OpenCores
URL https://opencores.org/ocsvn/s80186/s80186/trunk

Subversion Repositories s80186

[/] [s80186/] [trunk/] [vendor/] [googletest/] [googlemock/] [test/] [gmock-generated-matchers_test.cc] - Blame information for rev 2

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 2 jamieiles
// Copyright 2008, Google Inc.
2
// All rights reserved.
3
//
4
// Redistribution and use in source and binary forms, with or without
5
// modification, are permitted provided that the following conditions are
6
// met:
7
//
8
//     * Redistributions of source code must retain the above copyright
9
// notice, this list of conditions and the following disclaimer.
10
//     * Redistributions in binary form must reproduce the above
11
// copyright notice, this list of conditions and the following disclaimer
12
// in the documentation and/or other materials provided with the
13
// distribution.
14
//     * Neither the name of Google Inc. nor the names of its
15
// contributors may be used to endorse or promote products derived from
16
// this software without specific prior written permission.
17
//
18
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
 
30
// Google Mock - a framework for writing C++ mock classes.
31
//
32
// This file tests the built-in matchers generated by a script.
33
 
34
#include "gmock/gmock-generated-matchers.h"
35
 
36
#include <list>
37
#include <map>
38
#include <set>
39
#include <sstream>
40
#include <string>
41
#include <utility>
42
#include <vector>
43
 
44
#include "gmock/gmock.h"
45
#include "gtest/gtest.h"
46
#include "gtest/gtest-spi.h"
47
 
48
namespace {
49
 
50
using std::list;
51
using std::map;
52
using std::pair;
53
using std::set;
54
using std::stringstream;
55
using std::vector;
56
using testing::get;
57
using testing::make_tuple;
58
using testing::tuple;
59
using testing::_;
60
using testing::Args;
61
using testing::Contains;
62
using testing::ElementsAre;
63
using testing::ElementsAreArray;
64
using testing::Eq;
65
using testing::Ge;
66
using testing::Gt;
67
using testing::Le;
68
using testing::Lt;
69
using testing::MakeMatcher;
70
using testing::Matcher;
71
using testing::MatcherInterface;
72
using testing::MatchResultListener;
73
using testing::Ne;
74
using testing::Not;
75
using testing::Pointee;
76
using testing::PrintToString;
77
using testing::Ref;
78
using testing::StaticAssertTypeEq;
79
using testing::StrEq;
80
using testing::Value;
81
using testing::internal::ElementsAreArrayMatcher;
82
using testing::internal::string;
83
 
84
// Returns the description of the given matcher.
85
template <typename T>
86
string Describe(const Matcher<T>& m) {
87
  stringstream ss;
88
  m.DescribeTo(&ss);
89
  return ss.str();
90
}
91
 
92
// Returns the description of the negation of the given matcher.
93
template <typename T>
94
string DescribeNegation(const Matcher<T>& m) {
95
  stringstream ss;
96
  m.DescribeNegationTo(&ss);
97
  return ss.str();
98
}
99
 
100
// Returns the reason why x matches, or doesn't match, m.
101
template <typename MatcherType, typename Value>
102
string Explain(const MatcherType& m, const Value& x) {
103
  stringstream ss;
104
  m.ExplainMatchResultTo(x, &ss);
105
  return ss.str();
106
}
107
 
108
// Tests Args<k0, ..., kn>(m).
109
 
110
TEST(ArgsTest, AcceptsZeroTemplateArg) {
111
  const tuple<int, bool> t(5, true);
112
  EXPECT_THAT(t, Args<>(Eq(tuple<>())));
113
  EXPECT_THAT(t, Not(Args<>(Ne(tuple<>()))));
114
}
115
 
116
TEST(ArgsTest, AcceptsOneTemplateArg) {
117
  const tuple<int, bool> t(5, true);
118
  EXPECT_THAT(t, Args<0>(Eq(make_tuple(5))));
119
  EXPECT_THAT(t, Args<1>(Eq(make_tuple(true))));
120
  EXPECT_THAT(t, Not(Args<1>(Eq(make_tuple(false)))));
121
}
122
 
123
TEST(ArgsTest, AcceptsTwoTemplateArgs) {
124
  const tuple<short, int, long> t(4, 5, 6L);  // NOLINT
125
 
126
  EXPECT_THAT(t, (Args<0, 1>(Lt())));
127
  EXPECT_THAT(t, (Args<1, 2>(Lt())));
128
  EXPECT_THAT(t, Not(Args<0, 2>(Gt())));
129
}
130
 
131
TEST(ArgsTest, AcceptsRepeatedTemplateArgs) {
132
  const tuple<short, int, long> t(4, 5, 6L);  // NOLINT
133
  EXPECT_THAT(t, (Args<0, 0>(Eq())));
134
  EXPECT_THAT(t, Not(Args<1, 1>(Ne())));
135
}
136
 
137
TEST(ArgsTest, AcceptsDecreasingTemplateArgs) {
138
  const tuple<short, int, long> t(4, 5, 6L);  // NOLINT
139
  EXPECT_THAT(t, (Args<2, 0>(Gt())));
140
  EXPECT_THAT(t, Not(Args<2, 1>(Lt())));
141
}
142
 
143
// The MATCHER*() macros trigger warning C4100 (unreferenced formal
144
// parameter) in MSVC with -W4.  Unfortunately they cannot be fixed in
145
// the macro definition, as the warnings are generated when the macro
146
// is expanded and macro expansion cannot contain #pragma.  Therefore
147
// we suppress them here.
148
#ifdef _MSC_VER
149
# pragma warning(push)
150
# pragma warning(disable:4100)
151
#endif
152
 
153
MATCHER(SumIsZero, "") {
154
  return get<0>(arg) + get<1>(arg) + get<2>(arg) == 0;
155
}
156
 
157
TEST(ArgsTest, AcceptsMoreTemplateArgsThanArityOfOriginalTuple) {
158
  EXPECT_THAT(make_tuple(-1, 2), (Args<0, 0, 1>(SumIsZero())));
159
  EXPECT_THAT(make_tuple(1, 2), Not(Args<0, 0, 1>(SumIsZero())));
160
}
161
 
162
TEST(ArgsTest, CanBeNested) {
163
  const tuple<short, int, long, int> t(4, 5, 6L, 6);  // NOLINT
164
  EXPECT_THAT(t, (Args<1, 2, 3>(Args<1, 2>(Eq()))));
165
  EXPECT_THAT(t, (Args<0, 1, 3>(Args<0, 2>(Lt()))));
166
}
167
 
168
TEST(ArgsTest, CanMatchTupleByValue) {
169
  typedef tuple<char, int, int> Tuple3;
170
  const Matcher<Tuple3> m = Args<1, 2>(Lt());
171
  EXPECT_TRUE(m.Matches(Tuple3('a', 1, 2)));
172
  EXPECT_FALSE(m.Matches(Tuple3('b', 2, 2)));
173
}
174
 
175
TEST(ArgsTest, CanMatchTupleByReference) {
176
  typedef tuple<char, char, int> Tuple3;
177
  const Matcher<const Tuple3&> m = Args<0, 1>(Lt());
178
  EXPECT_TRUE(m.Matches(Tuple3('a', 'b', 2)));
179
  EXPECT_FALSE(m.Matches(Tuple3('b', 'b', 2)));
180
}
181
 
182
// Validates that arg is printed as str.
183
MATCHER_P(PrintsAs, str, "") {
184
  return testing::PrintToString(arg) == str;
185
}
186
 
