);
1071
    }
1072
 
1073
    virtual void DescribeNegationTo(::std::ostream* os) const {
1074
      *os << "does not reference the variable ";
1075
      UniversalPrinter<Super&>::Print(object_, os);
1076
    }
1077
 
1078
   private:
1079
    const Super& object_;
1080
 
1081
    GTEST_DISALLOW_ASSIGN_(Impl);
1082
  };
1083
 
1084
  T& object_;
1085
 
1086
  GTEST_DISALLOW_ASSIGN_(RefMatcher);
1087
};
1088
 
1089
// Polymorphic helper functions for narrow and wide string matchers.
1090
inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) {
1091
  return String::CaseInsensitiveCStringEquals(lhs, rhs);
1092
}
1093
 
1094
inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs,
1095
                                         const wchar_t* rhs) {
1096
  return String::CaseInsensitiveWideCStringEquals(lhs, rhs);
1097
}
1098
 
1099
// String comparison for narrow or wide strings that can have embedded NUL
1100
// characters.
1101
template <typename StringType>
1102
bool CaseInsensitiveStringEquals(const StringType& s1,
1103
                                 const StringType& s2) {
1104
  // Are the heads equal?
1105
  if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) {
1106
    return false;
1107
  }
1108
 
1109
  // Skip the equal heads.
1110
  const typename StringType::value_type nul = 0;
1111
  const size_t i1 = s1.find(nul), i2 = s2.find(nul);
1112
 
1113
  // Are we at the end of either s1 or s2?
1114
  if (i1 == StringType::npos || i2 == StringType::npos) {
1115
    return i1 == i2;
1116
  }
1117
 
1118
  // Are the tails equal?
1119
  return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1));
1120
}
1121
 
1122
// String matchers.
1123
 
1124
// Implements equality-based string matchers like StrEq, StrCaseNe, and etc.
1125
template <typename StringType>
1126
class StrEqualityMatcher {
1127
 public:
1128
  StrEqualityMatcher(const StringType& str, bool expect_eq,
1129
                     bool case_sensitive)
1130
      : string_(str), expect_eq_(expect_eq), case_sensitive_(case_sensitive) {}
1131
 
1132
  // Accepts pointer types, particularly:
1133
  //   const char*
1134
  //   char*
1135
  //   const wchar_t*
1136
  //   wchar_t*
1137
  template <typename CharType>
1138
  bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
1139
    if (s == NULL) {
1140
      return !expect_eq_;
1141
    }
1142
    return MatchAndExplain(StringType(s), listener);
1143
  }
1144
 
1145
  // Matches anything that can convert to StringType.
1146
  //
1147
  // This is a template, not just a plain function with const StringType&,
1148
  // because StringPiece has some interfering non-explicit constructors.
1149
  template <typename MatcheeStringType>
1150
  bool MatchAndExplain(const MatcheeStringType& s,
1151
                       MatchResultListener* /* listener */) const {
1152
    const StringType& s2(s);
1153
    const bool eq = case_sensitive_ ? s2 == string_ :
1154
        CaseInsensitiveStringEquals(s2, string_);
1155
    return expect_eq_ == eq;
1156
  }
1157
 
1158
  void DescribeTo(::std::ostream* os) const {
1159
    DescribeToHelper(expect_eq_, os);
1160
  }
1161
 
1162
  void DescribeNegationTo(::std::ostream* os) const {
1163
    DescribeToHelper(!expect_eq_, os);
1164
  }
1165
 
1166
 private:
1167
  void DescribeToHelper(bool expect_eq, ::std::ostream* os) const {
1168
    *os << (expect_eq ? "is " : "isn't ");
1169
    *os << "equal to ";
1170
    if (!case_sensitive_) {
1171
      *os << "(ignoring case) ";
1172
    }
1173
    UniversalPrint(string_, os);
1174
  }
1175
 
1176
  const StringType string_;
1177
  const bool expect_eq_;
1178
  const bool case_sensitive_;
1179
 
1180
  GTEST_DISALLOW_ASSIGN_(StrEqualityMatcher);
1181
};
1182
 
1183
// Implements the polymorphic HasSubstr(substring) matcher, which
1184
// can be used as a Matcher<T> as long as T can be converted to a
1185
// string.
1186
template <typename StringType>
1187
class HasSubstrMatcher {
1188
 public:
1189
  explicit HasSubstrMatcher(const StringType& substring)
1190
      : substring_(substring) {}
1191
 
1192
  // Accepts pointer types, particularly:
1193
  //   const char*
1194
  //   char*
1195
  //   const wchar_t*
1196
  //   wchar_t*
1197
  template <typename CharType>
1198
  bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
1199
    return s != NULL && MatchAndExplain(StringType(s), listener);
1200
  }
1201
 
1202
  // Matches anything that can convert to StringType.
1203
  //
1204
  // This is a template, not just a plain function with const StringType&,
1205
  // because StringPiece has some interfering non-explicit constructors.
1206
  template <typename MatcheeStringType>
1207
  bool MatchAndExplain(const MatcheeStringType& s,
1208
                       MatchResultListener* /* listener */) const {
1209
    const StringType& s2(s);
1210
    return s2.find(substring_) != StringType::npos;
1211
  }
1212
 
1213
  // Describes what this matcher matches.
1214
  void DescribeTo(::std::ostream* os) const {
1215
    *os << "has substring ";
1216
    UniversalPrint(substring_, os);
1217
  }
1218
 
1219
  void DescribeNegationTo(::std::ostream* os) const {
1220
    *os << "has no substring ";
1221
    UniversalPrint(substring_, os);
1222
  }
1223
 
1224
 private:
1225
  const StringType substring_;
1226
 
1227
  GTEST_DISALLOW_ASSIGN_(HasSubstrMatcher);
1228
};
1229
 
1230
// Implements the polymorphic StartsWith(substring) matcher, which
1231
// can be used as a Matcher<T> as long as T can be converted to a
1232
// string.
1233
template <typename StringType>
1234
class StartsWithMatcher {
1235
 public:
1236
  explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) {
1237
  }
1238
 
1239
  // Accepts pointer types, particularly:
1240
  //   const char*
1241
  //   char*
1242
  //   const wchar_t*
1243
  //   wchar_t*
1244
  template <typename CharType>
1245
  bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
1246
    return s != NULL && MatchAndExplain(StringType(s), listener);
1247
  }
1248
 
1249
  // Matches anything that can convert to StringType.
1250
  //
1251
  // This is a template, not just a plain function with const StringType&,
1252
  // because StringPiece has some interfering non-explicit constructors.
1253
  template <typename MatcheeStringType>
1254
  bool MatchAndExplain(const MatcheeStringType& s,
1255
                       MatchResultListener* /* listener */) const {
1256
    const StringType& s2(s);
1257
    return s2.length() >= prefix_.length() &&
1258
        s2.substr(0, prefix_.length()) == prefix_;
1259
  }
1260
 
1261
  void DescribeTo(::std::ostream* os) const {
1262
    *os << "starts with ";
1263
    UniversalPrint(prefix_, os);
1264
  }
1265
 
1266
  void DescribeNegationTo(::std::ostream* os) const {
1267
    *os << "doesn't start with ";
1268
    UniversalPrint(prefix_, os);
1269
  }
1270
 
1271
 private:
1272
  const StringType prefix_;
1273
 
1274
  GTEST_DISALLOW_ASSIGN_(StartsWithMatcher);
1275
};
1276
 
1277
// Implements the polymorphic EndsWith(substring) matcher, which
1278
// can be used as a Matcher<T> as long as T can be converted to a
1279
// string.
1280
template <typename StringType>
1281
class EndsWithMatcher {
1282
 public:
1283
  explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {}
1284
 
1285
  // Accepts pointer types, particularly:
1286
  //   const char*
1287
  //   char*
1288
  //   const wchar_t*
1289
  //   wchar_t*
1290
  template <typename CharType>
1291
  bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
1292
    return s != NULL && MatchAndExplain(StringType(s), listener);
1293
  }
1294
 
1295
  // Matches anything that can convert to StringType.
1296
  //
1297
  // This is a template, not just a plain function with const StringType&,
1298
  // because StringPiece has some interfering non-explicit constructors.
1299
  template <typename MatcheeStringType>
1300
  bool MatchAndExplain(const MatcheeStringType& s,
1301
                       MatchResultListener* /* listener */) const {
1302
    const StringType& s2(s);
1303
    return s2.length() >= suffix_.length() &&
1304
        s2.substr(s2.length() - suffix_.length()) == suffix_;
1305
  }
1306
 
1307
  void DescribeTo(::std::ostream* os) const {
1308
    *os << "ends with ";
1309
    UniversalPrint(suffix_, os);
1310
  }
1311
 
1312
  void DescribeNegationTo(::std::ostream* os) const {
1313
    *os << "doesn't end with ";
1314
    UniversalPrint(suffix_, os);
1315
  }
1316
 
1317
 private:
1318
  const StringType suffix_;
1319
 
1320
  GTEST_DISALLOW_ASSIGN_(EndsWithMatcher);
1321
};
1322
 
1323
// Implements polymorphic matchers MatchesRegex(regex) and
1324
// ContainsRegex(regex), which can be used as a Matcher<T> as long as
1325
// T can be converted to a string.
1326
class MatchesRegexMatcher {
1327
 public:
1328
  MatchesRegexMatcher(const RE* regex, bool full_match)
1329
      : regex_(regex), full_match_(full_match) {}
1330
 
1331
  // Accepts pointer types, particularly:
1332
  //   const char*
1333
  //   char*
1334
  //   const wchar_t*
1335
  //   wchar_t*
1336
  template <typename CharType>
1337
  bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
1338
    return s != NULL && MatchAndExplain(internal::string(s), listener);
1339
  }
1340
 
1341
  // Matches anything that can convert to internal::string.
1342
  //
1343
  // This is a template, not just a plain function with const internal::string&,
1344
  // because StringPiece has some interfering non-explicit constructors.
1345
  template <class MatcheeStringType>
1346
  bool MatchAndExplain(const MatcheeStringType& s,
1347
                       MatchResultListener* /* listener */) const {
1348
    const internal::string& s2(s);
1349
    return full_match_ ? RE::FullMatch(s2, *regex_) :
1350
        RE::PartialMatch(s2, *regex_);
1351
  }
1352
 
1353
  void DescribeTo(::std::ostream* os) const {
1354
    *os << (full_match_ ? "matches" : "contains")
1355
        << " regular expression ";
1356
    UniversalPrinter<internal::string>::Print(regex_->pattern(), os);
1357
  }
1358
 
1359
  void DescribeNegationTo(::std::ostream* os) const {
1360
    *os << "doesn't " << (full_match_ ? "match" : "contain")
1361
        << " regular expression ";
1362
    UniversalPrinter<internal::string>::Print(regex_->pattern(), os);
1363
  }
1364
 
1365
 private:
1366
  const internal::linked_ptr<const RE> regex_;
1367
  const bool full_match_;
1368
 
1369
  GTEST_DISALLOW_ASSIGN_(MatchesRegexMatcher);
1370
};
1371
 
1372
// Implements a matcher that compares the two fields of a 2-tuple
1373
// using one of the ==, <=, <, etc, operators.  The two fields being
1374
// compared don't have to have the same type.
1375
//
1376
// The matcher defined here is polymorphic (for example, Eq() can be
1377
// used to match a tuple<int, short>, a tuple<const long&, double>,
1378
// etc).  Therefore we use a template type conversion operator in the
1379
// implementation.
1380
template <typename D, typename Op>
1381
class PairMatchBase {
1382
 public:
1383
  template <typename T1, typename T2>
1384
  operator Matcher< ::testing::tuple<T1, T2> >() const {
1385
    return MakeMatcher(new Impl< ::testing::tuple<T1, T2> >);
1386
  }
1387
  template <typename T1, typename T2>
1388
  operator Matcher<const ::testing::tuple<T1, T2>&>() const {
1389
    return MakeMatcher(new Impl<const ::testing::tuple<T1, T2>&>);
1390
  }
1391
 
1392
 private:
1393
  static ::std::ostream& GetDesc(::std::ostream& os) {  // NOLINT
1394
    return os << D::Desc();
1395
  }
1396
 
1397
  template <typename Tuple>
1398
  class Impl : public MatcherInterface<Tuple> {
1399
   public:
1400
    virtual bool MatchAndExplain(
1401
        Tuple args,
1402
        MatchResultListener* /* listener */) const {
1403
      return Op()(::testing::get<0>(args), ::testing::get<1>(args));
1404
    }
1405
    virtual void DescribeTo(::std::ostream* os) const {
1406
      *os << "are " << GetDesc;
1407
    }
1408
    virtual void DescribeNegationTo(::std::ostream* os) const {
1409
      *os << "aren't " << GetDesc;
1410
    }
1411
  };
1412
};
1413
 
1414
class Eq2Matcher : public PairMatchBase<Eq2Matcher, AnyEq> {
1415
 public:
1416
  static const char* Desc() { return "an equal pair"; }
1417
};
1418
class Ne2Matcher : public PairMatchBase<Ne2Matcher, AnyNe> {
1419
 public:
1420
  static const char* Desc() { return "an unequal pair"; }
1421
};
1422
class Lt2Matcher : public PairMatchBase<Lt2Matcher, AnyLt> {
1423
 public:
1424
  static const char* Desc() { return "a pair where the first < the second"; }
1425
};
1426
class Gt2Matcher : public PairMatchBase<Gt2Matcher, AnyGt> {
1427
 public:
1428
  static const char* Desc() { return "a pair where the first > the second"; }
1429
};
1430
class Le2Matcher : public PairMatchBase<Le2Matcher, AnyLe> {
1431
 public:
1432
  static const char* Desc() { return "a pair where the first <= the second"; }
1433
};
1434
class Ge2Matcher : public PairMatchBase<Ge2Matcher, AnyGe> {
1435
 public:
1436
  static const char* Desc() { return "a pair where the first >= the second"; }
1437
};
1438
 
1439
// Implements the Not(...) matcher for a particular argument type T.
1440
// We do not nest it inside the NotMatcher class template, as that
1441
// will prevent different instantiations of NotMatcher from sharing
1442
// the same NotMatcherImpl<T> class.
1443
template <typename T>
1444
class NotMatcherImpl : public MatcherInterface<T> {
1445
 public:
1446
  explicit NotMatcherImpl(const Matcher<T>& matcher)
1447
      : matcher_(matcher) {}
1448
 
1449
  virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
1450
    return !matcher_.MatchAndExplain(x, listener);
1451
  }
1452
 
1453
  virtual void DescribeTo(::std::ostream* os) const {
1454
    matcher_.DescribeNegationTo(os);
1455
  }
1456
 
1457
  virtual void DescribeNegationTo(::std::ostream* os) const {
1458
    matcher_.DescribeTo(os);
1459
  }
1460
 
1461
 private:
1462
  const Matcher<T> matcher_;
1463
 
1464
  GTEST_DISALLOW_ASSIGN_(NotMatcherImpl);
1465
};
1466
 
1467
// Implements the Not(m) matcher, which matches a value that doesn't
1468
// match matcher m.
1469
template <typename InnerMatcher>
1470
class NotMatcher {
1471
 public:
1472
  explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {}
1473
 
1474
  // This template type conversion operator allows Not(m) to be used
1475
  // to match any type m can match.
1476
  template <typename T>
1477
  operator Matcher<T>() const {
1478
    return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_)));
1479
  }
1480
 
1481
 private:
1482
  InnerMatcher matcher_;
1483
 
1484
  GTEST_DISALLOW_ASSIGN_(NotMatcher);
1485
};
1486
 
1487
// Implements the AllOf(m1, m2) matcher for a particular argument type
1488
// T. We do not nest it inside the BothOfMatcher class template, as
1489
// that will prevent different instantiations of BothOfMatcher from
1490
// sharing the same BothOfMatcherImpl<T> class.
1491
template <typename T>
1492
class BothOfMatcherImpl : public MatcherInterface<T> {
1493
 public:
1494
  BothOfMatcherImpl(const Matcher<T>& matcher1, const Matcher<T>& matcher2)
1495
      : matcher1_(matcher1), matcher2_(matcher2) {}
1496
 
1497
  virtual void DescribeTo(::std::ostream* os) const {
1498
    *os << "(";
1499
    matcher1_.DescribeTo(os);
1500
    *os << ") and (";
1501
    matcher2_.DescribeTo(os);
1502
    *os << ")";
1503
  }
1504
 
1505
  virtual void DescribeNegationTo(::std::ostream* os) const {
1506
    *os << "(";
1507
    matcher1_.DescribeNegationTo(os);
1508
    *os << ") or (";
1509
    matcher2_.DescribeNegationTo(os);
1510
    *os << ")";
1511
  }
1512
 
1513
  virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
1514
    // If either matcher1_ or matcher2_ doesn't match x, we only need
1515
    // to explain why one of them fails.
1516
    StringMatchResultListener listener1;
1517
    if (!matcher1_.MatchAndExplain(x, &listener1)) {
1518
      *listener << listener1.str();
1519
      return false;
1520
    }
1521
 