187
TEST(ArgsTest, AcceptsTenTemplateArgs) {
188
  EXPECT_THAT(make_tuple(0, 1L, 2, 3L, 4, 5, 6, 7, 8, 9),
189
              (Args<9, 8, 7, 6, 5, 4, 3, 2, 1, 0>(
190
                  PrintsAs("(9, 8, 7, 6, 5, 4, 3, 2, 1, 0)"))));
191
  EXPECT_THAT(make_tuple(0, 1L, 2, 3L, 4, 5, 6, 7, 8, 9),
192
              Not(Args<9, 8, 7, 6, 5, 4, 3, 2, 1, 0>(
193
                      PrintsAs("(0, 8, 7, 6, 5, 4, 3, 2, 1, 0)"))));
194
}
195
 
196
TEST(ArgsTest, DescirbesSelfCorrectly) {
197
  const Matcher<tuple<int, bool, char> > m = Args<2, 0>(Lt());
198
  EXPECT_EQ("are a tuple whose fields (#2, #0) are a pair where "
199
            "the first < the second",
200
            Describe(m));
201
}
202
 
203
TEST(ArgsTest, DescirbesNestedArgsCorrectly) {
204
  const Matcher<const tuple<int, bool, char, int>&> m =
205
      Args<0, 2, 3>(Args<2, 0>(Lt()));
206
  EXPECT_EQ("are a tuple whose fields (#0, #2, #3) are a tuple "
207
            "whose fields (#2, #0) are a pair where the first < the second",
208
            Describe(m));
209
}
210
 
211
TEST(ArgsTest, DescribesNegationCorrectly) {
212
  const Matcher<tuple<int, char> > m = Args<1, 0>(Gt());
213
  EXPECT_EQ("are a tuple whose fields (#1, #0) aren't a pair "
214
            "where the first > the second",
215
            DescribeNegation(m));
216
}
217
 
218
TEST(ArgsTest, ExplainsMatchResultWithoutInnerExplanation) {
219
  const Matcher<tuple<bool, int, int> > m = Args<1, 2>(Eq());
220
  EXPECT_EQ("whose fields (#1, #2) are (42, 42)",
221
            Explain(m, make_tuple(false, 42, 42)));
222
  EXPECT_EQ("whose fields (#1, #2) are (42, 43)",
223
            Explain(m, make_tuple(false, 42, 43)));
224
}
225
 
226
// For testing Args<>'s explanation.
227
class LessThanMatcher : public MatcherInterface<tuple<char, int> > {
228
 public:
229
  virtual void DescribeTo(::std::ostream* os) const {}
230
 
231
  virtual bool MatchAndExplain(tuple<char, int> value,
232
                               MatchResultListener* listener) const {
233
    const int diff = get<0>(value) - get<1>(value);
234
    if (diff > 0) {
235
      *listener << "where the first value is " << diff
236
                << " more than the second";
237
    }
238
    return diff < 0;
239
  }
240
};
241
 
242
Matcher<tuple<char, int> > LessThan() {
243
  return MakeMatcher(new LessThanMatcher);
244
}
245
 
246
TEST(ArgsTest, ExplainsMatchResultWithInnerExplanation) {
247
  const Matcher<tuple<char, int, int> > m = Args<0, 2>(LessThan());
248
  EXPECT_EQ("whose fields (#0, #2) are ('a' (97, 0x61), 42), "
249
            "where the first value is 55 more than the second",
250
            Explain(m, make_tuple('a', 42, 42)));
251
  EXPECT_EQ("whose fields (#0, #2) are ('\\0', 43)",
252
            Explain(m, make_tuple('\0', 42, 43)));
253
}
254
 
255
// For testing ExplainMatchResultTo().
256
class GreaterThanMatcher : public MatcherInterface<int> {
257
 public:
258
  explicit GreaterThanMatcher(int rhs) : rhs_(rhs) {}
259
 
260
  virtual void DescribeTo(::std::ostream* os) const {
261
    *os << "is greater than " << rhs_;
262
  }
263
 
264
  virtual bool MatchAndExplain(int lhs,
265
                               MatchResultListener* listener) const {
266
    const int diff = lhs - rhs_;
267
    if (diff > 0) {
268
      *listener << "which is " << diff << " more than " << rhs_;
269
    } else if (diff == 0) {
270
      *listener << "which is the same as " << rhs_;
271
    } else {
272
      *listener << "which is " << -diff << " less than " << rhs_;
273
    }
274
 
275
    return lhs > rhs_;
276
  }
277
 
278
 private:
279
  int rhs_;
280
};
281
 
282
Matcher<int> GreaterThan(int n) {
283
  return MakeMatcher(new GreaterThanMatcher(n));
284
}
285
 
286
// Tests for ElementsAre().
287
 
288
TEST(ElementsAreTest, CanDescribeExpectingNoElement) {
289
  Matcher<const vector<int>&> m = ElementsAre();
290
  EXPECT_EQ("is empty", Describe(m));
291
}
292
 
293
TEST(ElementsAreTest, CanDescribeExpectingOneElement) {
294
  Matcher<vector<int> > m = ElementsAre(Gt(5));
295
  EXPECT_EQ("has 1 element that is > 5", Describe(m));
296
}
297
 
298
TEST(ElementsAreTest, CanDescribeExpectingManyElements) {
299
  Matcher<list<string> > m = ElementsAre(StrEq("one"), "two");
300
  EXPECT_EQ("has 2 elements where\n"
301
            "element #0 is equal to \"one\",\n"
302
            "element #1 is equal to \"two\"", Describe(m));
303
}
304
 
305
TEST(ElementsAreTest, CanDescribeNegationOfExpectingNoElement) {
306
  Matcher<vector<int> > m = ElementsAre();
307
  EXPECT_EQ("isn't empty", DescribeNegation(m));
308
}
309
 
310
TEST(ElementsAreTest, CanDescribeNegationOfExpectingOneElment) {
311
  Matcher<const list<int>& > m = ElementsAre(Gt(5));
312
  EXPECT_EQ("doesn't have 1 element, or\n"
313
            "element #0 isn't > 5", DescribeNegation(m));
314
}
315
 
316
TEST(ElementsAreTest, CanDescribeNegationOfExpectingManyElements) {
317
  Matcher<const list<string>& > m = ElementsAre("one", "two");
318
  EXPECT_EQ("doesn't have 2 elements, or\n"
319
            "element #0 isn't equal to \"one\", or\n"
320
            "element #1 isn't equal to \"two\"", DescribeNegation(m));
321
}
322
 
323
TEST(ElementsAreTest, DoesNotExplainTrivialMatch) {
324
  Matcher<const list<int>& > m = ElementsAre(1, Ne(2));
325
 
326
  list<int> test_list;
327
  test_list.push_back(1);
328
  test_list.push_back(3);
329
  EXPECT_EQ("", Explain(m, test_list));  // No need to explain anything.
330
}
331
 
332
TEST(ElementsAreTest, ExplainsNonTrivialMatch) {
333
  Matcher<const vector<int>& > m =
334
      ElementsAre(GreaterThan(1), 0, GreaterThan(2));
335
 
336
  const int a[] = { 10, 0, 100 };
337
  vector<int> test_vector(a, a + GTEST_ARRAY_SIZE_(a));
338
  EXPECT_EQ("whose element #0 matches, which is 9 more than 1,\n"
339
            "and whose element #2 matches, which is 98 more than 2",
340
            Explain(m, test_vector));
341
}
342
 
343
TEST(ElementsAreTest, CanExplainMismatchWrongSize) {
344
  Matcher<const list<int>& > m = ElementsAre(1, 3);
345
 
346
  list<int> test_list;
347
  // No need to explain when the container is empty.
348
  EXPECT_EQ("", Explain(m, test_list));
349
 
350
  test_list.push_back(1);
351
  EXPECT_EQ("which has 1 element", Explain(m, test_list));
352
}
353
 