1522
    StringMatchResultListener listener2;
1523
    if (!matcher2_.MatchAndExplain(x, &listener2)) {
1524
      *listener << listener2.str();
1525
      return false;
1526
    }
1527
 
1528
    // Otherwise we need to explain why *both* of them match.
1529
    const internal::string s1 = listener1.str();
1530
    const internal::string s2 = listener2.str();
1531
 
1532
    if (s1 == "") {
1533
      *listener << s2;
1534
    } else {
1535
      *listener << s1;
1536
      if (s2 != "") {
1537
        *listener << ", and " << s2;
1538
      }
1539
    }
1540
    return true;
1541
  }
1542
 
1543
 private:
1544
  const Matcher<T> matcher1_;
1545
  const Matcher<T> matcher2_;
1546
 
1547
  GTEST_DISALLOW_ASSIGN_(BothOfMatcherImpl);
1548
};
1549
 
1550
#if GTEST_LANG_CXX11
1551
// MatcherList provides mechanisms for storing a variable number of matchers in
1552
// a list structure (ListType) and creating a combining matcher from such a
1553
// list.
1554
// The template is defined recursively using the following template paramters:
1555
//   * kSize is the length of the MatcherList.
1556
//   * Head is the type of the first matcher of the list.
1557
//   * Tail denotes the types of the remaining matchers of the list.
1558
template <int kSize, typename Head, typename... Tail>
1559
struct MatcherList {
1560
  typedef MatcherList<kSize - 1, Tail...> MatcherListTail;
1561
  typedef ::std::pair<Head, typename MatcherListTail::ListType> ListType;
1562
 
1563
  // BuildList stores variadic type values in a nested pair structure.
1564
  // Example:
1565
  // MatcherList<3, int, string, float>::BuildList(5, "foo", 2.0) will return
1566
  // the corresponding result of type pair<int, pair<string, float>>.
1567
  static ListType BuildList(const Head& matcher, const Tail&... tail) {
1568
    return ListType(matcher, MatcherListTail::BuildList(tail...));
1569
  }
1570
 
1571
  // CreateMatcher<T> creates a Matcher<T> from a given list of matchers (built
1572
  // by BuildList()). CombiningMatcher<T> is used to combine the matchers of the
1573
  // list. CombiningMatcher<T> must implement MatcherInterface<T> and have a
1574
  // constructor taking two Matcher<T>s as input.
1575
  template <typename T, template <typename /* T */> class CombiningMatcher>
1576
  static Matcher<T> CreateMatcher(const ListType& matchers) {
1577
    return Matcher<T>(new CombiningMatcher<T>(
1578
        SafeMatcherCast<T>(matchers.first),
1579
        MatcherListTail::template CreateMatcher<T, CombiningMatcher>(
1580
            matchers.second)));
1581
  }
1582
};
1583
 
1584
// The following defines the base case for the recursive definition of
1585
// MatcherList.
1586
template <typename Matcher1, typename Matcher2>
1587
struct MatcherList<2, Matcher1, Matcher2> {
1588
  typedef ::std::pair<Matcher1, Matcher2> ListType;
1589
 
1590
  static ListType BuildList(const Matcher1& matcher1,
1591
                            const Matcher2& matcher2) {
1592
    return ::std::pair<Matcher1, Matcher2>(matcher1, matcher2);
1593
  }
1594
 
1595
  template <typename T, template <typename /* T */> class CombiningMatcher>
1596
  static Matcher<T> CreateMatcher(const ListType& matchers) {
1597
    return Matcher<T>(new CombiningMatcher<T>(
1598
        SafeMatcherCast<T>(matchers.first),
1599
        SafeMatcherCast<T>(matchers.second)));
1600
  }
1601
};
1602
 
1603
// VariadicMatcher is used for the variadic implementation of
1604
// AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...).
1605
// CombiningMatcher<T> is used to recursively combine the provided matchers
1606
// (of type Args...).
1607
template <template <typename T> class CombiningMatcher, typename... Args>
1608
class VariadicMatcher {
1609
 public:
1610
  VariadicMatcher(const Args&... matchers)  // NOLINT
1611
      : matchers_(MatcherListType::BuildList(matchers...)) {}
1612
 
1613
  // This template type conversion operator allows an
1614
  // VariadicMatcher<Matcher1, Matcher2...> object to match any type that
1615
  // all of the provided matchers (Matcher1, Matcher2, ...) can match.
1616
  template <typename T>
1617
  operator Matcher<T>() const {
1618
    return MatcherListType::template CreateMatcher<T, CombiningMatcher>(
1619
        matchers_);
1620
  }
1621
 
1622
 private:
1623
  typedef MatcherList<sizeof...(Args), Args...> MatcherListType;
1624
 
1625
  const typename MatcherListType::ListType matchers_;
1626
 
1627
  GTEST_DISALLOW_ASSIGN_(VariadicMatcher);
1628
};
1629
 
1630
template <typename... Args>
1631
using AllOfMatcher = VariadicMatcher<BothOfMatcherImpl, Args...>;
1632
 
1633
#endif  // GTEST_LANG_CXX11
1634
 
1635
// Used for implementing the AllOf(m_1, ..., m_n) matcher, which
1636
// matches a value that matches all of the matchers m_1, ..., and m_n.
1637
template <typename Matcher1, typename Matcher2>
1638
class BothOfMatcher {
1639
 public:
1640
  BothOfMatcher(Matcher1 matcher1, Matcher2 matcher2)
1641
      : matcher1_(matcher1), matcher2_(matcher2) {}
1642
 
1643
  // This template type conversion operator allows a
1644
  // BothOfMatcher<Matcher1, Matcher2> object to match any type that
1645
  // both Matcher1 and Matcher2 can match.
1646
  template <typename T>
1647
  operator Matcher<T>() const {
1648
    return Matcher<T>(new BothOfMatcherImpl<T>(SafeMatcherCast<T>(matcher1_),
1649
                                               SafeMatcherCast<T>(matcher2_)));
1650
  }
1651
 
1652
 private:
1653
  Matcher1 matcher1_;
1654
  Matcher2 matcher2_;
1655
 
1656
  GTEST_DISALLOW_ASSIGN_(BothOfMatcher);
1657
};
1658
 
1659
// Implements the AnyOf(m1, m2) matcher for a particular argument type
1660
// T.  We do not nest it inside the AnyOfMatcher class template, as
1661
// that will prevent different instantiations of AnyOfMatcher from
1662
// sharing the same EitherOfMatcherImpl<T> class.
1663
template <typename T>
1664
class EitherOfMatcherImpl : public MatcherInterface<T> {
1665
 public:
1666
  EitherOfMatcherImpl(const Matcher<T>& matcher1, const Matcher<T>& matcher2)
1667
      : matcher1_(matcher1), matcher2_(matcher2) {}
1668
 
1669
  virtual void DescribeTo(::std::ostream* os) const {
1670
    *os << "(";
1671
    matcher1_.DescribeTo(os);
1672
    *os << ") or (";
1673
    matcher2_.DescribeTo(os);
1674
    *os << ")";
1675
  }
1676
 
1677
  virtual void DescribeNegationTo(::std::ostream* os) const {
1678
    *os << "(";
1679
    matcher1_.DescribeNegationTo(os);
1680
    *os << ") and (";
1681
    matcher2_.DescribeNegationTo(os);
1682
    *os << ")";
1683
  }
1684
 
1685
  virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
1686
    // If either matcher1_ or matcher2_ matches x, we just need to
1687
    // explain why *one* of them matches.
1688
    StringMatchResultListener listener1;
1689
    if (matcher1_.MatchAndExplain(x, &listener1)) {
1690
      *listener << listener1.str();
1691
      return true;
1692
    }
1693
 
1694
    StringMatchResultListener listener2;
1695
    if (matcher2_.MatchAndExplain(x, &listener2)) {
1696
      *listener << listener2.str();
1697
      return true;
1698
    }
1699
 
1700
    // Otherwise we need to explain why *both* of them fail.
1701
    const internal::string s1 = listener1.str();
1702
    const internal::string s2 = listener2.str();
1703
 
1704
    if (s1 == "") {
1705
      *listener << s2;
1706
    } else {
1707
      *listener << s1;
1708
      if (s2 != "") {
1709
        *listener << ", and " << s2;
1710
      }
1711
    }
1712
    return false;
1713
  }
1714
 
1715
 private:
1716
  const Matcher<T> matcher1_;
1717
  const Matcher<T> matcher2_;
1718
 
1719
  GTEST_DISALLOW_ASSIGN_(EitherOfMatcherImpl);
1720
};
1721
 
1722
#if GTEST_LANG_CXX11
1723
// AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...).
1724
template <typename... Args>
1725
using AnyOfMatcher = VariadicMatcher<EitherOfMatcherImpl, Args...>;
1726
 
1727
#endif  // GTEST_LANG_CXX11
1728
 
1729
// Used for implementing the AnyOf(m_1, ..., m_n) matcher, which
1730
// matches a value that matches at least one of the matchers m_1, ...,
1731
// and m_n.
1732
template <typename Matcher1, typename Matcher2>
1733
class EitherOfMatcher {
1734
 public:
1735
  EitherOfMatcher(Matcher1 matcher1, Matcher2 matcher2)
1736
      : matcher1_(matcher1), matcher2_(matcher2) {}
1737
 
1738
  // This template type conversion operator allows a
1739
  // EitherOfMatcher<Matcher1, Matcher2> object to match any type that
1740
  // both Matcher1 and Matcher2 can match.
1741
  template <typename T>
1742
  operator Matcher<T>() const {
1743
    return Matcher<T>(new EitherOfMatcherImpl<T>(
1744
        SafeMatcherCast<T>(matcher1_), SafeMatcherCast<T>(matcher2_)));
1745
  }
1746
 
1747
 private:
1748
  Matcher1 matcher1_;
1749
  Matcher2 matcher2_;
1750
 
1751
  GTEST_DISALLOW_ASSIGN_(EitherOfMatcher);
1752
};
1753
 
1754
// Used for implementing Truly(pred), which turns a predicate into a
1755
// matcher.
1756
template <typename Predicate>
1757
class TrulyMatcher {
1758
 public:
1759
  explicit TrulyMatcher(Predicate pred) : predicate_(pred) {}
1760
 
1761
  // This method template allows Truly(pred) to be used as a matcher
1762
  // for type T where T is the argument type of predicate 'pred'.  The
1763
  // argument is passed by reference as the predicate may be
1764
  // interested in the address of the argument.
1765
  template <typename T>
1766
  bool MatchAndExplain(T& x,  // NOLINT
1767
                       MatchResultListener* /* listener */) const {
1768
    // Without the if-statement, MSVC sometimes warns about converting
1769
    // a value to bool (warning 4800).
1770
    //
1771
    // We cannot write 'return !!predicate_(x);' as that doesn't work
1772
    // when predicate_(x) returns a class convertible to bool but
1773
    // having no operator!().
1774
    if (predicate_(x))
1775
      return true;
1776
    return false;
1777
  }
1778
 
1779
  void DescribeTo(::std::ostream* os) const {
1780
    *os << "satisfies the given predicate";
1781
  }
1782
 
1783
  void DescribeNegationTo(::std::ostream* os) const {
1784
    *os << "doesn't satisfy the given predicate";
1785
  }
1786
 
1787
 private:
1788
  Predicate predicate_;
1789
 
1790
  GTEST_DISALLOW_ASSIGN_(TrulyMatcher);
1791
};
1792
 
1793
// Used for implementing Matches(matcher), which turns a matcher into
1794
// a predicate.
1795
template <typename M>
1796
class MatcherAsPredicate {
1797
 public:
1798
  explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {}
1799
 
1800
  // This template operator() allows Matches(m) to be used as a
1801
  // predicate on type T where m is a matcher on type T.
1802
  //
1803
  // The argument x is passed by reference instead of by value, as
1804
  // some matcher may be interested in its address (e.g. as in
1805
  // Matches(Ref(n))(x)).
1806
  template <typename T>
1807
  bool operator()(const T& x) const {
1808
    // We let matcher_ commit to a particular type here instead of
1809
    // when the MatcherAsPredicate object was constructed.  This
1810
    // allows us to write Matches(m) where m is a polymorphic matcher
1811
    // (e.g. Eq(5)).
1812
    //
1813
    // If we write Matcher<T>(matcher_).Matches(x) here, it won't
1814
    // compile when matcher_ has type Matcher<const T&>; if we write
1815
    // Matcher<const T&>(matcher_).Matches(x) here, it won't compile
1816
    // when matcher_ has type Matcher<T>; if we just write
1817
    // matcher_.Matches(x), it won't compile when matcher_ is
1818
    // polymorphic, e.g. Eq(5).
1819
    //
1820
    // MatcherCast<const T&>() is necessary for making the code work
1821
    // in all of the above situations.
1822
    return MatcherCast<const T&>(matcher_).Matches(x);
1823
  }
1824
 
1825
 private:
1826
  M matcher_;
1827
 
1828
  GTEST_DISALLOW_ASSIGN_(MatcherAsPredicate);
1829
};
1830
 
1831
// For implementing ASSERT_THAT() and EXPECT_THAT().  The template
1832
// argument M must be a type that can be converted to a matcher.
1833
template <typename M>
1834
class PredicateFormatterFromMatcher {
1835
 public:
1836
  explicit PredicateFormatterFromMatcher(M m) : matcher_(internal::move(m)) {}
1837
 
1838
  // This template () operator allows a PredicateFormatterFromMatcher
1839
  // object to act as a predicate-formatter suitable for using with
1840
  // Google Test's EXPECT_PRED_FORMAT1() macro.
1841
  template <typename T>
1842
  AssertionResult operator()(const char* value_text, const T& x) const {
1843
    // We convert matcher_ to a Matcher<const T&> *now* instead of
1844
    // when the PredicateFormatterFromMatcher object was constructed,
1845
    // as matcher_ may be polymorphic (e.g. NotNull()) and we won't
1846
    // know which type to instantiate it to until we actually see the
1847
    // type of x here.
1848
    //
1849
    // We write SafeMatcherCast<const T&>(matcher_) instead of
1850
    // Matcher<const T&>(matcher_), as the latter won't compile when
1851
    // matcher_ has type Matcher<T> (e.g. An<int>()).
1852
    // We don't write MatcherCast<const T&> either, as that allows
1853
    // potentially unsafe downcasting of the matcher argument.
1854
    const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_);
1855
    StringMatchResultListener listener;
1856
    if (MatchPrintAndExplain(x, matcher, &listener))
1857
      return AssertionSuccess();
1858
 
1859
    ::std::stringstream ss;
1860
    ss << "Value of: " << value_text << "\n"
1861
       << "Expected: ";
1862
    matcher.DescribeTo(&ss);
1863
    ss << "\n  Actual: " << listener.str();
1864
    return AssertionFailure() << ss.str();
1865
  }
1866
 
1867
 private:
1868
  const M matcher_;
1869
 
1870
  GTEST_DISALLOW_ASSIGN_(PredicateFormatterFromMatcher);
1871
};
1872
 
1873
// A helper function for converting a matcher to a predicate-formatter
1874
// without the user needing to explicitly write the type.  This is
1875
// used for implementing ASSERT_THAT() and EXPECT_THAT().
1876
// Implementation detail: 'matcher' is received by-value to force decaying.
1877
template <typename M>
1878
inline PredicateFormatterFromMatcher<M>
1879
MakePredicateFormatterFromMatcher(M matcher) {
1880
  return PredicateFormatterFromMatcher<M>(internal::move(matcher));
1881
}
1882
 
1883
// Implements the polymorphic floating point equality matcher, which matches
1884
// two float values using ULP-based approximation or, optionally, a
1885
// user-specified epsilon.  The template is meant to be instantiated with
1886
// FloatType being either float or double.
1887
template <typename FloatType>
1888
class FloatingEqMatcher {
1889
 public:
1890
  // Constructor for FloatingEqMatcher.
1891
  // The matcher's input will be compared with expected.  The matcher treats two
1892
  // NANs as equal if nan_eq_nan is true.  Otherwise, under IEEE standards,
1893
  // equality comparisons between NANs will always return false.  We specify a
1894
  // negative max_abs_error_ term to indicate that ULP-based approximation will
1895
  // be used for comparison.
1896
  FloatingEqMatcher(FloatType expected, bool nan_eq_nan) :
1897
    expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) {
1898
  }
1899
 
1900
  // Constructor that supports a user-specified max_abs_error that will be used
1901
  // for comparison instead of ULP-based approximation.  The max absolute
1902
  // should be non-negative.
1903
  FloatingEqMatcher(FloatType expected, bool nan_eq_nan,
1904
                    FloatType max_abs_error)
1905
      : expected_(expected),
1906
        nan_eq_nan_(nan_eq_nan),
1907
        max_abs_error_(max_abs_error) {
1908
    GTEST_CHECK_(max_abs_error >= 0)
1909
        << ", where max_abs_error is" << max_abs_error;
1910
  }
1911
 