354
TEST(ElementsAreTest, CanExplainMismatchRightSize) {
355
  Matcher<const vector<int>& > m = ElementsAre(1, GreaterThan(5));
356
 
357
  vector<int> v;
358
  v.push_back(2);
359
  v.push_back(1);
360
  EXPECT_EQ("whose element #0 doesn't match", Explain(m, v));
361
 
362
  v[0] = 1;
363
  EXPECT_EQ("whose element #1 doesn't match, which is 4 less than 5",
364
            Explain(m, v));
365
}
366
 
367
TEST(ElementsAreTest, MatchesOneElementVector) {
368
  vector<string> test_vector;
369
  test_vector.push_back("test string");
370
 
371
  EXPECT_THAT(test_vector, ElementsAre(StrEq("test string")));
372
}
373
 
374
TEST(ElementsAreTest, MatchesOneElementList) {
375
  list<string> test_list;
376
  test_list.push_back("test string");
377
 
378
  EXPECT_THAT(test_list, ElementsAre("test string"));
379
}
380
 
381
TEST(ElementsAreTest, MatchesThreeElementVector) {
382
  vector<string> test_vector;
383
  test_vector.push_back("one");
384
  test_vector.push_back("two");
385
  test_vector.push_back("three");
386
 
387
  EXPECT_THAT(test_vector, ElementsAre("one", StrEq("two"), _));
388
}
389
 
390
TEST(ElementsAreTest, MatchesOneElementEqMatcher) {
391
  vector<int> test_vector;
392
  test_vector.push_back(4);
393
 
394
  EXPECT_THAT(test_vector, ElementsAre(Eq(4)));
395
}
396
 
397
TEST(ElementsAreTest, MatchesOneElementAnyMatcher) {
398
  vector<int> test_vector;
399
  test_vector.push_back(4);
400
 
401
  EXPECT_THAT(test_vector, ElementsAre(_));
402
}
403
 
404
TEST(ElementsAreTest, MatchesOneElementValue) {
405
  vector<int> test_vector;
406
  test_vector.push_back(4);
407
 
408
  EXPECT_THAT(test_vector, ElementsAre(4));
409
}
410
 
411
TEST(ElementsAreTest, MatchesThreeElementsMixedMatchers) {
412
  vector<int> test_vector;
413
  test_vector.push_back(1);
414
  test_vector.push_back(2);
415
  test_vector.push_back(3);
416
 
417
  EXPECT_THAT(test_vector, ElementsAre(1, Eq(2), _));
418
}
419
 
420
TEST(ElementsAreTest, MatchesTenElementVector) {
421
  const int a[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
422
  vector<int> test_vector(a, a + GTEST_ARRAY_SIZE_(a));
423
 
424
  EXPECT_THAT(test_vector,
425
              // The element list can contain values and/or matchers
426
              // of different types.
427
              ElementsAre(0, Ge(0), _, 3, 4, Ne(2), Eq(6), 7, 8, _));
428
}
429
 
430
TEST(ElementsAreTest, DoesNotMatchWrongSize) {
431
  vector<string> test_vector;
432
  test_vector.push_back("test string");
433
  test_vector.push_back("test string");
434
 
435
  Matcher<vector<string> > m = ElementsAre(StrEq("test string"));
436
  EXPECT_FALSE(m.Matches(test_vector));
437
}
438
 
439
TEST(ElementsAreTest, DoesNotMatchWrongValue) {
440
  vector<string> test_vector;
441
  test_vector.push_back("other string");
442
 
443
  Matcher<vector<string> > m = ElementsAre(StrEq("test string"));
444
  EXPECT_FALSE(m.Matches(test_vector));
445
}
446
 
447
TEST(ElementsAreTest, DoesNotMatchWrongOrder) {
448
  vector<string> test_vector;
449
  test_vector.push_back("one");
450
  test_vector.push_back("three");
451
  test_vector.push_back("two");
452
 
453
  Matcher<vector<string> > m = ElementsAre(
454
    StrEq("one"), StrEq("two"), StrEq("three"));
455
  EXPECT_FALSE(m.Matches(test_vector));
456
}
457
 
458
TEST(ElementsAreTest, WorksForNestedContainer) {
459
  const char* strings[] = {
460
    "Hi",
461
    "world"
462
  };
463
 
464
  vector<list<char> > nested;
465
  for (size_t i = 0; i < GTEST_ARRAY_SIZE_(strings); i++) {
466
    nested.push_back(list<char>(strings[i], strings[i] + strlen(strings[i])));
467
  }
468
 
469
  EXPECT_THAT(nested, ElementsAre(ElementsAre('H', Ne('e')),
470
                                  ElementsAre('w', 'o', _, _, 'd')));
471
  EXPECT_THAT(nested, Not(ElementsAre(ElementsAre('H', 'e'),
472
                                      ElementsAre('w', 'o', _, _, 'd'))));
473
}
474
 
475
TEST(ElementsAreTest, WorksWithByRefElementMatchers) {
476
  int a[] = { 0, 1, 2 };
477
  vector<int> v(a, a + GTEST_ARRAY_SIZE_(a));
478
 
479
  EXPECT_THAT(v, ElementsAre(Ref(v[0]), Ref(v[1]), Ref(v[2])));
480
  EXPECT_THAT(v, Not(ElementsAre(Ref(v[0]), Ref(v[1]), Ref(a[2]))));
481
}
482
 
483
TEST(ElementsAreTest, WorksWithContainerPointerUsingPointee) {
484
  int a[] = { 0, 1, 2 };
485
  vector<int> v(a, a + GTEST_ARRAY_SIZE_(a));
486
 
487
  EXPECT_THAT(&v, Pointee(ElementsAre(0, 1, _)));
488
  EXPECT_THAT(&v, Not(Pointee(ElementsAre(0, _, 3))));
489
}
490
 
491
TEST(ElementsAreTest, WorksWithNativeArrayPassedByReference) {
492
  int array[] = { 0, 1, 2 };
493
  EXPECT_THAT(array, ElementsAre(0, 1, _));
494
  EXPECT_THAT(array, Not(ElementsAre(1, _, _)));
495
  EXPECT_THAT(array, Not(ElementsAre(0, _)));
496
}
497
 
498
class NativeArrayPassedAsPointerAndSize {
499
 public:
500
  NativeArrayPassedAsPointerAndSize() {}
501
 
502
  MOCK_METHOD2(Helper, void(int* array, int size));
503
 
504
 private:
505
  GTEST_DISALLOW_COPY_AND_ASSIGN_(NativeArrayPassedAsPointerAndSize);
506
};
507
 
508
TEST(ElementsAreTest, WorksWithNativeArrayPassedAsPointerAndSize) {
509
  int array[] = { 0, 1 };
510
  ::testing::tuple<int*, size_t> array_as_tuple(array, 2);
511
  EXPECT_THAT(array_as_tuple, ElementsAre(0, 1));
512
  EXPECT_THAT(array_as_tuple, Not(ElementsAre(0)));
513
 
514
  NativeArrayPassedAsPointerAndSize helper;
515
  EXPECT_CALL(helper, Helper(_, _))
516
      .With(ElementsAre(0, 1));
517
  helper.Helper(array, 2);
518
}
519
 
520
TEST(ElementsAreTest, WorksWithTwoDimensionalNativeArray) {
521
  const char a2[][3] = { "hi", "lo" };
522
  EXPECT_THAT(a2, ElementsAre(ElementsAre('h', 'i', '\0'),
523
                              ElementsAre('l', 'o', '\0')));
524
  EXPECT_THAT(a2, ElementsAre(StrEq("hi"), StrEq("lo")));
525
  EXPECT_THAT(a2, ElementsAre(Not(ElementsAre('h', 'o', '\0')),
526
                              ElementsAre('l', 'o', '\0')));
527
}
528
 
529
TEST(ElementsAreTest, AcceptsStringLiteral) {
530
  string array[] = { "hi", "one", "two" };
531
  EXPECT_THAT(array, ElementsAre("hi", "one", "two"));
532
  EXPECT_THAT(array, Not(ElementsAre("hi", "one", "too")));
533
}
534
 
535
#ifndef _MSC_VER
536
 
537
// The following test passes a value of type const char[] to a
538
// function template that expects const T&.  Some versions of MSVC
539
// generates a compiler error C2665 for that.  We believe it's a bug
540
// in MSVC.  Therefore this test is #if-ed out for MSVC.
541
 
542
// Declared here with the size unknown.  Defined AFTER the following test.
543
extern const char kHi[];
544
 
545
TEST(ElementsAreTest, AcceptsArrayWithUnknownSize) {
546
  // The size of kHi is not known in this test, but ElementsAre() should
547
  // still accept it.
548
 
549
  string array1[] = { "hi" };
550
  EXPECT_THAT(array1, ElementsAre(kHi));
551
 
552
  string array2[] = { "ho" };
553
  EXPECT_THAT(array2, Not(ElementsAre(kHi)));
554
}
555
 
556
const char kHi[] = "hi";
557
 
558
#endif  // _MSC_VER
559
 
560
TEST(ElementsAreTest, MakesCopyOfArguments) {
561
  int x = 1;
562
  int y = 2;
563
  // This should make a copy of x and y.
564
  ::testing::internal::ElementsAreMatcher<testing::tuple<int, int> >
565
          polymorphic_matcher = ElementsAre(x, y);
566
  // Changing x and y now shouldn't affect the meaning of the above matcher.
567
  x = y = 0;
568
  const int array1[] = { 1, 2 };
569
  EXPECT_THAT(array1, polymorphic_matcher);
570
  const int array2[] = { 0, 0 };
571
  EXPECT_THAT(array2, Not(polymorphic_matcher));
572
}
573
 
574
 
575
// Tests for ElementsAreArray().  Since ElementsAreArray() shares most
576
// of the implementation with ElementsAre(), we don't test it as
577
// thoroughly here.
578
 
579
TEST(ElementsAreArrayTest, CanBeCreatedWithValueArray) {
580
  const int a[] = { 1, 2, 3 };
581
 
582
  vector<int> test_vector(a, a + GTEST_ARRAY_SIZE_(a));
583
  EXPECT_THAT(test_vector, ElementsAreArray(a));
584
 
585
  test_vector[2] = 0;
586
  EXPECT_THAT(test_vector, Not(ElementsAreArray(a)));
587
}
588
 
589
TEST(ElementsAreArrayTest, CanBeCreatedWithArraySize) {
590
  const char* a[] = { "one", "two", "three" };
591
 
592
  vector<string> test_vector(a, a + GTEST_ARRAY_SIZE_(a));
593
  EXPECT_THAT(test_vector, ElementsAreArray(a, GTEST_ARRAY_SIZE_(a)));
594
 
595
  const char** p = a;
596
  test_vector[0] = "1";
597
  EXPECT_THAT(test_vector, Not(ElementsAreArray(p, GTEST_ARRAY_SIZE_(a))));
598
}
599
 
600
TEST(ElementsAreArrayTest, CanBeCreatedWithoutArraySize) {
601
  const char* a[] = { "one", "two", "three" };
602
 
603
  vector<string> test_vector(a, a + GTEST_ARRAY_SIZE_(a));
604
  EXPECT_THAT(test_vector, ElementsAreArray(a));
605
 
606
  test_vector[0] = "1";
607
  EXPECT_THAT(test_vector, Not(ElementsAreArray(a)));
608
}
609
 
610
TEST(ElementsAreArrayTest, CanBeCreatedWithMatcherArray) {
611
  const Matcher<string> kMatcherArray[] =
612
    { StrEq("one"), StrEq("two"), StrEq("three") };
613
 
614
  vector<string> test_vector;
615
  test_vector.push_back("one");
616
  test_vector.push_back("two");
617
  test_vector.push_back("three");
618
  EXPECT_THAT(test_vector, ElementsAreArray(kMatcherArray));
619
 
620
  test_vector.push_back("three");
621
  EXPECT_THAT(test_vector, Not(ElementsAreArray(kMatcherArray)));
622
}
623
 
624
TEST(ElementsAreArrayTest, CanBeCreatedWithVector) {
625
  const int a[] = { 1, 2, 3 };
626
  vector<int> test_vector(a, a + GTEST_ARRAY_SIZE_(a));
627
  const vector<int> expected(a, a + GTEST_ARRAY_SIZE_(a));
628
  EXPECT_THAT(test_vector, ElementsAreArray(expected));
629
  test_vector.push_back(4);
630
  EXPECT_THAT(test_vector, Not(ElementsAreArray(expected)));
631
}
632
 
633
#if GTEST_HAS_STD_INITIALIZER_LIST_
634
 
635
TEST(ElementsAreArrayTest, TakesInitializerList) {
636
  const int a[5] = { 1, 2, 3, 4, 5 };
637
  EXPECT_THAT(a, ElementsAreArray({ 1, 2, 3, 4, 5 }));
638
  EXPECT_THAT(a, Not(ElementsAreArray({ 1, 2, 3, 5, 4 })));
639
  EXPECT_THAT(a, Not(ElementsAreArray({ 1, 2, 3, 4, 6 })));
640
}
641
 
642
TEST(ElementsAreArrayTest, TakesInitializerListOfCStrings) {
643
  const string a[5] = { "a", "b", "c", "d", "e" };
644
  EXPECT_THAT(a, ElementsAreArray({ "a", "b", "c", "d", "e" }));
645
  EXPECT_THAT(a, Not(ElementsAreArray({ "a", "b", "c", "e", "d" })));
646
  EXPECT_THAT(a, Not(ElementsAreArray({ "a", "b", "c", "d", "ef" })));
647
}
648
 
649
TEST(ElementsAreArrayTest, TakesInitializerListOfSameTypedMatchers) {
650
  const int a[5] = { 1, 2, 3, 4, 5 };
651
  EXPECT_THAT(a, ElementsAreArray(
652
      { Eq(1), Eq(2), Eq(3), Eq(4), Eq(5) }));
653
  EXPECT_THAT(a, Not(ElementsAreArray(
654
      { Eq(1), Eq(2), Eq(3), Eq(4), Eq(6) })));
655
}
656
 
657
TEST(ElementsAreArrayTest,
658
     TakesInitializerListOfDifferentTypedMatchers) {
659
  const int a[5] = { 1, 2, 3, 4, 5 };
660
  // The compiler cannot infer the type of the initializer list if its
661
  // elements have different types.  We must explicitly specify the
662
  // unified element type in this case.
663
  EXPECT_THAT(a, ElementsAreArray<Matcher<int> >(
664
      { Eq(1), Ne(-2), Ge(3), Le(4), Eq(5) }));
665
  EXPECT_THAT(a, Not(ElementsAreArray<Matcher<int> >(
666
      { Eq(1), Ne(-2), Ge(3), Le(4), Eq(6) })));
667
}
668
 
669
#endif  // GTEST_HAS_STD_INITIALIZER_LIST_
670
 
671
TEST(ElementsAreArrayTest, CanBeCreatedWithMatcherVector) {
672
  const int a[] = { 1, 2, 3 };
673
  const Matcher<int> kMatchers[] = { Eq(1), Eq(2), Eq(3) };
674
  vector<int> test_vector(a, a + GTEST_ARRAY_SIZE_(a));
675
  const vector<Matcher<int> > expected(
676
      kMatchers, kMatchers + GTEST_ARRAY_SIZE_(kMatchers));
677
  EXPECT_THAT(test_vector, ElementsAreArray(expected));
678
  test_vector.push_back(4);
679
  EXPECT_THAT(test_vector, Not(ElementsAreArray(expected)));
680
}
681
 