1912
  // Implements floating point equality matcher as a Matcher<T>.
1913
  template <typename T>
1914
  class Impl : public MatcherInterface<T> {
1915
   public:
1916
    Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error)
1917
        : expected_(expected),
1918
          nan_eq_nan_(nan_eq_nan),
1919
          max_abs_error_(max_abs_error) {}
1920
 
1921
    virtual bool MatchAndExplain(T value,
1922
                                 MatchResultListener* listener) const {
1923
      const FloatingPoint<FloatType> actual(value), expected(expected_);
1924
 
1925
      // Compares NaNs first, if nan_eq_nan_ is true.
1926
      if (actual.is_nan() || expected.is_nan()) {
1927
        if (actual.is_nan() && expected.is_nan()) {
1928
          return nan_eq_nan_;
1929
        }
1930
        // One is nan; the other is not nan.
1931
        return false;
1932
      }
1933
      if (HasMaxAbsError()) {
1934
        // We perform an equality check so that inf will match inf, regardless
1935
        // of error bounds.  If the result of value - expected_ would result in
1936
        // overflow or if either value is inf, the default result is infinity,
1937
        // which should only match if max_abs_error_ is also infinity.
1938
        if (value == expected_) {
1939
          return true;
1940
        }
1941
 
1942
        const FloatType diff = value - expected_;
1943
        if (fabs(diff) <= max_abs_error_) {
1944
          return true;
1945
        }
1946
 
1947
        if (listener->IsInterested()) {
1948
          *listener << "which is " << diff << " from " << expected_;
1949
        }
1950
        return false;
1951
      } else {
1952
        return actual.AlmostEquals(expected);
1953
      }
1954
    }
1955
 
1956
    virtual void DescribeTo(::std::ostream* os) const {
1957
      // os->precision() returns the previously set precision, which we
1958
      // store to restore the ostream to its original configuration
1959
      // after outputting.
1960
      const ::std::streamsize old_precision = os->precision(
1961
          ::std::numeric_limits<FloatType>::digits10 + 2);
1962
      if (FloatingPoint<FloatType>(expected_).is_nan()) {
1963
        if (nan_eq_nan_) {
1964
          *os << "is NaN";
1965
        } else {
1966
          *os << "never matches";
1967
        }
1968
      } else {
1969
        *os << "is approximately " << expected_;
1970
        if (HasMaxAbsError()) {
1971
          *os << " (absolute error <= " << max_abs_error_ << ")";
1972
        }
1973
      }
1974
      os->precision(old_precision);
1975
    }
1976
 
1977
    virtual void DescribeNegationTo(::std::ostream* os) const {
1978
      // As before, get original precision.
1979
      const ::std::streamsize old_precision = os->precision(
1980
          ::std::numeric_limits<FloatType>::digits10 + 2);
1981
      if (FloatingPoint<FloatType>(expected_).is_nan()) {
1982
        if (nan_eq_nan_) {
1983
          *os << "isn't NaN";
1984
        } else {
1985
          *os << "is anything";
1986
        }
1987
      } else {
1988
        *os << "isn't approximately " << expected_;
1989
        if (HasMaxAbsError()) {
1990
          *os << " (absolute error > " << max_abs_error_ << ")";
1991
        }
1992
      }
1993
      // Restore original precision.
1994
      os->precision(old_precision);
1995
    }
1996
 
1997
   private:
1998
    bool HasMaxAbsError() const {
1999
      return max_abs_error_ >= 0;
2000
    }
2001
 
2002
    const FloatType expected_;
2003
    const bool nan_eq_nan_;
2004
    // max_abs_error will be used for value comparison when >= 0.
2005
    const FloatType max_abs_error_;
2006
 
2007
    GTEST_DISALLOW_ASSIGN_(Impl);
2008
  };
2009
 
2010
  // The following 3 type conversion operators allow FloatEq(expected) and
2011
  // NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a
2012
  // Matcher<const float&>, or a Matcher<float&>, but nothing else.
2013
  // (While Google's C++ coding style doesn't allow arguments passed
2014
  // by non-const reference, we may see them in code not conforming to
2015
  // the style.  Therefore Google Mock needs to support them.)
2016
  operator Matcher<FloatType>() const {
2017
    return MakeMatcher(
2018
        new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_));
2019
  }
2020
 
2021
  operator Matcher<const FloatType&>() const {
2022
    return MakeMatcher(
2023
        new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
2024
  }
2025
 
2026
  operator Matcher<FloatType&>() const {
2027
    return MakeMatcher(
2028
        new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
2029
  }
2030
 
2031
 private:
2032
  const FloatType expected_;
2033
  const bool nan_eq_nan_;
2034
  // max_abs_error will be used for value comparison when >= 0.
2035
  const FloatType max_abs_error_;
2036
 
2037
  GTEST_DISALLOW_ASSIGN_(FloatingEqMatcher);
2038
};
2039
 
2040
// Implements the Pointee(m) matcher for matching a pointer whose
2041
// pointee matches matcher m.  The pointer can be either raw or smart.
2042
template <typename InnerMatcher>
2043
class PointeeMatcher {
2044
 public:
2045
  explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
2046
 
2047
  // This type conversion operator template allows Pointee(m) to be
2048
  // used as a matcher for any pointer type whose pointee type is
2049
  // compatible with the inner matcher, where type Pointer can be
2050
  // either a raw pointer or a smart pointer.
2051
  //
2052
  // The reason we do this instead of relying on
2053
  // MakePolymorphicMatcher() is that the latter is not flexible
2054
  // enough for implementing the DescribeTo() method of Pointee().
2055
  template <typename Pointer>
2056
  operator Matcher<Pointer>() const {
2057
    return MakeMatcher(new Impl<Pointer>(matcher_));
2058
  }
2059
 
2060
 private:
2061
  // The monomorphic implementation that works for a particular pointer type.
2062
  template <typename Pointer>
2063
  class Impl : public MatcherInterface<Pointer> {
2064
   public:
2065
    typedef typename PointeeOf<GTEST_REMOVE_CONST_(  // NOLINT
2066
        GTEST_REMOVE_REFERENCE_(Pointer))>::type Pointee;
2067
 
2068
    explicit Impl(const InnerMatcher& matcher)
2069
        : matcher_(MatcherCast<const Pointee&>(matcher)) {}
2070
 
2071
    virtual void DescribeTo(::std::ostream* os) const {
2072
      *os << "points to a value that ";
2073
      matcher_.DescribeTo(os);
2074
    }
2075
 
2076
    virtual void DescribeNegationTo(::std::ostream* os) const {
2077
      *os << "does not point to a value that ";
2078
      matcher_.DescribeTo(os);
2079
    }
2080
 
2081
    virtual bool MatchAndExplain(Pointer pointer,
2082
                                 MatchResultListener* listener) const {
2083
      if (GetRawPointer(pointer) == NULL)
2084
        return false;
2085
 
2086
      *listener << "which points to ";
2087
      return MatchPrintAndExplain(*pointer, matcher_, listener);
2088
    }
2089
 
2090
   private:
2091
    const Matcher<const Pointee&> matcher_;
2092
 
2093
    GTEST_DISALLOW_ASSIGN_(Impl);
2094
  };
2095
 
2096
  const InnerMatcher matcher_;
2097
 
2098
  GTEST_DISALLOW_ASSIGN_(PointeeMatcher);
2099
};
2100
 
2101
// Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or
2102
// reference that matches inner_matcher when dynamic_cast<T> is applied.
2103
// The result of dynamic_cast<To> is forwarded to the inner matcher.
2104
// If To is a pointer and the cast fails, the inner matcher will receive NULL.
2105
// If To is a reference and the cast fails, this matcher returns false
2106
// immediately.
2107
template <typename To>
2108
class WhenDynamicCastToMatcherBase {
2109
 public:
2110
  explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher)
2111
      : matcher_(matcher) {}
2112
 
2113
  void DescribeTo(::std::ostream* os) const {
2114
    GetCastTypeDescription(os);
2115
    matcher_.DescribeTo(os);
2116
  }
2117
 
2118
  void DescribeNegationTo(::std::ostream* os) const {
2119
    GetCastTypeDescription(os);
2120
    matcher_.DescribeNegationTo(os);
2121
  }
2122
 
2123
 protected:
2124
  const Matcher<To> matcher_;
2125
 
2126
  static string GetToName() {
2127
#if GTEST_HAS_RTTI
2128
    return GetTypeName<To>();
2129
#else  // GTEST_HAS_RTTI
2130
    return "the target type";
2131
#endif  // GTEST_HAS_RTTI
2132
  }
2133
 
2134
 private:
2135
  static void GetCastTypeDescription(::std::ostream* os) {
2136
    *os << "when dynamic_cast to " << GetToName() << ", ";
2137
  }
2138
 
2139
  GTEST_DISALLOW_ASSIGN_(WhenDynamicCastToMatcherBase);
2140
};
2141
 
2142
// Primary template.
2143
// To is a pointer. Cast and forward the result.
2144
template <typename To>
2145
class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> {
2146
 public:
2147
  explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher)
2148
      : WhenDynamicCastToMatcherBase<To>(matcher) {}
2149
 
2150
  template <typename From>
2151
  bool MatchAndExplain(From from, MatchResultListener* listener) const {
2152
    // TODO(sbenza): Add more detail on failures. ie did the dyn_cast fail?
2153
    To to = dynamic_cast<To>(from);
2154
    return MatchPrintAndExplain(to, this->matcher_, listener);
2155
  }
2156
};
2157
 
2158
// Specialize for references.
2159
// In this case we return false if the dynamic_cast fails.
2160
template <typename To>
2161
class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> {
2162
 public:
2163
  explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher)
2164
      : WhenDynamicCastToMatcherBase<To&>(matcher) {}
2165
 
2166
  template <typename From>
2167
  bool MatchAndExplain(From& from, MatchResultListener* listener) const {
2168
    // We don't want an std::bad_cast here, so do the cast with pointers.
2169
    To* to = dynamic_cast<To*>(&from);
2170
    if (to == NULL) {
2171
      *listener << "which cannot be dynamic_cast to " << this->GetToName();
2172
      return false;
2173
    }
2174
    return MatchPrintAndExplain(*to, this->matcher_, listener);
2175
  }
2176
};
2177
 
2178
// Implements the Field() matcher for matching a field (i.e. member
2179
// variable) of an object.
2180
template <typename Class, typename FieldType>
2181
class FieldMatcher {
2182
 public:
2183
  FieldMatcher(FieldType Class::*field,
2184
               const Matcher<const FieldType&>& matcher)
2185
      : field_(field), matcher_(matcher) {}
2186
 
2187
  void DescribeTo(::std::ostream* os) const {
2188
    *os << "is an object whose given field ";
2189
    matcher_.DescribeTo(os);
2190
  }
2191
 
2192
  void DescribeNegationTo(::std::ostream* os) const {
2193
    *os << "is an object whose given field ";
2194
    matcher_.DescribeNegationTo(os);
2195
  }
2196
 
2197
  template <typename T>
2198
  bool MatchAndExplain(const T& value, MatchResultListener* listener) const {
2199
    return MatchAndExplainImpl(
2200
        typename ::testing::internal::
2201
            is_pointer<GTEST_REMOVE_CONST_(T)>::type(),
2202
        value, listener);
2203
  }
2204
 
2205
 private:
2206
  // The first argument of MatchAndExplainImpl() is needed to help
2207
  // Symbian's C++ compiler choose which overload to use.  Its type is
2208
  // true_type iff the Field() matcher is used to match a pointer.
2209
  bool MatchAndExplainImpl(false_type /* is_not_pointer */, const Class& obj,
2210
                           MatchResultListener* listener) const {
2211
    *listener << "whose given field is ";
2212
    return MatchPrintAndExplain(obj.*field_, matcher_, listener);
2213
  }
2214
 
2215
  bool MatchAndExplainImpl(true_type /* is_pointer */, const Class* p,
2216
                           MatchResultListener* listener) const {
2217
    if (p == NULL)
2218
      return false;
2219
 
2220
    *listener << "which points to an object ";
2221
    // Since *p has a field, it must be a class/struct/union type and
2222
    // thus cannot be a pointer.  Therefore we pass false_type() as
2223
    // the first argument.
2224
    return MatchAndExplainImpl(false_type(), *p, listener);
2225
  }
2226
 
2227
  const FieldType Class::*field_;
2228
  const Matcher<const FieldType&> matcher_;
2229
 
2230
  GTEST_DISALLOW_ASSIGN_(FieldMatcher);
2231
};
2232
 
2233
// Implements the Property() matcher for matching a property
2234
// (i.e. return value of a getter method) of an object.
2235
template <typename Class, typename PropertyType>
2236
class PropertyMatcher {
2237
 public:
2238
  // The property may have a reference type, so 'const PropertyType&'
2239
  // may cause double references and fail to compile.  That's why we
2240
  // need GTEST_REFERENCE_TO_CONST, which works regardless of
2241
  // PropertyType being a reference or not.
2242
  typedef GTEST_REFERENCE_TO_CONST_(PropertyType) RefToConstProperty;
2243
 
2244
  PropertyMatcher(PropertyType (Class::*property)() const,
2245
                  const Matcher<RefToConstProperty>& matcher)
2246
      : property_(property), matcher_(matcher) {}
2247
 
2248
  void DescribeTo(::std::ostream* os) const {
2249
    *os << "is an object whose given property ";
2250
    matcher_.DescribeTo(os);
2251
  }
2252
 
2253
  void DescribeNegationTo(::std::ostream* os) const {
2254
    *os << "is an object whose given property ";
2255
    matcher_.DescribeNegationTo(os);
2256
  }
2257
 
2258
  template <typename T>
2259
  bool MatchAndExplain(const T&value, MatchResultListener* listener) const {
2260
    return MatchAndExplainImpl(
2261
        typename ::testing::internal::
2262
            is_pointer<GTEST_REMOVE_CONST_(T)>::type(),
2263
        value, listener);
2264
  }
2265
 
2266
 private:
2267
  // The first argument of MatchAndExplainImpl() is needed to help
2268
  // Symbian's C++ compiler choose which overload to use.  Its type is
2269
  // true_type iff the Property() matcher is used to match a pointer.
2270
  bool MatchAndExplainImpl(false_type /* is_not_pointer */, const Class& obj,
2271
                           MatchResultListener* listener) const {
2272
    *listener << "whose given property is ";
2273
    // Cannot pass the return value (for example, int) to MatchPrintAndExplain,
2274
    // which takes a non-const reference as argument.
2275
#if defined(_PREFAST_ ) && _MSC_VER == 1800
2276
    // Workaround bug in VC++ 2013's /analyze parser.
2277
    // https://connect.microsoft.com/VisualStudio/feedback/details/1106363/internal-compiler-error-with-analyze-due-to-failure-to-infer-move
2278
    posix::Abort();  // To make sure it is never run.
2279
    return false;
2280
#else
2281
    RefToConstProperty result = (obj.*property_)();
2282
    return MatchPrintAndExplain(result, matcher_, listener);
2283
#endif
2284
  }
2285
 
2286
  bool MatchAndExplainImpl(true_type /* is_pointer */, const Class* p,
2287
                           MatchResultListener* listener) const {
2288
    if (p == NULL)
2289
      return false;
2290
 
2291
    *listener << "which points to an object ";
2292
    // Since *p has a property method, it must be a class/struct/union
2293
    // type and thus cannot be a pointer.  Therefore we pass
2294
    // false_type() as the first argument.
2295
    return MatchAndExplainImpl(false_type(), *p, listener);
2296
  }
2297
 
2298
  PropertyType (Class::*property_)() const;
2299
  const Matcher<RefToConstProperty> matcher_;
2300
 
2301
  GTEST_DISALLOW_ASSIGN_(PropertyMatcher);
2302
};
2303
 
2304
// Type traits specifying various features of different functors for ResultOf.
2305
// The default template specifies features for functor objects.
2306
// Functor classes have to typedef argument_type and result_type
2307
// to be compatible with ResultOf.
2308
template <typename Functor>
2309
struct CallableTraits {
2310
  typedef typename Functor::result_type ResultType;
2311
  typedef Functor StorageType;
2312
 
2313
  static void CheckIsValid(Functor /* functor */) {}
2314
  template <typename T>
2315
  static ResultType Invoke(Functor f, T arg) { return f(arg); }
2316
};
2317
 
2318
// Specialization for function pointers.
2319
template <typename ArgType, typename ResType>
2320
struct CallableTraits<ResType(*)(ArgType)> {
2321
  typedef ResType ResultType;
2322
  typedef ResType(*StorageType)(ArgType);
2323
 
2324
  static void CheckIsValid(ResType(*f)(ArgType)) {
2325
    GTEST_CHECK_(f != NULL)
2326
        << "NULL function pointer is passed into ResultOf().";
2327
  }
2328
  template <typename T>
2329
  static ResType Invoke(ResType(*f)(ArgType), T arg) {
2330
    return (*f)(arg);
2331
  }
2332
};
2333
 
2334
// Implements the ResultOf() matcher for matching a return value of a
2335
// unary function of an object.
2336
template <typename Callable>
2337
class ResultOfMatcher {
2338
 public:
2339
  typedef typename CallableTraits<Callable>::ResultType ResultType;
2340
 
2341
  ResultOfMatcher(Callable callable, const Matcher<ResultType>& matcher)
2342
      : callable_(callable), matcher_(matcher) {
2343
    CallableTraits<Callable>::CheckIsValid(callable_);
2344
  }
2345
 
2346
  template <typename T>
2347
  operator Matcher<T>() const {
2348
    return Matcher<T>(new Impl<T>(callable_, matcher_));
2349
  }
2350
 
2351
 private:
2352
  typedef typename CallableTraits<Callable>::StorageType CallableStorageType;
2353
 
2354
  template <typename T>
2355
  class Impl : public MatcherInterface<T> {
2356
   public:
2357
    Impl(CallableStorageType callable, const Matcher<ResultType>& matcher)
2358
        : callable_(callable), matcher_(matcher) {}
2359
 
2360
    virtual void DescribeTo(::std::ostream* os) const {
2361
      *os << "is mapped by the given callable to a value that ";
2362
      matcher_.DescribeTo(os);
2363
    }
2364
 
2365
    virtual void DescribeNegationTo(::std::ostream* os) const {
2366
      *os << "is mapped by the given callable to a value that ";
2367
      matcher_.DescribeNegationTo(os);
2368
    }
2369
 
2370
    virtual bool MatchAndExplain(T obj, MatchResultListener* listener) const {
2371
      *listener << "which is mapped by the given callable to ";
2372
      // Cannot pass the return value (for example, int) to
2373
      // MatchPrintAndExplain, which takes a non-const reference as argument.
2374
      ResultType result =
2375
          CallableTraits<Callable>::template Invoke<T>(callable_, obj);
2376
      return MatchPrintAndExplain(result, matcher_, listener);
2377
    }
2378
 
2379
   private:
2380
    // Functors often define operator() as non-const method even though
2381
    // they are actualy stateless. But we need to use them even when
2382
    // 'this' is a const pointer. It's the user's responsibility not to
2383
    // use stateful callables with ResultOf(), which does't guarantee
2384
    // how many times the callable will be invoked.
2385
    mutable CallableStorageType callable_;
2386
    const Matcher<ResultType> matcher_;
2387
 
2388
    GTEST_DISALLOW_ASSIGN_(Impl);
2389
  };  // class Impl
2390
 
2391
  const CallableStorageType callable_;
2392
  const Matcher<ResultType> matcher_;
2393
 
2394
  GTEST_DISALLOW_ASSIGN_(ResultOfMatcher);
2395
};
2396
 
2397
// Implements a matcher that checks the size of an STL-style container.
2398
template <typename SizeMatcher>
2399
class SizeIsMatcher {
2400
 public:
2401
  explicit SizeIsMatcher(const SizeMatcher& size_matcher)
2402
       : size_matcher_(size_matcher) {
2403
  }
2404
 
2405
  template <typename Container>
2406
  operator Matcher<Container>() const {
2407
    return MakeMatcher(new Impl<Container>(size_matcher_));
2408
  }
2409
 
2410
  template <typename Container>
2411
  class Impl : public MatcherInterface<Container> {
2412
   public:
2413
    typedef internal::StlContainerView<
2414
         GTEST_REMOVE_REFERENCE_AND_CONST_(Container)> ContainerView;
2415
    typedef typename ContainerView::type::size_type SizeType;
2416
    explicit Impl(const SizeMatcher& size_matcher)
2417
        : size_matcher_(MatcherCast<SizeType>(size_matcher)) {}
2418
 
2419
    virtual void DescribeTo(::std::ostream* os) const {
2420
      *os << "size ";
2421
      size_matcher_.DescribeTo(os);
2422
    }
2423
    virtual void DescribeNegationTo(::std::ostream* os) const {
2424
      *os << "size ";
2425
      size_matcher_.DescribeNegationTo(os);
2426
    }
2427
 
2428
    virtual bool MatchAndExplain(Container container,
2429
                                 MatchResultListener* listener) const {
2430
      SizeType size = container.size();
2431
      StringMatchResultListener size_listener;
2432
      const bool result = size_matcher_.MatchAndExplain(size, &size_listener);
2433
      *listener
2434
          << "whose size " << size << (result ? " matches" : " doesn't match");
2435
      PrintIfNotEmpty(size_listener.str(), listener->stream());
2436
      return result;
2437
    }
2438
 
2439
   private:
2440
    const Matcher<SizeType> size_matcher_;
2441
    GTEST_DISALLOW_ASSIGN_(Impl);
2442
  };
2443
 
2444
 private:
2445
  const SizeMatcher size_matcher_;
2446
  GTEST_DISALLOW_ASSIGN_(SizeIsMatcher);
2447
};
2448
 
2449
// Implements a matcher that checks the begin()..end() distance of an STL-style
2450
// container.
2451
template <typename DistanceMatcher>
2452
class BeginEndDistanceIsMatcher {
2453
 public:
2454
  explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher)
2455
      : distance_matcher_(distance_matcher) {}
2456
 
2457
  template <typename Container>
2458
  operator Matcher<Container>() const {
2459
    return MakeMatcher(new Impl<Container>(distance_matcher_));
2460
  }
2461
 
2462
  template <typename Container>
2463
  class Impl : public MatcherInterface<Container> {
2464
   public:
2465
    typedef internal::StlContainerView<
2466
        GTEST_REMOVE_REFERENCE_AND_CONST_(Container)> ContainerView;
2467
    typedef typename std::iterator_traits<
2468
        typename ContainerView::type::const_iterator>::difference_type
2469
        DistanceType;
2470
    explicit Impl(const DistanceMatcher& distance_matcher)
2471
        : distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {}
2472
 
2473
    virtual void DescribeTo(::std::ostream* os) const {
2474
      *os << "distance between begin() and end() ";
2475
      distance_matcher_.DescribeTo(os);
2476
    }
2477
    virtual void DescribeNegationTo(::std::ostream* os) const {
2478
      *os << "distance between begin() and end() ";
2479
      distance_matcher_.DescribeNegationTo(os);
2480
    }
2481
 
2482
    virtual bool MatchAndExplain(Container container,
2483
                                 MatchResultListener* listener) const {
2484
#if GTEST_HAS_STD_BEGIN_AND_END_
2485
      using std::begin;
2486
      using std::end;
2487
      DistanceType distance = std::distance(begin(container), end(container));
2488
#else
2489
      DistanceType distance = std::distance(container.begin(), container.end());
2490
#endif
2491
      StringMatchResultListener distance_listener;
2492
      const bool result =
2493
          distance_matcher_.MatchAndExplain(distance, &distance_listener);
2494
      *listener << "whose distance between begin() and end() " << distance
2495
                << (result ? " matches" : " doesn't match");
2496
      PrintIfNotEmpty(distance_listener.str(), listener->stream());
2497
      return result;
2498
    }
2499
 
2500
   private:
2501
    const Matcher<DistanceType> distance_matcher_;
2502
    GTEST_DISALLOW_ASSIGN_(Impl);
2503
  };
2504
 
2505
 private:
2506
  const DistanceMatcher distance_matcher_;
2507
  GTEST_DISALLOW_ASSIGN_(BeginEndDistanceIsMatcher);
2508
};
2509
 
2510
// Implements an equality matcher for any STL-style container whose elements
2511
// support ==. This matcher is like Eq(), but its failure explanations provide
2512
// more detailed information that is useful when the container is used as a set.
2513
// The failure message reports elements that are in one of the operands but not
2514
// the other. The failure messages do not report duplicate or out-of-order
2515
// elements in the containers (which don't properly matter to sets, but can
2516
// occur if the containers are vectors or lists, for example).
2517
//
2518
// Uses the container's const_iterator, value_type, operator ==,
2519
// begin(), and end().
2520
template <typename Container>
2521
class ContainerEqMatcher {
2522
 public:
2523
  typedef internal::StlContainerView<Container> View;
2524
  typedef typename View::type StlContainer;
2525
  typedef typename View::const_reference StlContainerReference;
2526
 
2527
  // We make a copy of expected in case the elements in it are modified
2528
  // after this matcher is created.
2529
  explicit ContainerEqMatcher(const Container& expected)
2530
      : expected_(View::Copy(expected)) {
2531
    // Makes sure the user doesn't instantiate this class template
2532
    // with a const or reference type.
2533
    (void)testing::StaticAssertTypeEq<Container,
2534
        GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>();
2535
  }
2536
 
2537
  void DescribeTo(::std::ostream* os) const {
2538
    *os << "equals ";
2539
    UniversalPrint(expected_, os);
2540
  }
2541
  void DescribeNegationTo(::std::ostream* os) const {
2542
    *os << "does not equal ";
2543
    UniversalPrint(expected_, os);
2544
  }
2545
 
2546
  template <typename LhsContainer>
2547
  bool MatchAndExplain(const LhsContainer& lhs,
2548
                       MatchResultListener* listener) const {
2549
    // GTEST_REMOVE_CONST_() is needed to work around an MSVC 8.0 bug
2550
    // that causes LhsContainer to be a const type sometimes.
2551
    typedef internal::StlContainerView<GTEST_REMOVE_CONST_(LhsContainer)>
2552
        LhsView;
2553
    typedef typename LhsView::type LhsStlContainer;
2554
    StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2555
    if (lhs_stl_container == expected_)
2556
      return true;
2557
 
2558
    ::std::ostream* const os = listener->stream();
2559
    if (os != NULL) {
2560
      // Something is different. Check for extra values first.
2561
      bool printed_header = false;
2562
      for (typename LhsStlContainer::const_iterator it =
2563
               lhs_stl_container.begin();
2564
           it != lhs_stl_container.end(); ++it) {
2565
        if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) ==
2566
            expected_.end()) {
2567
          if (printed_header) {
2568
            *os << ", ";
2569
          } else {
2570
            *os << "which has these unexpected elements: ";
2571
            printed_header = true;
2572
          }
2573
          UniversalPrint(*it, os);
2574
        }
2575
      }
2576
 
2577
      // Now check for missing values.
2578
      bool printed_header2 = false;
2579
      for (typename StlContainer::const_iterator it = expected_.begin();
2580
           it != expected_.end(); ++it) {
2581
        if (internal::ArrayAwareFind(
2582
                lhs_stl_container.begin(), lhs_stl_container.end(), *it) ==
2583
            lhs_stl_container.end()) {
2584
          if (printed_header2) {
2585
            *os << ", ";
2586
          } else {
2587
            *os << (printed_header ? ",\nand" : "which")
2588
                << " doesn't have these expected elements: ";
2589
            printed_header2 = true;
2590
          }
2591
          UniversalPrint(*it, os);
2592
        }
2593
      }
2594
    }
2595
 
2596
    return false;
2597
  }
2598
 
2599
 private:
2600
  const StlContainer expected_;
2601
 
2602
  GTEST_DISALLOW_ASSIGN_(ContainerEqMatcher);
2603
};
2604
 
2605
// A comparator functor that uses the < operator to compare two values.
2606
struct LessComparator {
2607
  template <typename T, typename U>
2608
  bool operator()(const T& lhs, const U& rhs) const { return lhs < rhs; }
2609
};
2610
 
2611
// Implements WhenSortedBy(comparator, container_matcher).
2612
template <typename Comparator, typename ContainerMatcher>
2613
class WhenSortedByMatcher {
2614
 public:
2615
  WhenSortedByMatcher(const Comparator& comparator,
2616
                      const ContainerMatcher& matcher)
2617
      : comparator_(comparator), matcher_(matcher) {}
2618
 
2619
  template <typename LhsContainer>
2620
  operator Matcher<LhsContainer>() const {
2621
    return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_));
2622
  }
2623
 
2624
  template <typename LhsContainer>
2625
  class Impl : public MatcherInterface<LhsContainer> {
2626
   public:
2627
    typedef internal::StlContainerView<
2628
         GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView;
2629
    typedef typename LhsView::type LhsStlContainer;
2630
    typedef typename LhsView::const_reference LhsStlContainerReference;
2631
    // Transforms std::pair<const Key, Value> into std::pair<Key, Value>
2632
    // so that we can match associative containers.
2633
    typedef typename RemoveConstFromKey<
2634
        typename LhsStlContainer::value_type>::type LhsValue;
2635
 
2636
    Impl(const Comparator& comparator, const ContainerMatcher& matcher)
2637
        : comparator_(comparator), matcher_(matcher) {}
2638
 
2639
    virtual void DescribeTo(::std::ostream* os) const {
2640
      *os << "(when sorted) ";
2641
      matcher_.DescribeTo(os);
2642
    }
2643
 
2644
    virtual void DescribeNegationTo(::std::ostream* os) const {
2645
      *os << "(when sorted) ";
2646
      matcher_.DescribeNegationTo(os);
2647
    }
2648
 
2649
    virtual bool MatchAndExplain(LhsContainer lhs,
2650
                                 MatchResultListener* listener) const {
2651
      LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2652
      ::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(),
2653
                                               lhs_stl_container.end());
2654
      ::std::sort(
2655
           sorted_container.begin(), sorted_container.end(), comparator_);
2656
 
2657
      if (!listener->IsInterested()) {
2658
        // If the listener is not interested, we do not need to
2659
        // construct the inner explanation.
2660
        return matcher_.Matches(sorted_container);
2661
      }
2662
 
2663
      *listener << "which is ";
2664
      UniversalPrint(sorted_container, listener->stream());
2665
      *listener << " when sorted";
2666
 
2667
      StringMatchResultListener inner_listener;
2668
      const bool match = matcher_.MatchAndExplain(sorted_container,
2669
                                                  &inner_listener);
2670
      PrintIfNotEmpty(inner_listener.str(), listener->stream());
2671
      return match;
2672
    }
2673
 
2674
   private:
2675
    const Comparator comparator_;
2676
    const Matcher<const ::std::vector<LhsValue>&> matcher_;
2677
 
2678
    GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
2679
  };
2680
 
2681
 private:
2682
  const Comparator comparator_;
2683
  const ContainerMatcher matcher_;
2684
 
2685
  GTEST_DISALLOW_ASSIGN_(WhenSortedByMatcher);
2686
};
2687
 
2688
// Implements Pointwise(tuple_matcher, rhs_container).  tuple_matcher
2689
// must be able to be safely cast to Matcher<tuple<const T1&, const
2690
// T2&> >, where T1 and T2 are the types of elements in the LHS
2691
// container and the RHS container respectively.
2692
template <typename TupleMatcher, typename RhsContainer>
2693
class PointwiseMatcher {
2694
 public:
2695
  typedef internal::StlContainerView<RhsContainer> RhsView;
2696
  typedef typename RhsView::type RhsStlContainer;
2697
  typedef typename RhsStlContainer::value_type RhsValue;
2698
 
2699
  // Like ContainerEq, we make a copy of rhs in case the elements in
2700
  // it are modified after this matcher is created.
2701
  PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs)
2702
      : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {
2703
    // Makes sure the user doesn't instantiate this class template
2704
    // with a const or reference type.
2705
    (void)testing::StaticAssertTypeEq<RhsContainer,
2706
        GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>();
2707
  }
2708
 
2709
  template <typename LhsContainer>
2710
  operator Matcher<LhsContainer>() const {
2711
    return MakeMatcher(new Impl<LhsContainer>(tuple_matcher_, rhs_));
2712
  }
2713
 
2714
  template <typename LhsContainer>
2715
  class Impl : public MatcherInterface<LhsContainer> {
2716
   public:
2717
    typedef internal::StlContainerView<
2718
         GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView;
2719
    typedef typename LhsView::type LhsStlContainer;
2720
    typedef typename LhsView::const_reference LhsStlContainerReference;
2721
    typedef typename LhsStlContainer::value_type LhsValue;
2722
    // We pass the LHS value and the RHS value to the inner matcher by
2723
    // reference, as they may be expensive to copy.  We must use tuple
2724
    // instead of pair here, as a pair cannot hold references (C++ 98,
2725
    // 20.2.2 [lib.pairs]).
2726
    typedef ::testing::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg;
2727
 
2728
    Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs)
2729
        // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher.
2730
        : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)),
2731
          rhs_(rhs) {}
2732
 
2733
    virtual void DescribeTo(::std::ostream* os) const {
2734
      *os << "contains " << rhs_.size()
2735
          << " values, where each value and its corresponding value in ";
2736
      UniversalPrinter<RhsStlContainer>::Print(rhs_, os);
2737
      *os << " ";
2738
      mono_tuple_matcher_.DescribeTo(os);
2739
    }
2740
    virtual void DescribeNegationTo(::std::ostream* os) const {
2741
      *os << "doesn't contain exactly " << rhs_.size()
2742
          << " values, or contains a value x at some index i"
2743
          << " where x and the i-th value of ";
2744
      UniversalPrint(rhs_, os);
2745
      *os << " ";
2746
      mono_tuple_matcher_.DescribeNegationTo(os);
2747
    }
2748
 