682
TEST(ElementsAreArrayTest, CanBeCreatedWithIteratorRange) {
683
  const int a[] = { 1, 2, 3 };
684
  const vector<int> test_vector(a, a + GTEST_ARRAY_SIZE_(a));
685
  const vector<int> expected(a, a + GTEST_ARRAY_SIZE_(a));
686
  EXPECT_THAT(test_vector, ElementsAreArray(expected.begin(), expected.end()));
687
  // Pointers are iterators, too.
688
  EXPECT_THAT(test_vector, ElementsAreArray(a, a + GTEST_ARRAY_SIZE_(a)));
689
  // The empty range of NULL pointers should also be okay.
690
  int* const null_int = NULL;
691
  EXPECT_THAT(test_vector, Not(ElementsAreArray(null_int, null_int)));
692
  EXPECT_THAT((vector<int>()), ElementsAreArray(null_int, null_int));
693
}
694
 
695
// Since ElementsAre() and ElementsAreArray() share much of the
696
// implementation, we only do a sanity test for native arrays here.
697
TEST(ElementsAreArrayTest, WorksWithNativeArray) {
698
  ::std::string a[] = { "hi", "ho" };
699
  ::std::string b[] = { "hi", "ho" };
700
 
701
  EXPECT_THAT(a, ElementsAreArray(b));
702
  EXPECT_THAT(a, ElementsAreArray(b, 2));
703
  EXPECT_THAT(a, Not(ElementsAreArray(b, 1)));
704
}
705
 
706
TEST(ElementsAreArrayTest, SourceLifeSpan) {
707
  const int a[] = { 1, 2, 3 };
708
  vector<int> test_vector(a, a + GTEST_ARRAY_SIZE_(a));
709
  vector<int> expect(a, a + GTEST_ARRAY_SIZE_(a));
710
  ElementsAreArrayMatcher<int> matcher_maker =
711
      ElementsAreArray(expect.begin(), expect.end());
712
  EXPECT_THAT(test_vector, matcher_maker);
713
  // Changing in place the values that initialized matcher_maker should not
714
  // affect matcher_maker anymore. It should have made its own copy of them.
715
  typedef vector<int>::iterator Iter;
716
  for (Iter it = expect.begin(); it != expect.end(); ++it) { *it += 10; }
717
  EXPECT_THAT(test_vector, matcher_maker);
718
  test_vector.push_back(3);
719
  EXPECT_THAT(test_vector, Not(matcher_maker));
720
}
721
 
722
// Tests for the MATCHER*() macro family.
723
 
724
// Tests that a simple MATCHER() definition works.
725
 
726
MATCHER(IsEven, "") { return (arg % 2) == 0; }
727
 
728
TEST(MatcherMacroTest, Works) {
729
  const Matcher<int> m = IsEven();
730
  EXPECT_TRUE(m.Matches(6));
731
  EXPECT_FALSE(m.Matches(7));
732
 
733
  EXPECT_EQ("is even", Describe(m));
734
  EXPECT_EQ("not (is even)", DescribeNegation(m));
735
  EXPECT_EQ("", Explain(m, 6));
736
  EXPECT_EQ("", Explain(m, 7));
737
}
738
 
739
// This also tests that the description string can reference 'negation'.
740
MATCHER(IsEven2, negation ? "is odd" : "is even") {
741
  if ((arg % 2) == 0) {
742
    // Verifies that we can stream to result_listener, a listener
743
    // supplied by the MATCHER macro implicitly.
744
    *result_listener << "OK";
745
    return true;
746
  } else {
747
    *result_listener << "% 2 == " << (arg % 2);
748
    return false;
749
  }
750
}
751
 
752
// This also tests that the description string can reference matcher
753
// parameters.
754
MATCHER_P2(EqSumOf, x, y,
755
           string(negation ? "doesn't equal" : "equals") + " the sum of " +
756
           PrintToString(x) + " and " + PrintToString(y)) {
757
  if (arg == (x + y)) {
758
    *result_listener << "OK";
759
    return true;
760
  } else {
761
    // Verifies that we can stream to the underlying stream of
762
    // result_listener.
763
    if (result_listener->stream() != NULL) {
764
      *result_listener->stream() << "diff == " << (x + y - arg);
765
    }
766
    return false;
767
  }
768
}
769
 
770
// Tests that the matcher description can reference 'negation' and the
771
// matcher parameters.
772
TEST(MatcherMacroTest, DescriptionCanReferenceNegationAndParameters) {
773
  const Matcher<int> m1 = IsEven2();
774
  EXPECT_EQ("is even", Describe(m1));
775
  EXPECT_EQ("is odd", DescribeNegation(m1));
776
 
777
  const Matcher<int> m2 = EqSumOf(5, 9);
778
  EXPECT_EQ("equals the sum of 5 and 9", Describe(m2));
779
  EXPECT_EQ("doesn't equal the sum of 5 and 9", DescribeNegation(m2));
780
}
781
 
782
// Tests explaining match result in a MATCHER* macro.
783
TEST(MatcherMacroTest, CanExplainMatchResult) {
784
  const Matcher<int> m1 = IsEven2();
785
  EXPECT_EQ("OK", Explain(m1, 4));
786
  EXPECT_EQ("% 2 == 1", Explain(m1, 5));
787
 
788
  const Matcher<int> m2 = EqSumOf(1, 2);
789
  EXPECT_EQ("OK", Explain(m2, 3));
790
  EXPECT_EQ("diff == -1", Explain(m2, 4));
791
}
792
 
793
// Tests that the body of MATCHER() can reference the type of the
794
// value being matched.
795
 
796
MATCHER(IsEmptyString, "") {
797
  StaticAssertTypeEq< ::std::string, arg_type>();
798
  return arg == "";
799
}
800
 
801
MATCHER(IsEmptyStringByRef, "") {
802
  StaticAssertTypeEq<const ::std::string&, arg_type>();
803
  return arg == "";
804
}
805
 
806
TEST(MatcherMacroTest, CanReferenceArgType) {
807
  const Matcher< ::std::string> m1 = IsEmptyString();
808
  EXPECT_TRUE(m1.Matches(""));
809
 
810
  const Matcher<const ::std::string&> m2 = IsEmptyStringByRef();
811
  EXPECT_TRUE(m2.Matches(""));
812
}
813
 
814
// Tests that MATCHER() can be used in a namespace.
815
 
816
namespace matcher_test {
817
MATCHER(IsOdd, "") { return (arg % 2) != 0; }
818
}  // namespace matcher_test
819
 
820
TEST(MatcherMacroTest, WorksInNamespace) {
821
  Matcher<int> m = matcher_test::IsOdd();
822
  EXPECT_FALSE(m.Matches(4));
823
  EXPECT_TRUE(m.Matches(5));
824
}
825
 
826
// Tests that Value() can be used to compose matchers.
827
MATCHER(IsPositiveOdd, "") {
828
  return Value(arg, matcher_test::IsOdd()) && arg > 0;
829
}
830
 
831
TEST(MatcherMacroTest, CanBeComposedUsingValue) {
832
  EXPECT_THAT(3, IsPositiveOdd());
833
  EXPECT_THAT(4, Not(IsPositiveOdd()));
834
  EXPECT_THAT(-1, Not(IsPositiveOdd()));
835
}
836
 