2749
    virtual bool MatchAndExplain(LhsContainer lhs,
2750
                                 MatchResultListener* listener) const {
2751
      LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2752
      const size_t actual_size = lhs_stl_container.size();
2753
      if (actual_size != rhs_.size()) {
2754
        *listener << "which contains " << actual_size << " values";
2755
        return false;
2756
      }
2757
 
2758
      typename LhsStlContainer::const_iterator left = lhs_stl_container.begin();
2759
      typename RhsStlContainer::const_iterator right = rhs_.begin();
2760
      for (size_t i = 0; i != actual_size; ++i, ++left, ++right) {
2761
        const InnerMatcherArg value_pair(*left, *right);
2762
 
2763
        if (listener->IsInterested()) {
2764
          StringMatchResultListener inner_listener;
2765
          if (!mono_tuple_matcher_.MatchAndExplain(
2766
                  value_pair, &inner_listener)) {
2767
            *listener << "where the value pair (";
2768
            UniversalPrint(*left, listener->stream());
2769
            *listener << ", ";
2770
            UniversalPrint(*right, listener->stream());
2771
            *listener << ") at index #" << i << " don't match";
2772
            PrintIfNotEmpty(inner_listener.str(), listener->stream());
2773
            return false;
2774
          }
2775
        } else {
2776
          if (!mono_tuple_matcher_.Matches(value_pair))
2777
            return false;
2778
        }
2779
      }
2780
 
2781
      return true;
2782
    }
2783
 
2784
   private:
2785
    const Matcher<InnerMatcherArg> mono_tuple_matcher_;
2786
    const RhsStlContainer rhs_;
2787
 
2788
    GTEST_DISALLOW_ASSIGN_(Impl);
2789
  };
2790
 
2791
 private:
2792
  const TupleMatcher tuple_matcher_;
2793
  const RhsStlContainer rhs_;
2794
 
2795
  GTEST_DISALLOW_ASSIGN_(PointwiseMatcher);
2796
};
2797
 
2798
// Holds the logic common to ContainsMatcherImpl and EachMatcherImpl.
2799
template <typename Container>
2800
class QuantifierMatcherImpl : public MatcherInterface<Container> {
2801
 public:
2802
  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
2803
  typedef StlContainerView<RawContainer> View;
2804
  typedef typename View::type StlContainer;
2805
  typedef typename View::const_reference StlContainerReference;
2806
  typedef typename StlContainer::value_type Element;
2807
 
2808
  template <typename InnerMatcher>
2809
  explicit QuantifierMatcherImpl(InnerMatcher inner_matcher)
2810
      : inner_matcher_(
2811
           testing::SafeMatcherCast<const Element&>(inner_matcher)) {}
2812
 
2813
  // Checks whether:
2814
  // * All elements in the container match, if all_elements_should_match.
2815
  // * Any element in the container matches, if !all_elements_should_match.
2816
  bool MatchAndExplainImpl(bool all_elements_should_match,
2817
                           Container container,
2818
                           MatchResultListener* listener) const {
2819
    StlContainerReference stl_container = View::ConstReference(container);
2820
    size_t i = 0;
2821
    for (typename StlContainer::const_iterator it = stl_container.begin();
2822
         it != stl_container.end(); ++it, ++i) {
2823
      StringMatchResultListener inner_listener;
2824
      const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener);
2825
 
2826
      if (matches != all_elements_should_match) {
2827
        *listener << "whose element #" << i
2828
                  << (matches ? " matches" : " doesn't match");
2829
        PrintIfNotEmpty(inner_listener.str(), listener->stream());
2830
        return !all_elements_should_match;
2831
      }
2832
    }
2833
    return all_elements_should_match;
2834
  }
2835
 
2836
 protected:
2837
  const Matcher<const Element&> inner_matcher_;
2838
 
2839
  GTEST_DISALLOW_ASSIGN_(QuantifierMatcherImpl);
2840
};
2841
 
2842
// Implements Contains(element_matcher) for the given argument type Container.
2843
// Symmetric to EachMatcherImpl.
2844
template <typename Container>
2845
class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> {
2846
 public:
2847
  template <typename InnerMatcher>
2848
  explicit ContainsMatcherImpl(InnerMatcher inner_matcher)
2849
      : QuantifierMatcherImpl<Container>(inner_matcher) {}
2850
 
2851
  // Describes what this matcher does.
2852
  virtual void DescribeTo(::std::ostream* os) const {
2853
    *os << "contains at least one element that ";
2854
    this->inner_matcher_.DescribeTo(os);
2855
  }
2856
 
2857
  virtual void DescribeNegationTo(::std::ostream* os) const {
2858
    *os << "doesn't contain any element that ";
2859
    this->inner_matcher_.DescribeTo(os);
2860
  }
2861
 
2862
  virtual bool MatchAndExplain(Container container,
2863
                               MatchResultListener* listener) const {
2864
    return this->MatchAndExplainImpl(false, container, listener);
2865
  }
2866
 
2867
 private:
2868
  GTEST_DISALLOW_ASSIGN_(ContainsMatcherImpl);
2869
};
2870
 
2871
// Implements Each(element_matcher) for the given argument type Container.
2872
// Symmetric to ContainsMatcherImpl.
2873
template <typename Container>
2874
class EachMatcherImpl : public QuantifierMatcherImpl<Container> {
2875
 public:
2876
  template <typename InnerMatcher>
2877
  explicit EachMatcherImpl(InnerMatcher inner_matcher)
2878
      : QuantifierMatcherImpl<Container>(inner_matcher) {}
2879
 
2880
  // Describes what this matcher does.
2881
  virtual void DescribeTo(::std::ostream* os) const {
2882
    *os << "only contains elements that ";
2883
    this->inner_matcher_.DescribeTo(os);
2884
  }
2885
 
2886
  virtual void DescribeNegationTo(::std::ostream* os) const {
2887
    *os << "contains some element that ";
2888
    this->inner_matcher_.DescribeNegationTo(os);
2889
  }
2890
 
2891
  virtual bool MatchAndExplain(Container container,
2892
                               MatchResultListener* listener) const {
2893
    return this->MatchAndExplainImpl(true, container, listener);
2894
  }
2895
 
2896
 private:
2897
  GTEST_DISALLOW_ASSIGN_(EachMatcherImpl);
2898
};
2899
 
2900
// Implements polymorphic Contains(element_matcher).
2901
template <typename M>
2902
class ContainsMatcher {
2903
 public:
2904
  explicit ContainsMatcher(M m) : inner_matcher_(m) {}
2905
 
2906
  template <typename Container>
2907
  operator Matcher<Container>() const {
2908
    return MakeMatcher(new ContainsMatcherImpl<Container>(inner_matcher_));
2909
  }
2910
 
2911
 private:
2912
  const M inner_matcher_;
2913
 
2914
  GTEST_DISALLOW_ASSIGN_(ContainsMatcher);
2915
};
2916
 
2917
// Implements polymorphic Each(element_matcher).
2918
template <typename M>
2919
class EachMatcher {
2920
 public:
2921
  explicit EachMatcher(M m) : inner_matcher_(m) {}
2922
 
2923
  template <typename Container>
2924
  operator Matcher<Container>() const {
2925
    return MakeMatcher(new EachMatcherImpl<Container>(inner_matcher_));
2926
  }
2927
 
2928
 private:
2929
  const M inner_matcher_;
2930
 
2931
  GTEST_DISALLOW_ASSIGN_(EachMatcher);
2932
};
2933
 
2934
// Implements Key(inner_matcher) for the given argument pair type.
2935
// Key(inner_matcher) matches an std::pair whose 'first' field matches
2936
// inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an
2937
// std::map that contains at least one element whose key is >= 5.
2938
template <typename PairType>
2939
class KeyMatcherImpl : public MatcherInterface<PairType> {
2940
 public:
2941
  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
2942
  typedef typename RawPairType::first_type KeyType;
2943
 
2944
  template <typename InnerMatcher>
2945
  explicit KeyMatcherImpl(InnerMatcher inner_matcher)
2946
      : inner_matcher_(
2947
          testing::SafeMatcherCast<const KeyType&>(inner_matcher)) {
2948
  }
2949
 
2950
  // Returns true iff 'key_value.first' (the key) matches the inner matcher.
2951
  virtual bool MatchAndExplain(PairType key_value,
2952
                               MatchResultListener* listener) const {
2953
    StringMatchResultListener inner_listener;
2954
    const bool match = inner_matcher_.MatchAndExplain(key_value.first,
2955
                                                      &inner_listener);
2956
    const internal::string explanation = inner_listener.str();
2957
    if (explanation != "") {
2958
      *listener << "whose first field is a value " << explanation;
2959
    }
2960
    return match;
2961
  }
2962
 
2963
  // Describes what this matcher does.
2964
  virtual void DescribeTo(::std::ostream* os) const {
2965
    *os << "has a key that ";
2966
    inner_matcher_.DescribeTo(os);
2967
  }
2968
 
2969
  // Describes what the negation of this matcher does.
2970
  virtual void DescribeNegationTo(::std::ostream* os) const {
2971
    *os << "doesn't have a key that ";
2972
    inner_matcher_.DescribeTo(os);
2973
  }
2974
 
2975
 private:
2976
  const Matcher<const KeyType&> inner_matcher_;
2977
 
2978
  GTEST_DISALLOW_ASSIGN_(KeyMatcherImpl);
2979
};
2980
 
2981
// Implements polymorphic Key(matcher_for_key).
2982
template <typename M>
2983
class KeyMatcher {
2984
 public:
2985
  explicit KeyMatcher(M m) : matcher_for_key_(m) {}
2986
 
2987
  template <typename PairType>
2988
  operator Matcher<PairType>() const {
2989
    return MakeMatcher(new KeyMatcherImpl<PairType>(matcher_for_key_));
2990
  }
2991
 
2992
 private:
2993
  const M matcher_for_key_;
2994
 
2995
  GTEST_DISALLOW_ASSIGN_(KeyMatcher);
2996
};
2997
 
2998
// Implements Pair(first_matcher, second_matcher) for the given argument pair
2999
// type with its two matchers. See Pair() function below.
3000
template <typename PairType>
3001
class PairMatcherImpl : public MatcherInterface<PairType> {
3002
 public:
3003
  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
3004
  typedef typename RawPairType::first_type FirstType;
3005
  typedef typename RawPairType::second_type SecondType;
3006
 
3007
  template <typename FirstMatcher, typename SecondMatcher>
3008
  PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher)
3009
      : first_matcher_(
3010
            testing::SafeMatcherCast<const FirstType&>(first_matcher)),
3011
        second_matcher_(
3012
            testing::SafeMatcherCast<const SecondType&>(second_matcher)) {
3013
  }
3014
 
3015
  // Describes what this matcher does.
3016
  virtual void DescribeTo(::std::ostream* os) const {
3017
    *os << "has a first field that ";
3018
    first_matcher_.DescribeTo(os);
3019
    *os << ", and has a second field that ";
3020
    second_matcher_.DescribeTo(os);
3021
  }
3022
 
3023
  // Describes what the negation of this matcher does.
3024
  virtual void DescribeNegationTo(::std::ostream* os) const {
3025
    *os << "has a first field that ";
3026
    first_matcher_.DescribeNegationTo(os);
3027
    *os << ", or has a second field that ";
3028
    second_matcher_.DescribeNegationTo(os);
3029
  }
3030
 
3031
  // Returns true iff 'a_pair.first' matches first_matcher and 'a_pair.second'
3032
  // matches second_matcher.
3033
  virtual bool MatchAndExplain(PairType a_pair,
3034
                               MatchResultListener* listener) const {
3035
    if (!listener->IsInterested()) {
3036
      // If the listener is not interested, we don't need to construct the
3037
      // explanation.
3038
      return first_matcher_.Matches(a_pair.first) &&
3039
             second_matcher_.Matches(a_pair.second);
3040
    }
3041
    StringMatchResultListener first_inner_listener;
3042
    if (!first_matcher_.MatchAndExplain(a_pair.first,
3043
                                        &first_inner_listener)) {
3044
      *listener << "whose first field does not match";
3045
      PrintIfNotEmpty(first_inner_listener.str(), listener->stream());
3046
      return false;
3047
    }
3048
    StringMatchResultListener second_inner_listener;
3049
    if (!second_matcher_.MatchAndExplain(a_pair.second,
3050
                                         &second_inner_listener)) {
3051
      *listener << "whose second field does not match";
3052
      PrintIfNotEmpty(second_inner_listener.str(), listener->stream());
3053
      return false;
3054
    }
3055
    ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(),
3056
                   listener);
3057
    return true;
3058
  }
3059
 
3060
 private:
3061
  void ExplainSuccess(const internal::string& first_explanation,
3062
                      const internal::string& second_explanation,
3063
                      MatchResultListener* listener) const {
3064
    *listener << "whose both fields match";
3065
    if (first_explanation != "") {
3066
      *listener << ", where the first field is a value " << first_explanation;
3067
    }
3068
    if (second_explanation != "") {
3069
      *listener << ", ";
3070
      if (first_explanation != "") {
3071
        *listener << "and ";
3072
      } else {
3073
        *listener << "where ";
3074
      }
3075
      *listener << "the second field is a value " << second_explanation;
3076
    }
3077
  }
3078
 
3079
  const Matcher<const FirstType&> first_matcher_;
3080
  const Matcher<const SecondType&> second_matcher_;
3081
 
3082
  GTEST_DISALLOW_ASSIGN_(PairMatcherImpl);
3083
};
3084
 
3085
// Implements polymorphic Pair(first_matcher, second_matcher).
3086
template <typename FirstMatcher, typename SecondMatcher>
3087
class PairMatcher {
3088
 public:
3089
  PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher)
3090
      : first_matcher_(first_matcher), second_matcher_(second_matcher) {}
3091
 
3092
  template <typename PairType>
3093
  operator Matcher<PairType> () const {
3094
    return MakeMatcher(
3095
        new PairMatcherImpl<PairType>(
3096
            first_matcher_, second_matcher_));
3097
  }
3098
 
3099
 private:
3100
  const FirstMatcher first_matcher_;
3101
  const SecondMatcher second_matcher_;
3102
 
3103
  GTEST_DISALLOW_ASSIGN_(PairMatcher);
3104
};
3105
 
3106
// Implements ElementsAre() and ElementsAreArray().
3107
template <typename Container>
3108
class ElementsAreMatcherImpl : public MatcherInterface<Container> {
3109
 public:
3110
  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3111
  typedef internal::StlContainerView<RawContainer> View;
3112
  typedef typename View::type StlContainer;
3113
  typedef typename View::const_reference StlContainerReference;
3114
  typedef typename StlContainer::value_type Element;
3115
 
3116
  // Constructs the matcher from a sequence of element values or
3117
  // element matchers.
3118
  template <typename InputIter>
3119
  ElementsAreMatcherImpl(InputIter first, InputIter last) {
3120
    while (first != last) {
3121
      matchers_.push_back(MatcherCast<const Element&>(*first++));
3122
    }
3123
  }
3124
 
3125
  // Describes what this matcher does.
3126
  virtual void DescribeTo(::std::ostream* os) const {
3127
    if (count() == 0) {
3128
      *os << "is empty";
3129
    } else if (count() == 1) {
3130
      *os << "has 1 element that ";
3131
      matchers_[0].DescribeTo(os);
3132
    } else {
3133
      *os << "has " << Elements(count()) << " where\n";
3134
      for (size_t i = 0; i != count(); ++i) {
3135
        *os << "element #" << i << " ";
3136
        matchers_[i].DescribeTo(os);
3137
        if (i + 1 < count()) {
3138
          *os << ",\n";
3139
        }
3140
      }
3141
    }
3142
  }
3143
 
3144
  // Describes what the negation of this matcher does.
3145
  virtual void DescribeNegationTo(::std::ostream* os) const {
3146
    if (count() == 0) {
3147
      *os << "isn't empty";
3148
      return;
3149
    }
3150
 
3151
    *os << "doesn't have " << Elements(count()) << ", or\n";
3152
    for (size_t i = 0; i != count(); ++i) {
3153
      *os << "element #" << i << " ";
3154
      matchers_[i].DescribeNegationTo(os);
3155
      if (i + 1 < count()) {
3156
        *os << ", or\n";
3157
      }
3158
    }
3159
  }
3160
 
3161
  virtual bool MatchAndExplain(Container container,
3162
                               MatchResultListener* listener) const {
3163
    // To work with stream-like "containers", we must only walk
3164
    // through the elements in one pass.
3165
 
3166
    const bool listener_interested = listener->IsInterested();
3167
 
3168
    // explanations[i] is the explanation of the element at index i.
3169
    ::std::vector<internal::string> explanations(count());
3170
    StlContainerReference stl_container = View::ConstReference(container);
3171
    typename StlContainer::const_iterator it = stl_container.begin();
3172
    size_t exam_pos = 0;
3173
    bool mismatch_found = false;  // Have we found a mismatched element yet?
3174
 
3175
    // Go through the elements and matchers in pairs, until we reach
3176
    // the end of either the elements or the matchers, or until we find a
3177
    // mismatch.
3178
    for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) {
3179
      bool match;  // Does the current element match the current matcher?
3180
      if (listener_interested) {
3181
        StringMatchResultListener s;
3182
        match = matchers_[exam_pos].MatchAndExplain(*it, &s);
3183
        explanations[exam_pos] = s.str();
3184
      } else {
3185
        match = matchers_[exam_pos].Matches(*it);
3186
      }
3187
 
3188
      if (!match) {
3189
        mismatch_found = true;
3190
        break;
3191
      }
3192
    }
3193
    // If mismatch_found is true, 'exam_pos' is the index of the mismatch.
3194
 
3195
    // Find how many elements the actual container has.  We avoid
3196
    // calling size() s.t. this code works for stream-like "containers"
3197
    // that don't define size().
3198
    size_t actual_count = exam_pos;
3199
    for (; it != stl_container.end(); ++it) {
3200
      ++actual_count;
3201
    }
3202
 
3203
    if (actual_count != count()) {
3204
      // The element count doesn't match.  If the container is empty,
3205
      // there's no need to explain anything as Google Mock already
3206
      // prints the empty container.  Otherwise we just need to show
3207
      // how many elements there actually are.
3208
      if (listener_interested && (actual_count != 0)) {
3209
        *listener << "which has " << Elements(actual_count);
3210
      }
3211
      return false;
3212
    }
3213
 
3214
    if (mismatch_found) {
3215
      // The element count matches, but the exam_pos-th element doesn't match.
3216
      if (listener_interested) {
3217
        *listener << "whose element #" << exam_pos << " doesn't match";
3218
        PrintIfNotEmpty(explanations[exam_pos], listener->stream());
3219
      }
3220
      return false;
3221
    }
3222
 
3223
    // Every element matches its expectation.  We need to explain why
3224
    // (the obvious ones can be skipped).
3225
    if (listener_interested) {
3226
      bool reason_printed = false;
3227
      for (size_t i = 0; i != count(); ++i) {
3228
        const internal::string& s = explanations[i];
3229
        if (!s.empty()) {
3230
          if (reason_printed) {
3231
            *listener << ",\nand ";
3232
          }
3233
          *listener << "whose element #" << i << " matches, " << s;
3234
          reason_printed = true;
3235
        }
3236
      }
3237
    }
3238
    return true;
3239
  }
3240
 
3241
 private:
3242
  static Message Elements(size_t count) {
3243
    return Message() << count << (count == 1 ? " element" : " elements");
3244
  }
3245
 
3246
  size_t count() const { return matchers_.size(); }
3247
 
3248
  ::std::vector<Matcher<const Element&> > matchers_;
3249
 
3250
  GTEST_DISALLOW_ASSIGN_(ElementsAreMatcherImpl);
3251
};
3252
 
3253
// Connectivity matrix of (elements X matchers), in element-major order.
3254
// Initially, there are no edges.
3255
// Use NextGraph() to iterate over all possible edge configurations.
3256
// Use Randomize() to generate a random edge configuration.
3257
class GTEST_API_ MatchMatrix {
3258
 public:
3259
  MatchMatrix(size_t num_elements, size_t num_matchers)
3260
      : num_elements_(num_elements),
3261
        num_matchers_(num_matchers),
3262
        matched_(num_elements_* num_matchers_, 0) {
3263
  }
3264
 
3265
  size_t LhsSize() const { return num_elements_; }
3266
  size_t RhsSize() const { return num_matchers_; }
3267
  bool HasEdge(size_t ilhs, size_t irhs) const {
3268
    return matched_[SpaceIndex(ilhs, irhs)] == 1;
3269
  }
3270
  void SetEdge(size_t ilhs, size_t irhs, bool b) {
3271
    matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0;
3272
  }
3273
 
3274
  // Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number,
3275
  // adds 1 to that number; returns false if incrementing the graph left it
3276
  // empty.
3277
  bool NextGraph();
3278
 
3279
  void Randomize();
3280
 
3281
  string DebugString() const;
3282
 
3283
 private:
3284
  size_t SpaceIndex(size_t ilhs, size_t irhs) const {
3285
    return ilhs * num_matchers_ + irhs;
3286
  }
3287
 
3288
  size_t num_elements_;
3289
  size_t num_matchers_;
3290
 
3291
  // Each element is a char interpreted as bool. They are stored as a
3292
  // flattened array in lhs-major order, use 'SpaceIndex()' to translate
3293
  // a (ilhs, irhs) matrix coordinate into an offset.
3294
  ::std::vector<char> matched_;
3295
};
3296
 
3297
typedef ::std::pair<size_t, size_t> ElementMatcherPair;
3298
typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs;
3299
 
3300
// Returns a maximum bipartite matching for the specified graph 'g'.
3301
// The matching is represented as a vector of {element, matcher} pairs.
3302
GTEST_API_ ElementMatcherPairs
3303
FindMaxBipartiteMatching(const MatchMatrix& g);
3304
 
3305
GTEST_API_ bool FindPairing(const MatchMatrix& matrix,
3306
                            MatchResultListener* listener);
3307
 
3308
// Untyped base class for implementing UnorderedElementsAre.  By
3309
// putting logic that's not specific to the element type here, we
3310
// reduce binary bloat and increase compilation speed.
3311
class GTEST_API_ UnorderedElementsAreMatcherImplBase {
3312
 protected:
3313
  // A vector of matcher describers, one for each element matcher.
3314
  // Does not own the describers (and thus can be used only when the
3315
  // element matchers are alive).
3316
  typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec;
3317
 
3318
  // Describes this UnorderedElementsAre matcher.
3319
  void DescribeToImpl(::std::ostream* os) const;
3320
 
3321
  // Describes the negation of this UnorderedElementsAre matcher.
3322
  void DescribeNegationToImpl(::std::ostream* os) const;
3323
 
3324
  bool VerifyAllElementsAndMatchersAreMatched(
3325
      const ::std::vector<string>& element_printouts,
3326
      const MatchMatrix& matrix,
3327
      MatchResultListener* listener) const;
3328
 
3329
  MatcherDescriberVec& matcher_describers() {
3330
    return matcher_describers_;
3331
  }
3332
 
3333
  static Message Elements(size_t n) {
3334
    return Message() << n << " element" << (n == 1 ? "" : "s");
3335
  }
3336
 
3337
 private:
3338
  MatcherDescriberVec matcher_describers_;
3339
 
3340
  GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcherImplBase);
3341
};
3342
 
3343
// Implements unordered ElementsAre and unordered ElementsAreArray.
3344
template <typename Container>
3345
class UnorderedElementsAreMatcherImpl
3346
    : public MatcherInterface<Container>,
3347
      public UnorderedElementsAreMatcherImplBase {
3348
 public:
3349
  typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3350
  typedef internal::StlContainerView<RawContainer> View;
3351
  typedef typename View::type StlContainer;
3352
  typedef typename View::const_reference StlContainerReference;
3353
  typedef typename StlContainer::const_iterator StlContainerConstIterator;
3354
  typedef typename StlContainer::value_type Element;
3355
 
3356
  // Constructs the matcher from a sequence of element values or
3357
  // element matchers.
3358
  template <typename InputIter>
3359
  UnorderedElementsAreMatcherImpl(InputIter first, InputIter last) {
3360
    for (; first != last; ++first) {
3361
      matchers_.push_back(MatcherCast<const Element&>(*first));
3362
      matcher_describers().push_back(matchers_.back().GetDescriber());
3363
    }
3364
  }
3365
 
3366
  // Describes what this matcher does.
3367
  virtual void DescribeTo(::std::ostream* os) const {
3368
    return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os);
3369
  }
3370
 
3371
  // Describes what the negation of this matcher does.
3372
  virtual void DescribeNegationTo(::std::ostream* os) const {
3373
    return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os);
3374
  }
3375
 
3376
  virtual bool MatchAndExplain(Container container,
3377
                               MatchResultListener* listener) const {
3378
    StlContainerReference stl_container = View::ConstReference(container);
3379
    ::std::vector<string> element_printouts;
3380
    MatchMatrix matrix = AnalyzeElements(stl_container.begin(),
3381
                                         stl_container.end(),
3382
                                         &element_printouts,
3383
                                         listener);
3384
 
3385
    const size_t actual_count = matrix.LhsSize();
3386
    if (actual_count == 0 && matchers_.empty()) {
3387
      return true;
3388
    }
3389
    if (actual_count != matchers_.size()) {
3390
      // The element count doesn't match.  If the container is empty,
3391
      // there's no need to explain anything as Google Mock already
3392
      // prints the empty container. Otherwise we just need to show
3393
      // how many elements there actually are.
3394
      if (actual_count != 0 && listener->IsInterested()) {
3395
        *listener << "which has " << Elements(actual_count);
3396
      }
3397
      return false;
3398
    }
3399
 
3400
    return VerifyAllElementsAndMatchersAreMatched(element_printouts,
3401
                                                  matrix, listener) &&
3402
           FindPairing(matrix, listener);
3403
  }
3404
 
3405
 private:
3406
  typedef ::std::vector<Matcher<const Element&> > MatcherVec;
3407
 
3408
  template <typename ElementIter>
3409
  MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last,
3410
                              ::std::vector<string>* element_printouts,
3411
                              MatchResultListener* listener) const {
3412
    element_printouts->clear();
3413
    ::std::vector<char> did_match;
3414
    size_t num_elements = 0;
3415
    for (; elem_first != elem_last; ++num_elements, ++elem_first) {
3416
      if (listener->IsInterested()) {
3417
        element_printouts->push_back(PrintToString(*elem_first));
3418
      }
3419
      for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
3420
        did_match.push_back(Matches(matchers_[irhs])(*elem_first));
3421
      }
3422
    }
3423
 
3424
    MatchMatrix matrix(num_elements, matchers_.size());
3425
    ::std::vector<char>::const_iterator did_match_iter = did_match.begin();
3426
    for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) {
3427
      for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
3428
        matrix.SetEdge(ilhs, irhs, *did_match_iter++ != 0);
3429
      }
3430
    }
3431
    return matrix;
3432
  }
3433
 
3434
  MatcherVec matchers_;
3435
 
3436
  GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcherImpl);
3437
};
3438
 
3439
// Functor for use in TransformTuple.
3440
// Performs MatcherCast<Target> on an input argument of any type.
3441
template <typename Target>
3442
struct CastAndAppendTransform {
3443
  template <typename Arg>
3444
  Matcher<Target> operator()(const Arg& a) const {
3445
    return MatcherCast<Target>(a);
3446
  }
3447
};
3448
 
3449
// Implements UnorderedElementsAre.
3450
template <typename MatcherTuple>
3451
class UnorderedElementsAreMatcher {
3452
 public:
3453
  explicit UnorderedElementsAreMatcher(const MatcherTuple& args)
3454
      : matchers_(args) {}
3455
 
3456
  template <typename Container>
3457
  operator Matcher<Container>() const {
3458
    typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3459
    typedef typename internal::StlContainerView<RawContainer>::type View;
3460
    typedef typename View::value_type Element;
3461
    typedef ::std::vector<Matcher<const Element&> > MatcherVec;
3462
    MatcherVec matchers;
3463
    matchers.reserve(::testing::tuple_size<MatcherTuple>::value);
3464
    TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
3465
                         ::std::back_inserter(matchers));
3466
    return MakeMatcher(new UnorderedElementsAreMatcherImpl<Container>(
3467
                           matchers.begin(), matchers.end()));
3468
  }
3469
 
3470
 private:
3471
  const MatcherTuple matchers_;
3472
  GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcher);
3473
};
3474
 
3475
// Implements ElementsAre.
3476
template <typename MatcherTuple>
3477
class ElementsAreMatcher {
3478
 public:
3479
  explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {}
3480
 
3481
  template <typename Container>
3482
  operator Matcher<Container>() const {
3483
    typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3484
    typedef typename internal::StlContainerView<RawContainer>::type View;
3485
    typedef typename View::value_type Element;
3486
    typedef ::std::vector<Matcher<const Element&> > MatcherVec;
3487
    MatcherVec matchers;
3488
    matchers.reserve(::testing::tuple_size<MatcherTuple>::value);
3489
    TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
3490
                         ::std::back_inserter(matchers));
3491
    return MakeMatcher(new ElementsAreMatcherImpl<Container>(
3492
                           matchers.begin(), matchers.end()));
3493
  }
3494
 
3495
 private:
3496
  const MatcherTuple matchers_;
3497
  GTEST_DISALLOW_ASSIGN_(ElementsAreMatcher);
3498
};
3499
 
3500
// Implements UnorderedElementsAreArray().
3501
template <typename T>
3502
class UnorderedElementsAreArrayMatcher {
3503
 public:
3504
  UnorderedElementsAreArrayMatcher() {}
3505
 
3506
  template <typename Iter>
3507
  UnorderedElementsAreArrayMatcher(Iter first, Iter last)
3508
      : matchers_(first, last) {}
3509
 
3510
  template <typename Container>
3511
  operator Matcher<Container>() const {
3512
    return MakeMatcher(
3513
        new UnorderedElementsAreMatcherImpl<Container>(matchers_.begin(),
3514
                                                       matchers_.end()));
3515
  }
3516
 
3517
 private:
3518
  ::std::vector<T> matchers_;
3519
 
3520
  GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreArrayMatcher);
3521
};
3522
 
3523
// Implements ElementsAreArray().
3524
template <typename T>
3525
class ElementsAreArrayMatcher {
3526
 public:
3527
  template <typename Iter>
3528
  ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
3529
 
3530
  template <typename Container>
3531
  operator Matcher<Container>() const {
3532
    return MakeMatcher(new ElementsAreMatcherImpl<Container>(
3533
        matchers_.begin(), matchers_.end()));
3534
  }
3535
 
3536
 private:
3537
  const ::std::vector<T> matchers_;
3538
 
3539
  GTEST_DISALLOW_ASSIGN_(ElementsAreArrayMatcher);
3540
};
3541
 
3542
// Given a 2-tuple matcher tm of type Tuple2Matcher and a value second
3543
// of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm,
3544
// second) is a polymorphic matcher that matches a value x iff tm
3545
// matches tuple (x, second).  Useful for implementing
3546
// UnorderedPointwise() in terms of UnorderedElementsAreArray().
3547
//
3548
// BoundSecondMatcher is copyable and assignable, as we need to put
3549
// instances of this class in a vector when implementing
3550
// UnorderedPointwise().
3551
template <typename Tuple2Matcher, typename Second>
3552
class BoundSecondMatcher {
3553
 public:
3554
  BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second)
3555
      : tuple2_matcher_(tm), second_value_(second) {}
3556
 
3557
  template <typename T>
3558
  operator Matcher<T>() const {
3559
    return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_));
3560
  }
3561
 
3562
  // We have to define this for UnorderedPointwise() to compile in
3563
  // C++98 mode, as it puts BoundSecondMatcher instances in a vector,
3564
  // which requires the elements to be assignable in C++98.  The
3565
  // compiler cannot generate the operator= for us, as Tuple2Matcher
3566
  // and Second may not be assignable.
3567
  //
3568
  // However, this should never be called, so the implementation just
3569
  // need to assert.
3570
  void operator=(const BoundSecondMatcher& /*rhs*/) {
3571
    GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned.";
3572
  }
3573
 
3574
 private:
3575
  template <typename T>
3576
  class Impl : public MatcherInterface<T> {
3577
   public:
3578
    typedef ::testing::tuple<T, Second> ArgTuple;
3579
 
3580
    Impl(const Tuple2Matcher& tm, const Second& second)
3581
        : mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)),
3582
          second_value_(second) {}
3583
 
3584
    virtual void DescribeTo(::std::ostream* os) const {
3585
      *os << "and ";
3586
      UniversalPrint(second_value_, os);
3587
      *os << " ";
3588
      mono_tuple2_matcher_.DescribeTo(os);
3589
    }
3590
 
3591
    virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
3592
      return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_),
3593
                                                  listener);
3594
    }
3595
 
3596
   private:
3597
    const Matcher<const ArgTuple&> mono_tuple2_matcher_;
3598
    const Second second_value_;
3599
 
3600
    GTEST_DISALLOW_ASSIGN_(Impl);
3601
  };
3602
 
3603
  const Tuple2Matcher tuple2_matcher_;
3604
  const Second second_value_;
3605
};
3606
 
3607
// Given a 2-tuple matcher tm and a value second,
3608
// MatcherBindSecond(tm, second) returns a matcher that matches a
3609
// value x iff tm matches tuple (x, second).  Useful for implementing
3610
// UnorderedPointwise() in terms of UnorderedElementsAreArray().
3611
template <typename Tuple2Matcher, typename Second>
3612
BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond(
3613
    const Tuple2Matcher& tm, const Second& second) {
3614
  return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second);
3615
}
3616
 