837
// Tests that a simple MATCHER_P() definition works.
838
 
839
MATCHER_P(IsGreaterThan32And, n, "") { return arg > 32 && arg > n; }
840
 
841
TEST(MatcherPMacroTest, Works) {
842
  const Matcher<int> m = IsGreaterThan32And(5);
843
  EXPECT_TRUE(m.Matches(36));
844
  EXPECT_FALSE(m.Matches(5));
845
 
846
  EXPECT_EQ("is greater than 32 and 5", Describe(m));
847
  EXPECT_EQ("not (is greater than 32 and 5)", DescribeNegation(m));
848
  EXPECT_EQ("", Explain(m, 36));
849
  EXPECT_EQ("", Explain(m, 5));
850
}
851
 
852
// Tests that the description is calculated correctly from the matcher name.
853
MATCHER_P(_is_Greater_Than32and_, n, "") { return arg > 32 && arg > n; }
854
 
855
TEST(MatcherPMacroTest, GeneratesCorrectDescription) {
856
  const Matcher<int> m = _is_Greater_Than32and_(5);
857
 
858
  EXPECT_EQ("is greater than 32 and 5", Describe(m));
859
  EXPECT_EQ("not (is greater than 32 and 5)", DescribeNegation(m));
860
  EXPECT_EQ("", Explain(m, 36));
861
  EXPECT_EQ("", Explain(m, 5));
862
}
863
 
864
// Tests that a MATCHER_P matcher can be explicitly instantiated with
865
// a reference parameter type.
866
 
867
class UncopyableFoo {
868
 public:
869
  explicit UncopyableFoo(char value) : value_(value) {}
870
 private:
871
  UncopyableFoo(const UncopyableFoo&);
872
  void operator=(const UncopyableFoo&);
873
 
874
  char value_;
875
};
876
 
877
MATCHER_P(ReferencesUncopyable, variable, "") { return &arg == &variable; }
878
 
879
TEST(MatcherPMacroTest, WorksWhenExplicitlyInstantiatedWithReference) {
880
  UncopyableFoo foo1('1'), foo2('2');
881
  const Matcher<const UncopyableFoo&> m =
882
      ReferencesUncopyable<const UncopyableFoo&>(foo1);
883
 
884
  EXPECT_TRUE(m.Matches(foo1));
885
  EXPECT_FALSE(m.Matches(foo2));
886
 
887
  // We don't want the address of the parameter printed, as most
888
  // likely it will just annoy the user.  If the address is
889
  // interesting, the user should consider passing the parameter by
890
  // pointer instead.
891
  EXPECT_EQ("references uncopyable 1-byte object <31>", Describe(m));
892
}
893
 
894
 
895
// Tests that the body of MATCHER_Pn() can reference the parameter
896
// types.
897
 
898
MATCHER_P3(ParamTypesAreIntLongAndChar, foo, bar, baz, "") {
899
  StaticAssertTypeEq<int, foo_type>();
900
  StaticAssertTypeEq<long, bar_type>();  // NOLINT
901
  StaticAssertTypeEq<char, baz_type>();
902
  return arg == 0;
903
}
904
 
905
TEST(MatcherPnMacroTest, CanReferenceParamTypes) {
906
  EXPECT_THAT(0, ParamTypesAreIntLongAndChar(10, 20L, 'a'));
907
}
908
 
909
// Tests that a MATCHER_Pn matcher can be explicitly instantiated with
910
// reference parameter types.
911
 
912
MATCHER_P2(ReferencesAnyOf, variable1, variable2, "") {
913
  return &arg == &variable1 || &arg == &variable2;
914
}
915
 
916
TEST(MatcherPnMacroTest, WorksWhenExplicitlyInstantiatedWithReferences) {
917
  UncopyableFoo foo1('1'), foo2('2'), foo3('3');
918
  const Matcher<const UncopyableFoo&> m =
919
      ReferencesAnyOf<const UncopyableFoo&, const UncopyableFoo&>(foo1, foo2);
920
 
921
  EXPECT_TRUE(m.Matches(foo1));
922
  EXPECT_TRUE(m.Matches(foo2));
923
  EXPECT_FALSE(m.Matches(foo3));
924
}
925
 
926
TEST(MatcherPnMacroTest,
927
     GeneratesCorretDescriptionWhenExplicitlyInstantiatedWithReferences) {
928
  UncopyableFoo foo1('1'), foo2('2');
929
  const Matcher<const UncopyableFoo&> m =
930
      ReferencesAnyOf<const UncopyableFoo&, const UncopyableFoo&>(foo1, foo2);
931
 
932
  // We don't want the addresses of the parameters printed, as most
933
  // likely they will just annoy the user.  If the addresses are
934
  // interesting, the user should consider passing the parameters by
935
  // pointers instead.
936
  EXPECT_EQ("references any of (1-byte object <31>, 1-byte object <32>)",
937
            Describe(m));
938
}
939
 
940
// Tests that a simple MATCHER_P2() definition works.
941
 
942
MATCHER_P2(IsNotInClosedRange, low, hi, "") { return arg < low || arg > hi; }
943
 
944
TEST(MatcherPnMacroTest, Works) {
945
  const Matcher<const long&> m = IsNotInClosedRange(10, 20);  // NOLINT
946
  EXPECT_TRUE(m.Matches(36L));
947
  EXPECT_FALSE(m.Matches(15L));
948
 
949
  EXPECT_EQ("is not in closed range (10, 20)", Describe(m));
950
  EXPECT_EQ("not (is not in closed range (10, 20))", DescribeNegation(m));
951
  EXPECT_EQ("", Explain(m, 36L));
952
  EXPECT_EQ("", Explain(m, 15L));
953
}
954
 
955
// Tests that MATCHER*() definitions can be overloaded on the number
956
// of parameters; also tests MATCHER_Pn() where n >= 3.
957
 
958
MATCHER(EqualsSumOf, "") { return arg == 0; }
959
MATCHER_P(EqualsSumOf, a, "") { return arg == a; }
960
MATCHER_P2(EqualsSumOf, a, b, "") { return arg == a + b; }
961
MATCHER_P3(EqualsSumOf, a, b, c, "") { return arg == a + b + c; }
962
MATCHER_P4(EqualsSumOf, a, b, c, d, "") { return arg == a + b + c + d; }
963
MATCHER_P5(EqualsSumOf, a, b, c, d, e, "") { return arg == a + b + c + d + e; }
964
MATCHER_P6(EqualsSumOf, a, b, c, d, e, f, "") {
965
  return arg == a + b + c + d + e + f;
966
}
967
MATCHER_P7(EqualsSumOf, a, b, c, d, e, f, g, "") {
968
  return arg == a + b + c + d + e + f + g;
969
}
970
MATCHER_P8(EqualsSumOf, a, b, c, d, e, f, g, h, "") {
971
  return arg == a + b + c + d + e + f + g + h;
972
}
973
MATCHER_P9(EqualsSumOf, a, b, c, d, e, f, g, h, i, "") {
974
  return arg == a + b + c + d + e + f + g + h + i;
975
}
976
MATCHER_P10(EqualsSumOf, a, b, c, d, e, f, g, h, i, j, "") {
977
  return arg == a + b + c + d + e + f + g + h + i + j;
978
}
979
 