3617
// Returns the description for a matcher defined using the MATCHER*()
3618
// macro where the user-supplied description string is "", if
3619
// 'negation' is false; otherwise returns the description of the
3620
// negation of the matcher.  'param_values' contains a list of strings
3621
// that are the print-out of the matcher's parameters.
3622
GTEST_API_ string FormatMatcherDescription(bool negation,
3623
                                           const char* matcher_name,
3624
                                           const Strings& param_values);
3625
 
3626
}  // namespace internal
3627
 
3628
// ElementsAreArray(first, last)
3629
// ElementsAreArray(pointer, count)
3630
// ElementsAreArray(array)
3631
// ElementsAreArray(container)
3632
// ElementsAreArray({ e1, e2, ..., en })
3633
//
3634
// The ElementsAreArray() functions are like ElementsAre(...), except
3635
// that they are given a homogeneous sequence rather than taking each
3636
// element as a function argument. The sequence can be specified as an
3637
// array, a pointer and count, a vector, an initializer list, or an
3638
// STL iterator range. In each of these cases, the underlying sequence
3639
// can be either a sequence of values or a sequence of matchers.
3640
//
3641
// All forms of ElementsAreArray() make a copy of the input matcher sequence.
3642
 
3643
template <typename Iter>
3644
inline internal::ElementsAreArrayMatcher<
3645
    typename ::std::iterator_traits<Iter>::value_type>
3646
ElementsAreArray(Iter first, Iter last) {
3647
  typedef typename ::std::iterator_traits<Iter>::value_type T;
3648
  return internal::ElementsAreArrayMatcher<T>(first, last);
3649
}
3650
 
3651
template <typename T>
3652
inline internal::ElementsAreArrayMatcher<T> ElementsAreArray(
3653
    const T* pointer, size_t count) {
3654
  return ElementsAreArray(pointer, pointer + count);
3655
}
3656
 
3657
template <typename T, size_t N>
3658
inline internal::ElementsAreArrayMatcher<T> ElementsAreArray(
3659
    const T (&array)[N]) {
3660
  return ElementsAreArray(array, N);
3661
}
3662
 
3663
template <typename Container>
3664
inline internal::ElementsAreArrayMatcher<typename Container::value_type>
3665
ElementsAreArray(const Container& container) {
3666
  return ElementsAreArray(container.begin(), container.end());
3667
}
3668
 
3669
#if GTEST_HAS_STD_INITIALIZER_LIST_
3670
template <typename T>
3671
inline internal::ElementsAreArrayMatcher<T>
3672
ElementsAreArray(::std::initializer_list<T> xs) {
3673
  return ElementsAreArray(xs.begin(), xs.end());
3674
}
3675
#endif
3676
 
3677
// UnorderedElementsAreArray(first, last)
3678
// UnorderedElementsAreArray(pointer, count)
3679
// UnorderedElementsAreArray(array)
3680
// UnorderedElementsAreArray(container)
3681
// UnorderedElementsAreArray({ e1, e2, ..., en })
3682
//
3683
// The UnorderedElementsAreArray() functions are like
3684
// ElementsAreArray(...), but allow matching the elements in any order.
3685
template <typename Iter>
3686
inline internal::UnorderedElementsAreArrayMatcher<
3687
    typename ::std::iterator_traits<Iter>::value_type>
3688
UnorderedElementsAreArray(Iter first, Iter last) {
3689
  typedef typename ::std::iterator_traits<Iter>::value_type T;
3690
  return internal::UnorderedElementsAreArrayMatcher<T>(first, last);
3691
}
3692
 
3693
template <typename T>
3694
inline internal::UnorderedElementsAreArrayMatcher<T>
3695
UnorderedElementsAreArray(const T* pointer, size_t count) {
3696
  return UnorderedElementsAreArray(pointer, pointer + count);
3697
}
3698
 
3699
template <typename T, size_t N>
3700
inline internal::UnorderedElementsAreArrayMatcher<T>
3701
UnorderedElementsAreArray(const T (&array)[N]) {
3702
  return UnorderedElementsAreArray(array, N);
3703
}
3704
 
3705
template <typename Container>
3706
inline internal::UnorderedElementsAreArrayMatcher<
3707
    typename Container::value_type>
3708
UnorderedElementsAreArray(const Container& container) {
3709
  return UnorderedElementsAreArray(container.begin(), container.end());
3710
}
3711
 
3712
#if GTEST_HAS_STD_INITIALIZER_LIST_
3713
template <typename T>
3714
inline internal::UnorderedElementsAreArrayMatcher<T>
3715
UnorderedElementsAreArray(::std::initializer_list<T> xs) {
3716
  return UnorderedElementsAreArray(xs.begin(), xs.end());
3717
}
3718
#endif
3719
 
3720
// _ is a matcher that matches anything of any type.
3721
//
3722
// This definition is fine as:
3723
//
3724
//   1. The C++ standard permits using the name _ in a namespace that
3725
//      is not the global namespace or ::std.
3726
//   2. The AnythingMatcher class has no data member or constructor,
3727
//      so it's OK to create global variables of this type.
3728
//   3. c-style has approved of using _ in this case.
3729
const internal::AnythingMatcher _ = {};
3730
// Creates a matcher that matches any value of the given type T.
3731
template <typename T>
3732
inline Matcher<T> A() { return MakeMatcher(new internal::AnyMatcherImpl<T>()); }
3733
 
3734
// Creates a matcher that matches any value of the given type T.
3735
template <typename T>
3736
inline Matcher<T> An() { return A<T>(); }
3737
 
3738
// Creates a polymorphic matcher that matches anything equal to x.
3739
// Note: if the parameter of Eq() were declared as const T&, Eq("foo")
3740
// wouldn't compile.
3741
template <typename T>
3742
inline internal::EqMatcher<T> Eq(T x) { return internal::EqMatcher<T>(x); }
3743
 
3744
// Constructs a Matcher<T> from a 'value' of type T.  The constructed
3745
// matcher matches any value that's equal to 'value'.
3746
template <typename T>
3747
Matcher<T>::Matcher(T value) { *this = Eq(value); }
3748
 
3749
// Creates a monomorphic matcher that matches anything with type Lhs
3750
// and equal to rhs.  A user may need to use this instead of Eq(...)
3751
// in order to resolve an overloading ambiguity.
3752
//
3753
// TypedEq<T>(x) is just a convenient short-hand for Matcher<T>(Eq(x))
3754
// or Matcher<T>(x), but more readable than the latter.
3755
//
3756
// We could define similar monomorphic matchers for other comparison
3757
// operations (e.g. TypedLt, TypedGe, and etc), but decided not to do
3758
// it yet as those are used much less than Eq() in practice.  A user
3759
// can always write Matcher<T>(Lt(5)) to be explicit about the type,
3760
// for example.
3761
template <typename Lhs, typename Rhs>
3762
inline Matcher<Lhs> TypedEq(const Rhs& rhs) { return Eq(rhs); }
3763
 
3764
// Creates a polymorphic matcher that matches anything >= x.
3765
template <typename Rhs>
3766
inline internal::GeMatcher<Rhs> Ge(Rhs x) {
3767
  return internal::GeMatcher<Rhs>(x);
3768
}
3769
 
3770
// Creates a polymorphic matcher that matches anything > x.
3771
template <typename Rhs>
3772
inline internal::GtMatcher<Rhs> Gt(Rhs x) {
3773
  return internal::GtMatcher<Rhs>(x);
3774
}
3775
 
3776
// Creates a polymorphic matcher that matches anything <= x.
3777
template <typename Rhs>
3778
inline internal::LeMatcher<Rhs> Le(Rhs x) {
3779
  return internal::LeMatcher<Rhs>(x);
3780
}
3781
 
3782
// Creates a polymorphic matcher that matches anything < x.
3783
template <typename Rhs>
3784
inline internal::LtMatcher<Rhs> Lt(Rhs x) {
3785
  return internal::LtMatcher<Rhs>(x);
3786
}
3787
 
3788
// Creates a polymorphic matcher that matches anything != x.
3789
template <typename Rhs>
3790
inline internal::NeMatcher<Rhs> Ne(Rhs x) {
3791
  return internal::NeMatcher<Rhs>(x);
3792
}
3793
 
3794
// Creates a polymorphic matcher that matches any NULL pointer.
3795
inline PolymorphicMatcher<internal::IsNullMatcher > IsNull() {
3796
  return MakePolymorphicMatcher(internal::IsNullMatcher());
3797
}
3798
 
3799
// Creates a polymorphic matcher that matches any non-NULL pointer.
3800
// This is convenient as Not(NULL) doesn't compile (the compiler
3801
// thinks that that expression is comparing a pointer with an integer).
3802
inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() {
3803
  return MakePolymorphicMatcher(internal::NotNullMatcher());
3804
}
3805
 
3806
// Creates a polymorphic matcher that matches any argument that
3807
// references variable x.
3808
template <typename T>
3809
inline internal::RefMatcher<T&> Ref(T& x) {  // NOLINT
3810
  return internal::RefMatcher<T&>(x);
3811
}
3812
 
3813
// Creates a matcher that matches any double argument approximately
3814
// equal to rhs, where two NANs are considered unequal.
3815
inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) {
3816
  return internal::FloatingEqMatcher<double>(rhs, false);
3817
}
3818
 
3819
// Creates a matcher that matches any double argument approximately
3820
// equal to rhs, including NaN values when rhs is NaN.
3821
inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) {
3822
  return internal::FloatingEqMatcher<double>(rhs, true);
3823
}
3824
 
3825
// Creates a matcher that matches any double argument approximately equal to
3826
// rhs, up to the specified max absolute error bound, where two NANs are
3827
// considered unequal.  The max absolute error bound must be non-negative.
3828
inline internal::FloatingEqMatcher<double> DoubleNear(
3829
    double rhs, double max_abs_error) {
3830
  return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error);
3831
}
3832
 
3833
// Creates a matcher that matches any double argument approximately equal to
3834
// rhs, up to the specified max absolute error bound, including NaN values when
3835
// rhs is NaN.  The max absolute error bound must be non-negative.
3836
inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear(
3837
    double rhs, double max_abs_error) {
3838
  return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error);
3839
}
3840
 
3841
// Creates a matcher that matches any float argument approximately
3842
// equal to rhs, where two NANs are considered unequal.
3843
inline internal::FloatingEqMatcher<float> FloatEq(float rhs) {
3844
  return internal::FloatingEqMatcher<float>(rhs, false);
3845
}
3846
 
3847
// Creates a matcher that matches any float argument approximately
3848
// equal to rhs, including NaN values when rhs is NaN.
3849
inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) {
3850
  return internal::FloatingEqMatcher<float>(rhs, true);
3851
}
3852
 
3853
// Creates a matcher that matches any float argument approximately equal to
3854
// rhs, up to the specified max absolute error bound, where two NANs are
3855
// considered unequal.  The max absolute error bound must be non-negative.
3856
inline internal::FloatingEqMatcher<float> FloatNear(
3857
    float rhs, float max_abs_error) {
3858
  return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error);
3859
}
3860
 
3861
// Creates a matcher that matches any float argument approximately equal to
3862
// rhs, up to the specified max absolute error bound, including NaN values when
3863
// rhs is NaN.  The max absolute error bound must be non-negative.
3864
inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear(
3865
    float rhs, float max_abs_error) {
3866
  return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error);
3867
}
3868
 
3869
// Creates a matcher that matches a pointer (raw or smart) that points
3870
// to a value that matches inner_matcher.
3871
template <typename InnerMatcher>
3872
inline internal::PointeeMatcher<InnerMatcher> Pointee(
3873
    const InnerMatcher& inner_matcher) {
3874
  return internal::PointeeMatcher<InnerMatcher>(inner_matcher);
3875
}
3876
 
3877
// Creates a matcher that matches a pointer or reference that matches
3878
// inner_matcher when dynamic_cast<To> is applied.
3879
// The result of dynamic_cast<To> is forwarded to the inner matcher.
3880
// If To is a pointer and the cast fails, the inner matcher will receive NULL.
3881
// If To is a reference and the cast fails, this matcher returns false
3882
// immediately.
3883
template <typename To>
3884
inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To> >
3885
WhenDynamicCastTo(const Matcher<To>& inner_matcher) {
3886
  return MakePolymorphicMatcher(
3887
      internal::WhenDynamicCastToMatcher<To>(inner_matcher));
3888
}
3889
 
3890
// Creates a matcher that matches an object whose given field matches
3891
// 'matcher'.  For example,
3892
//   Field(&Foo::number, Ge(5))
3893
// matches a Foo object x iff x.number >= 5.
3894
template <typename Class, typename FieldType, typename FieldMatcher>
3895
inline PolymorphicMatcher<
3896
  internal::FieldMatcher<Class, FieldType> > Field(
3897
    FieldType Class::*field, const FieldMatcher& matcher) {
3898
  return MakePolymorphicMatcher(
3899
      internal::FieldMatcher<Class, FieldType>(
3900
          field, MatcherCast<const FieldType&>(matcher)));
3901
  // The call to MatcherCast() is required for supporting inner
3902
  // matchers of compatible types.  For example, it allows
3903
  //   Field(&Foo::bar, m)
3904
  // to compile where bar is an int32 and m is a matcher for int64.
3905
}
3906
 
3907
// Creates a matcher that matches an object whose given property
3908
// matches 'matcher'.  For example,
3909
//   Property(&Foo::str, StartsWith("hi"))
3910
// matches a Foo object x iff x.str() starts with "hi".
3911
template <typename Class, typename PropertyType, typename PropertyMatcher>
3912
inline PolymorphicMatcher<
3913
  internal::PropertyMatcher<Class, PropertyType> > Property(
3914
    PropertyType (Class::*property)() const, const PropertyMatcher& matcher) {
3915
  return MakePolymorphicMatcher(
3916
      internal::PropertyMatcher<Class, PropertyType>(
3917
          property,
3918
          MatcherCast<GTEST_REFERENCE_TO_CONST_(PropertyType)>(matcher)));
3919
  // The call to MatcherCast() is required for supporting inner
3920
  // matchers of compatible types.  For example, it allows
3921
  //   Property(&Foo::bar, m)
3922
  // to compile where bar() returns an int32 and m is a matcher for int64.
3923
}
3924
 
3925
// Creates a matcher that matches an object iff the result of applying
3926
// a callable to x matches 'matcher'.
3927
// For example,
3928
//   ResultOf(f, StartsWith("hi"))
3929
// matches a Foo object x iff f(x) starts with "hi".
3930
// callable parameter can be a function, function pointer, or a functor.
3931
// Callable has to satisfy the following conditions:
3932
//   * It is required to keep no state affecting the results of
3933
//     the calls on it and make no assumptions about how many calls
3934
//     will be made. Any state it keeps must be protected from the
3935
//     concurrent access.
3936
//   * If it is a function object, it has to define type result_type.
3937
//     We recommend deriving your functor classes from std::unary_function.
3938
template <typename Callable, typename ResultOfMatcher>
3939
internal::ResultOfMatcher<Callable> ResultOf(
3940
    Callable callable, const ResultOfMatcher& matcher) {
3941
  return internal::ResultOfMatcher<Callable>(
3942
          callable,
3943
          MatcherCast<typename internal::CallableTraits<Callable>::ResultType>(
3944
              matcher));
3945
  // The call to MatcherCast() is required for supporting inner
3946
  // matchers of compatible types.  For example, it allows
3947
  //   ResultOf(Function, m)
3948
  // to compile where Function() returns an int32 and m is a matcher for int64.
3949
}
3950
 
3951
// String matchers.
3952
 
3953
// Matches a string equal to str.
3954
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
3955
    StrEq(const internal::string& str) {
3956
  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
3957
      str, true, true));
3958
}
3959
 
3960
// Matches a string not equal to str.
3961
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
3962
    StrNe(const internal::string& str) {
3963
  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
3964
      str, false, true));
3965
}
3966
 
3967
// Matches a string equal to str, ignoring case.
3968
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
3969
    StrCaseEq(const internal::string& str) {
3970
  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
3971
      str, true, false));
3972
}
3973
 
3974
// Matches a string not equal to str, ignoring case.
3975
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
3976
    StrCaseNe(const internal::string& str) {
3977
  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
3978
      str, false, false));
3979
}
3980
 
3981
// Creates a matcher that matches any string, std::string, or C string
3982
// that contains the given substring.
3983
inline PolymorphicMatcher<internal::HasSubstrMatcher<internal::string> >
3984
    HasSubstr(const internal::string& substring) {
3985
  return MakePolymorphicMatcher(internal::HasSubstrMatcher<internal::string>(
3986
      substring));
3987
}
3988
 
3989
// Matches a string that starts with 'prefix' (case-sensitive).
3990
inline PolymorphicMatcher<internal::StartsWithMatcher<internal::string> >
3991
    StartsWith(const internal::string& prefix) {
3992
  return MakePolymorphicMatcher(internal::StartsWithMatcher<internal::string>(
3993
      prefix));
3994
}
3995
 
3996
// Matches a string that ends with 'suffix' (case-sensitive).
3997
inline PolymorphicMatcher<internal::EndsWithMatcher<internal::string> >
3998
    EndsWith(const internal::string& suffix) {
3999
  return MakePolymorphicMatcher(internal::EndsWithMatcher<internal::string>(
4000
      suffix));
4001
}
4002
 