980
TEST(MatcherPnMacroTest, CanBeOverloadedOnNumberOfParameters) {
981
  EXPECT_THAT(0, EqualsSumOf());
982
  EXPECT_THAT(1, EqualsSumOf(1));
983
  EXPECT_THAT(12, EqualsSumOf(10, 2));
984
  EXPECT_THAT(123, EqualsSumOf(100, 20, 3));
985
  EXPECT_THAT(1234, EqualsSumOf(1000, 200, 30, 4));
986
  EXPECT_THAT(12345, EqualsSumOf(10000, 2000, 300, 40, 5));
987
  EXPECT_THAT("abcdef",
988
              EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f'));
989
  EXPECT_THAT("abcdefg",
990
              EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g'));
991
  EXPECT_THAT("abcdefgh",
992
              EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g',
993
                          "h"));
994
  EXPECT_THAT("abcdefghi",
995
              EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g',
996
                          "h", 'i'));
997
  EXPECT_THAT("abcdefghij",
998
              EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g',
999
                          "h", 'i', ::std::string("j")));
1000
 
1001
  EXPECT_THAT(1, Not(EqualsSumOf()));
1002
  EXPECT_THAT(-1, Not(EqualsSumOf(1)));
1003
  EXPECT_THAT(-12, Not(EqualsSumOf(10, 2)));
1004
  EXPECT_THAT(-123, Not(EqualsSumOf(100, 20, 3)));
1005
  EXPECT_THAT(-1234, Not(EqualsSumOf(1000, 200, 30, 4)));
1006
  EXPECT_THAT(-12345, Not(EqualsSumOf(10000, 2000, 300, 40, 5)));
1007
  EXPECT_THAT("abcdef ",
1008
              Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f')));
1009
  EXPECT_THAT("abcdefg ",
1010
              Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f',
1011
                              'g')));
1012
  EXPECT_THAT("abcdefgh ",
1013
              Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g',
1014
                              "h")));
1015
  EXPECT_THAT("abcdefghi ",
1016
              Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g',
1017
                              "h", 'i')));
1018
  EXPECT_THAT("abcdefghij ",
1019
              Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g',
1020
                              "h", 'i', ::std::string("j"))));
1021
}
1022
 
1023
// Tests that a MATCHER_Pn() definition can be instantiated with any
1024
// compatible parameter types.
1025
TEST(MatcherPnMacroTest, WorksForDifferentParameterTypes) {
1026
  EXPECT_THAT(123, EqualsSumOf(100L, 20, static_cast<char>(3)));
1027
  EXPECT_THAT("abcd", EqualsSumOf(::std::string("a"), "b", 'c', "d"));
1028
 
1029
  EXPECT_THAT(124, Not(EqualsSumOf(100L, 20, static_cast<char>(3))));
1030
  EXPECT_THAT("abcde", Not(EqualsSumOf(::std::string("a"), "b", 'c', "d")));
1031
}
1032
 
1033
// Tests that the matcher body can promote the parameter types.
1034
 
1035
MATCHER_P2(EqConcat, prefix, suffix, "") {
1036
  // The following lines promote the two parameters to desired types.
1037
  std::string prefix_str(prefix);
1038
  char suffix_char = static_cast<char>(suffix);
1039
  return arg == prefix_str + suffix_char;
1040
}
1041
 
1042
TEST(MatcherPnMacroTest, SimpleTypePromotion) {
1043
  Matcher<std::string> no_promo =
1044
      EqConcat(std::string("foo"), 't');
1045
  Matcher<const std::string&> promo =
1046
      EqConcat("foo", static_cast<int>('t'));
1047
  EXPECT_FALSE(no_promo.Matches("fool"));
1048
  EXPECT_FALSE(promo.Matches("fool"));
1049
  EXPECT_TRUE(no_promo.Matches("foot"));
1050
  EXPECT_TRUE(promo.Matches("foot"));
1051
}
1052
 
1053
// Verifies the type of a MATCHER*.
1054
 
1055
TEST(MatcherPnMacroTest, TypesAreCorrect) {
1056
  // EqualsSumOf() must be assignable to a EqualsSumOfMatcher variable.
1057
  EqualsSumOfMatcher a0 = EqualsSumOf();
1058
 
1059
  // EqualsSumOf(1) must be assignable to a EqualsSumOfMatcherP variable.
1060
  EqualsSumOfMatcherP<int> a1 = EqualsSumOf(1);
1061
 
1062
  // EqualsSumOf(p1, ..., pk) must be assignable to a EqualsSumOfMatcherPk
1063
  // variable, and so on.
1064
  EqualsSumOfMatcherP2<int, char> a2 = EqualsSumOf(1, '2');
1065
  EqualsSumOfMatcherP3<int, int, char> a3 = EqualsSumOf(1, 2, '3');
1066
  EqualsSumOfMatcherP4<int, int, int, char> a4 = EqualsSumOf(1, 2, 3, '4');
1067
  EqualsSumOfMatcherP5<int, int, int, int, char> a5 =
1068
      EqualsSumOf(1, 2, 3, 4, '5');
1069
  EqualsSumOfMatcherP6<int, int, int, int, int, char> a6 =
1070
      EqualsSumOf(1, 2, 3, 4, 5, '6');
1071
  EqualsSumOfMatcherP7<int, int, int, int, int, int, char> a7 =
1072
      EqualsSumOf(1, 2, 3, 4, 5, 6, '7');
1073
  EqualsSumOfMatcherP8<int, int, int, int, int, int, int, char> a8 =
1074
      EqualsSumOf(1, 2, 3, 4, 5, 6, 7, '8');
1075
  EqualsSumOfMatcherP9<int, int, int, int, int, int, int, int, char> a9 =
1076
      EqualsSumOf(1, 2, 3, 4, 5, 6, 7, 8, '9');
1077
  EqualsSumOfMatcherP10<int, int, int, int, int, int, int, int, int, char> a10 =
1078
      EqualsSumOf(1, 2, 3, 4, 5, 6, 7, 8, 9, '0');
1079
 
1080
  // Avoid "unused variable" warnings.
1081
  (void)a0;
1082
  (void)a1;
1083
  (void)a2;
1084
  (void)a3;
1085
  (void)a4;
1086
  (void)a5;
1087
  (void)a6;
1088
  (void)a7;
1089
  (void)a8;
1090
  (void)a9;
1091
  (void)a10;
1092
}
1093
 
1094
// Tests that matcher-typed parameters can be used in Value() inside a
1095
// MATCHER_Pn definition.
1096
 
1097
// Succeeds if arg matches exactly 2 of the 3 matchers.
1098
MATCHER_P3(TwoOf, m1, m2, m3, "") {
1099
  const int count = static_cast<int>(Value(arg, m1))
1100
      + static_cast<int>(Value(arg, m2)) + static_cast<int>(Value(arg, m3));
1101
  return count == 2;
1102
}
1103
 
1104
TEST(MatcherPnMacroTest, CanUseMatcherTypedParameterInValue) {
1105
  EXPECT_THAT(42, TwoOf(Gt(0), Lt(50), Eq(10)));
1106
  EXPECT_THAT(0, Not(TwoOf(Gt(-1), Lt(1), Eq(0))));
1107
}
1108
 
1109
// Tests Contains().
1110
 
1111
TEST(ContainsTest, ListMatchesWhenElementIsInContainer) {
1112
  list<int> some_list;
1113
  some_list.push_back(3);
1114
  some_list.push_back(1);
1115
  some_list.push_back(2);
1116
  EXPECT_THAT(some_list, Contains(1));
1117
  EXPECT_THAT(some_list, Contains(Gt(2.5)));
1118
  EXPECT_THAT(some_list, Contains(Eq(2.0f)));
1119
 
1120
  list<string> another_list;
1121
  another_list.push_back("fee");
1122
  another_list.push_back("fie");
1123
  another_list.push_back("foe");
1124
  another_list.push_back("fum");
1125
  EXPECT_THAT(another_list, Contains(string("fee")));
1126
}
1127
 
1128
TEST(ContainsTest, ListDoesNotMatchWhenElementIsNotInContainer) {
1129
  list<int> some_list;
1130
  some_list.push_back(3);
1131
  some_list.push_back(1);
1132
  EXPECT_THAT(some_list, Not(Contains(4)));
1133
}
1134
 
1135
TEST(ContainsTest, SetMatchesWhenElementIsInContainer) {
1136
  set<int> some_set;
1137
  some_set.insert(3);
1138
  some_set.insert(1);
1139
  some_set.insert(2);
1140
  EXPECT_THAT(some_set, Contains(Eq(1.0)));
1141
  EXPECT_THAT(some_set, Contains(Eq(3.0f)));
1142
  EXPECT_THAT(some_set, Contains(2));
1143
 
1144
  set<const char*> another_set;
1145
  another_set.insert("fee");
1146
  another_set.insert("fie");
1147
  another_set.insert("foe");
1148
  another_set.insert("fum");
1149
  EXPECT_THAT(another_set, Contains(Eq(string("fum"))));
1150
}
1151
 
1152
TEST(ContainsTest, SetDoesNotMatchWhenElementIsNotInContainer) {
1153
  set<int> some_set;
1154
  some_set.insert(3);
1155
  some_set.insert(1);
1156
  EXPECT_THAT(some_set, Not(Contains(4)));
1157
 
1158
  set<const char*> c_string_set;
1159
  c_string_set.insert("hello");
1160
  EXPECT_THAT(c_string_set, Not(Contains(string("hello").c_str())));
1161
}
1162
 
1163
TEST(ContainsTest, ExplainsMatchResultCorrectly) {
1164
  const int a[2] = { 1, 2 };
1165
  Matcher<const int (&)[2]> m = Contains(2);
1166
  EXPECT_EQ("whose element #1 matches", Explain(m, a));
1167
 
1168
  m = Contains(3);
1169
  EXPECT_EQ("", Explain(m, a));
1170
 
1171
  m = Contains(GreaterThan(0));
1172
  EXPECT_EQ("whose element #0 matches, which is 1 more than 0", Explain(m, a));
1173
 
1174
  m = Contains(GreaterThan(10));
1175
  EXPECT_EQ("", Explain(m, a));
1176
}
1177
 
1178
TEST(ContainsTest, DescribesItselfCorrectly) {
1179
  Matcher<vector<int> > m = Contains(1);
1180
  EXPECT_EQ("contains at least one element that is equal to 1", Describe(m));
1181
 
1182
  Matcher<vector<int> > m2 = Not(m);
1183
  EXPECT_EQ("doesn't contain any element that is equal to 1", Describe(m2));
1184
}
1185
 
1186
TEST(ContainsTest, MapMatchesWhenElementIsInContainer) {
1187
  map<const char*, int> my_map;
1188
  const char* bar = "a string";
1189
  my_map[bar] = 2;
1190
  EXPECT_THAT(my_map, Contains(pair<const char* const, int>(bar, 2)));
1191
 
1192
  map<string, int> another_map;
1193
  another_map["fee"] = 1;
1194
  another_map["fie"] = 2;
1195
  another_map["foe"] = 3;
1196
  another_map["fum"] = 4;
1197
  EXPECT_THAT(another_map, Contains(pair<const string, int>(string("fee"), 1)));
1198
  EXPECT_THAT(another_map, Contains(pair<const string, int>("fie", 2)));
1199
}
1200
 
1201
TEST(ContainsTest, MapDoesNotMatchWhenElementIsNotInContainer) {
1202
  map<int, int> some_map;
1203
  some_map[1] = 11;
1204
  some_map[2] = 22;
1205
  EXPECT_THAT(some_map, Not(Contains(pair<const int, int>(2, 23))));
1206
}
1207
 
1208
TEST(ContainsTest, ArrayMatchesWhenElementIsInContainer) {
1209
  const char* string_array[] = { "fee", "fie", "foe", "fum" };
1210
  EXPECT_THAT(string_array, Contains(Eq(string("fum"))));
1211
}
1212
 
1213
TEST(ContainsTest, ArrayDoesNotMatchWhenElementIsNotInContainer) {
1214
  int int_array[] = { 1, 2, 3, 4 };
1215
  EXPECT_THAT(int_array, Not(Contains(5)));
1216
}
1217
 
1218
TEST(ContainsTest, AcceptsMatcher) {
1219
  const int a[] = { 1, 2, 3 };
1220
  EXPECT_THAT(a, Contains(Gt(2)));
1221
  EXPECT_THAT(a, Not(Contains(Gt(4))));
1222
}
1223
 
1224
TEST(ContainsTest, WorksForNativeArrayAsTuple) {
1225
  const int a[] = { 1, 2 };
1226
  const int* const pointer = a;
1227
  EXPECT_THAT(make_tuple(pointer, 2), Contains(1));
1228
  EXPECT_THAT(make_tuple(pointer, 2), Not(Contains(Gt(3))));
1229
}
1230
 
1231
TEST(ContainsTest, WorksForTwoDimensionalNativeArray) {
1232
  int a[][3] = { { 1, 2, 3 }, { 4, 5, 6 } };
1233
  EXPECT_THAT(a, Contains(ElementsAre(4, 5, 6)));
1234
  EXPECT_THAT(a, Contains(Contains(5)));
1235
  EXPECT_THAT(a, Not(Contains(ElementsAre(3, 4, 5))));
1236
  EXPECT_THAT(a, Contains(Not(Contains(5))));
1237
}
1238
 
1239
TEST(AllOfTest, HugeMatcher) {
1240
  // Verify that using AllOf with many arguments doesn't cause
1241
  // the compiler to exceed template instantiation depth limit.
1242
  EXPECT_THAT(0, testing::AllOf(_, _, _, _, _, _, _, _, _,
1243
                                testing::AllOf(_, _, _, _, _, _, _, _, _, _)));
1244
}
1245
 
1246
TEST(AnyOfTest, HugeMatcher) {
1247
  // Verify that using AnyOf with many arguments doesn't cause
1248
  // the compiler to exceed template instantiation depth limit.
1249
  EXPECT_THAT(0, testing::AnyOf(_, _, _, _, _, _, _, _, _,
1250
                                testing::AnyOf(_, _, _, _, _, _, _, _, _, _)));
1251
}
1252
 
1253
namespace adl_test {
1254
 
1255
// Verifies that the implementation of ::testing::AllOf and ::testing::AnyOf
1256
// don't issue unqualified recursive calls.  If they do, the argument dependent
1257
// name lookup will cause AllOf/AnyOf in the 'adl_test' namespace to be found
1258
// as a candidate and the compilation will break due to an ambiguous overload.
1259
 
1260
// The matcher must be in the same namespace as AllOf/AnyOf to make argument
1261
// dependent lookup find those.
1262
MATCHER(M, "") { return true; }
1263
 
1264
template <typename T1, typename T2>
1265
bool AllOf(const T1& t1, const T2& t2) { return true; }
1266
 
1267
TEST(AllOfTest, DoesNotCallAllOfUnqualified) {
1268
  EXPECT_THAT(42, testing::AllOf(
1269
      M(), M(), M(), M(), M(), M(), M(), M(), M(), M()));
1270
}
1271
 
1272
template <typename T1, typename T2> bool
1273
AnyOf(const T1& t1, const T2& t2) { return true; }
1274
 
1275
TEST(AnyOfTest, DoesNotCallAnyOfUnqualified) {
1276
  EXPECT_THAT(42, testing::AnyOf(
1277
      M(), M(), M(), M(), M(), M(), M(), M(), M(), M()));
1278
}
1279
 
1280
}  // namespace adl_test
1281
 
1282
#ifdef _MSC_VER
1283
# pragma warning(pop)
1284
#endif
1285
 
1286
}  // namespace

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.