4003
// Matches a string that fully matches regular expression 'regex'.
4004
// The matcher takes ownership of 'regex'.
4005
inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex(
4006
    const internal::RE* regex) {
4007
  return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, true));
4008
}
4009
inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex(
4010
    const internal::string& regex) {
4011
  return MatchesRegex(new internal::RE(regex));
4012
}
4013
 
4014
// Matches a string that contains regular expression 'regex'.
4015
// The matcher takes ownership of 'regex'.
4016
inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex(
4017
    const internal::RE* regex) {
4018
  return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, false));
4019
}
4020
inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex(
4021
    const internal::string& regex) {
4022
  return ContainsRegex(new internal::RE(regex));
4023
}
4024
 
4025
#if GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING
4026
// Wide string matchers.
4027
 
4028
// Matches a string equal to str.
4029
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
4030
    StrEq(const internal::wstring& str) {
4031
  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
4032
      str, true, true));
4033
}
4034
 
4035
// Matches a string not equal to str.
4036
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
4037
    StrNe(const internal::wstring& str) {
4038
  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
4039
      str, false, true));
4040
}
4041
 
4042
// Matches a string equal to str, ignoring case.
4043
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
4044
    StrCaseEq(const internal::wstring& str) {
4045
  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
4046
      str, true, false));
4047
}
4048
 
4049
// Matches a string not equal to str, ignoring case.
4050
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
4051
    StrCaseNe(const internal::wstring& str) {
4052
  return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
4053
      str, false, false));
4054
}
4055
 
4056
// Creates a matcher that matches any wstring, std::wstring, or C wide string
4057
// that contains the given substring.
4058
inline PolymorphicMatcher<internal::HasSubstrMatcher<internal::wstring> >
4059
    HasSubstr(const internal::wstring& substring) {
4060
  return MakePolymorphicMatcher(internal::HasSubstrMatcher<internal::wstring>(
4061
      substring));
4062
}
4063
 
4064
// Matches a string that starts with 'prefix' (case-sensitive).
4065
inline PolymorphicMatcher<internal::StartsWithMatcher<internal::wstring> >
4066
    StartsWith(const internal::wstring& prefix) {
4067
  return MakePolymorphicMatcher(internal::StartsWithMatcher<internal::wstring>(
4068
      prefix));
4069
}
4070
 
4071
// Matches a string that ends with 'suffix' (case-sensitive).
4072
inline PolymorphicMatcher<internal::EndsWithMatcher<internal::wstring> >
4073
    EndsWith(const internal::wstring& suffix) {
4074
  return MakePolymorphicMatcher(internal::EndsWithMatcher<internal::wstring>(
4075
      suffix));
4076
}
4077
 
4078
#endif  // GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING
4079
 
4080
// Creates a polymorphic matcher that matches a 2-tuple where the
4081
// first field == the second field.
4082
inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); }
4083
 
4084
// Creates a polymorphic matcher that matches a 2-tuple where the
4085
// first field >= the second field.
4086
inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); }
4087
 
4088
// Creates a polymorphic matcher that matches a 2-tuple where the
4089
// first field > the second field.
4090
inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); }
4091
 
4092
// Creates a polymorphic matcher that matches a 2-tuple where the
4093
// first field <= the second field.
4094
inline internal::Le2Matcher Le() { return internal::Le2Matcher(); }
4095
 
4096
// Creates a polymorphic matcher that matches a 2-tuple where the
4097
// first field < the second field.
4098
inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); }
4099
 
4100
// Creates a polymorphic matcher that matches a 2-tuple where the
4101
// first field != the second field.
4102
inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); }
4103
 
4104
// Creates a matcher that matches any value of type T that m doesn't
4105
// match.
4106
template <typename InnerMatcher>
4107
inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) {
4108
  return internal::NotMatcher<InnerMatcher>(m);
4109
}
4110
 
4111
// Returns a matcher that matches anything that satisfies the given
4112
// predicate.  The predicate can be any unary function or functor
4113
// whose return type can be implicitly converted to bool.
4114
template <typename Predicate>
4115
inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> >
4116
Truly(Predicate pred) {
4117
  return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred));
4118
}
4119
 
4120
// Returns a matcher that matches the container size. The container must
4121
// support both size() and size_type which all STL-like containers provide.
4122
// Note that the parameter 'size' can be a value of type size_type as well as
4123
// matcher. For instance:
4124
//   EXPECT_THAT(container, SizeIs(2));     // Checks container has 2 elements.
4125
//   EXPECT_THAT(container, SizeIs(Le(2));  // Checks container has at most 2.
4126
template <typename SizeMatcher>
4127
inline internal::SizeIsMatcher<SizeMatcher>
4128
SizeIs(const SizeMatcher& size_matcher) {
4129
  return internal::SizeIsMatcher<SizeMatcher>(size_matcher);
4130
}
4131
 
4132
// Returns a matcher that matches the distance between the container's begin()
4133
// iterator and its end() iterator, i.e. the size of the container. This matcher
4134
// can be used instead of SizeIs with containers such as std::forward_list which
4135
// do not implement size(). The container must provide const_iterator (with
4136
// valid iterator_traits), begin() and end().
4137
template <typename DistanceMatcher>
4138
inline internal::BeginEndDistanceIsMatcher<DistanceMatcher>
4139
BeginEndDistanceIs(const DistanceMatcher& distance_matcher) {
4140
  return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher);
4141
}
4142
 
4143
// Returns a matcher that matches an equal container.
4144
// This matcher behaves like Eq(), but in the event of mismatch lists the
4145
// values that are included in one container but not the other. (Duplicate
4146
// values and order differences are not explained.)
4147
template <typename Container>
4148
inline PolymorphicMatcher<internal::ContainerEqMatcher<  // NOLINT
4149
                            GTEST_REMOVE_CONST_(Container)> >
4150
    ContainerEq(const Container& rhs) {
4151
  // This following line is for working around a bug in MSVC 8.0,
4152
  // which causes Container to be a const type sometimes.
4153
  typedef GTEST_REMOVE_CONST_(Container) RawContainer;
4154
  return MakePolymorphicMatcher(
4155
      internal::ContainerEqMatcher<RawContainer>(rhs));
4156
}
4157
 
4158
// Returns a matcher that matches a container that, when sorted using
4159
// the given comparator, matches container_matcher.
4160
template <typename Comparator, typename ContainerMatcher>
4161
inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher>
4162
WhenSortedBy(const Comparator& comparator,
4163
             const ContainerMatcher& container_matcher) {
4164
  return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>(
4165
      comparator, container_matcher);
4166
}
4167
 
4168
// Returns a matcher that matches a container that, when sorted using
4169
// the < operator, matches container_matcher.
4170
template <typename ContainerMatcher>
4171
inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>
4172
WhenSorted(const ContainerMatcher& container_matcher) {
4173
  return
4174
      internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>(
4175
          internal::LessComparator(), container_matcher);
4176
}
4177
 
4178
// Matches an STL-style container or a native array that contains the
4179
// same number of elements as in rhs, where its i-th element and rhs's
4180
// i-th element (as a pair) satisfy the given pair matcher, for all i.
4181
// TupleMatcher must be able to be safely cast to Matcher<tuple<const
4182
// T1&, const T2&> >, where T1 and T2 are the types of elements in the
4183
// LHS container and the RHS container respectively.
4184
template <typename TupleMatcher, typename Container>
4185
inline internal::PointwiseMatcher<TupleMatcher,
4186
                                  GTEST_REMOVE_CONST_(Container)>
4187
Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) {
4188
  // This following line is for working around a bug in MSVC 8.0,
4189
  // which causes Container to be a const type sometimes (e.g. when
4190
  // rhs is a const int[])..
4191
  typedef GTEST_REMOVE_CONST_(Container) RawContainer;
4192
  return internal::PointwiseMatcher<TupleMatcher, RawContainer>(
4193
      tuple_matcher, rhs);
4194
}
4195
 
4196
#if GTEST_HAS_STD_INITIALIZER_LIST_
4197
 
4198
// Supports the Pointwise(m, {a, b, c}) syntax.
4199
template <typename TupleMatcher, typename T>
4200
inline internal::PointwiseMatcher<TupleMatcher, std::vector<T> > Pointwise(
4201
    const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) {
4202
  return Pointwise(tuple_matcher, std::vector<T>(rhs));
4203
}
4204
 
4205
#endif  // GTEST_HAS_STD_INITIALIZER_LIST_
4206
 
4207
// UnorderedPointwise(pair_matcher, rhs) matches an STL-style
4208
// container or a native array that contains the same number of
4209
// elements as in rhs, where in some permutation of the container, its
4210
// i-th element and rhs's i-th element (as a pair) satisfy the given
4211
// pair matcher, for all i.  Tuple2Matcher must be able to be safely
4212
// cast to Matcher<tuple<const T1&, const T2&> >, where T1 and T2 are
4213
// the types of elements in the LHS container and the RHS container
4214
// respectively.
4215
//
4216
// This is like Pointwise(pair_matcher, rhs), except that the element
4217
// order doesn't matter.
4218
template <typename Tuple2Matcher, typename RhsContainer>
4219
inline internal::UnorderedElementsAreArrayMatcher<
4220
    typename internal::BoundSecondMatcher<
4221
        Tuple2Matcher, typename internal::StlContainerView<GTEST_REMOVE_CONST_(
4222
                           RhsContainer)>::type::value_type> >
4223
UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
4224
                   const RhsContainer& rhs_container) {
4225
  // This following line is for working around a bug in MSVC 8.0,
4226
  // which causes RhsContainer to be a const type sometimes (e.g. when
4227
  // rhs_container is a const int[]).
4228
  typedef GTEST_REMOVE_CONST_(RhsContainer) RawRhsContainer;
4229
 
4230
  // RhsView allows the same code to handle RhsContainer being a
4231
  // STL-style container and it being a native C-style array.
4232
  typedef typename internal::StlContainerView<RawRhsContainer> RhsView;
4233
  typedef typename RhsView::type RhsStlContainer;
4234
  typedef typename RhsStlContainer::value_type Second;
4235
  const RhsStlContainer& rhs_stl_container =
4236
      RhsView::ConstReference(rhs_container);
4237
 
4238
  // Create a matcher for each element in rhs_container.
4239
  ::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second> > matchers;
4240
  for (typename RhsStlContainer::const_iterator it = rhs_stl_container.begin();
4241
       it != rhs_stl_container.end(); ++it) {
4242
    matchers.push_back(
4243
        internal::MatcherBindSecond(tuple2_matcher, *it));
4244
  }
4245
 
4246
  // Delegate the work to UnorderedElementsAreArray().
4247
  return UnorderedElementsAreArray(matchers);
4248
}
4249
 
4250
#if GTEST_HAS_STD_INITIALIZER_LIST_
4251
 
4252
// Supports the UnorderedPointwise(m, {a, b, c}) syntax.
4253
template <typename Tuple2Matcher, typename T>
4254
inline internal::UnorderedElementsAreArrayMatcher<
4255
    typename internal::BoundSecondMatcher<Tuple2Matcher, T> >
4256
UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
4257
                   std::initializer_list<T> rhs) {
4258
  return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs));
4259
}
4260
 
4261
#endif  // GTEST_HAS_STD_INITIALIZER_LIST_
4262
 
4263
// Matches an STL-style container or a native array that contains at
4264
// least one element matching the given value or matcher.
4265
//
4266
// Examples:
4267
//   ::std::set<int> page_ids;
4268
//   page_ids.insert(3);
4269
//   page_ids.insert(1);
4270
//   EXPECT_THAT(page_ids, Contains(1));
4271
//   EXPECT_THAT(page_ids, Contains(Gt(2)));
4272
//   EXPECT_THAT(page_ids, Not(Contains(4)));
4273
//
4274
//   ::std::map<int, size_t> page_lengths;
4275
//   page_lengths[1] = 100;
4276
//   EXPECT_THAT(page_lengths,
4277
//               Contains(::std::pair<const int, size_t>(1, 100)));
4278
//
4279
//   const char* user_ids[] = { "joe", "mike", "tom" };
4280
//   EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom"))));
4281
template <typename M>
4282
inline internal::ContainsMatcher<M> Contains(M matcher) {
4283
  return internal::ContainsMatcher<M>(matcher);
4284
}
4285
 
4286
// Matches an STL-style container or a native array that contains only
4287
// elements matching the given value or matcher.
4288
//
4289
// Each(m) is semantically equivalent to Not(Contains(Not(m))). Only
4290
// the messages are different.
4291
//
4292
// Examples:
4293
//   ::std::set<int> page_ids;
4294
//   // Each(m) matches an empty container, regardless of what m is.
4295
//   EXPECT_THAT(page_ids, Each(Eq(1)));
4296
//   EXPECT_THAT(page_ids, Each(Eq(77)));
4297
//
4298
//   page_ids.insert(3);
4299
//   EXPECT_THAT(page_ids, Each(Gt(0)));
4300
//   EXPECT_THAT(page_ids, Not(Each(Gt(4))));
4301
//   page_ids.insert(1);
4302
//   EXPECT_THAT(page_ids, Not(Each(Lt(2))));
4303
//
4304
//   ::std::map<int, size_t> page_lengths;
4305
//   page_lengths[1] = 100;
4306
//   page_lengths[2] = 200;
4307
//   page_lengths[3] = 300;
4308
//   EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100))));
4309
//   EXPECT_THAT(page_lengths, Each(Key(Le(3))));
4310
//
4311
//   const char* user_ids[] = { "joe", "mike", "tom" };
4312
//   EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom")))));
4313
template <typename M>
4314
inline internal::EachMatcher<M> Each(M matcher) {
4315
  return internal::EachMatcher<M>(matcher);
4316
}
4317
 
4318
// Key(inner_matcher) matches an std::pair whose 'first' field matches
4319
// inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an
4320
// std::map that contains at least one element whose key is >= 5.
4321
template <typename M>
4322
inline internal::KeyMatcher<M> Key(M inner_matcher) {
4323
  return internal::KeyMatcher<M>(inner_matcher);
4324
}
4325
 
4326
// Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field
4327
// matches first_matcher and whose 'second' field matches second_matcher.  For
4328
// example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used
4329
// to match a std::map<int, string> that contains exactly one element whose key
4330
// is >= 5 and whose value equals "foo".
4331
template <typename FirstMatcher, typename SecondMatcher>
4332
inline internal::PairMatcher<FirstMatcher, SecondMatcher>
4333
Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) {
4334
  return internal::PairMatcher<FirstMatcher, SecondMatcher>(
4335
      first_matcher, second_matcher);
4336
}
4337
 
4338
// Returns a predicate that is satisfied by anything that matches the
4339
// given matcher.
4340
template <typename M>
4341
inline internal::MatcherAsPredicate<M> Matches(M matcher) {
4342
  return internal::MatcherAsPredicate<M>(matcher);
4343
}
4344
 
4345
// Returns true iff the value matches the matcher.
4346
template <typename T, typename M>
4347
inline bool Value(const T& value, M matcher) {
4348
  return testing::Matches(matcher)(value);
4349
}
4350
 
4351
// Matches the value against the given matcher and explains the match
4352
// result to listener.
4353
template <typename T, typename M>
4354
inline bool ExplainMatchResult(
4355
    M matcher, const T& value, MatchResultListener* listener) {
4356
  return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener);
4357
}
4358
 
4359
#if GTEST_LANG_CXX11
4360
// Define variadic matcher versions. They are overloaded in
4361
// gmock-generated-matchers.h for the cases supported by pre C++11 compilers.
4362
template <typename... Args>
4363
inline internal::AllOfMatcher<Args...> AllOf(const Args&... matchers) {
4364
  return internal::AllOfMatcher<Args...>(matchers...);
4365
}
4366
 
4367
template <typename... Args>
4368
inline internal::AnyOfMatcher<Args...> AnyOf(const Args&... matchers) {
4369
  return internal::AnyOfMatcher<Args...>(matchers...);
4370
}
4371
 
4372
#endif  // GTEST_LANG_CXX11
4373
 
4374
// AllArgs(m) is a synonym of m.  This is useful in
4375
//
4376
//   EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq()));
4377
//
4378
// which is easier to read than
4379
//
4380
//   EXPECT_CALL(foo, Bar(_, _)).With(Eq());
4381
template <typename InnerMatcher>
4382
inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; }
4383
 
4384
// These macros allow using matchers to check values in Google Test
4385
// tests.  ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher)
4386
// succeed iff the value matches the matcher.  If the assertion fails,
4387
// the value and the description of the matcher will be printed.
4388
#define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\
4389
    ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
4390
#define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\
4391
    ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
4392
 
4393
}  // namespace testing
4394
 
4395
// Include any custom callback matchers added by the local installation.
4396
// We must include this header at the end to make sure it can use the
4397
// declarations from this file.
4398
#include "gmock/internal/custom/gmock-matchers.h"
4399
#endif  // GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.