OpenCores
URL https://opencores.org/ocsvn/s80186/s80186/trunk

Subversion Repositories s80186

[/] [s80186/] [trunk/] [vendor/] [googletest/] [googletest/] [include/] [gtest/] [gtest-printers.h] - Blame information for rev 2

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 2 jamieiles
// Copyright 2007, Google Inc.
2
// All rights reserved.
3
//
4
// Redistribution and use in source and binary forms, with or without
5
// modification, are permitted provided that the following conditions are
6
// met:
7
//
8
//     * Redistributions of source code must retain the above copyright
9
// notice, this list of conditions and the following disclaimer.
10
//     * Redistributions in binary form must reproduce the above
11
// copyright notice, this list of conditions and the following disclaimer
12
// in the documentation and/or other materials provided with the
13
// distribution.
14
//     * Neither the name of Google Inc. nor the names of its
15
// contributors may be used to endorse or promote products derived from
16
// this software without specific prior written permission.
17
//
18
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
//
30
// Author: wan@google.com (Zhanyong Wan)
31
 
32
// Google Test - The Google C++ Testing Framework
33
//
34
// This file implements a universal value printer that can print a
35
// value of any type T:
36
//
37
//   void ::testing::internal::UniversalPrinter<T>::Print(value, ostream_ptr);
38
//
39
// A user can teach this function how to print a class type T by
40
// defining either operator<<() or PrintTo() in the namespace that
41
// defines T.  More specifically, the FIRST defined function in the
42
// following list will be used (assuming T is defined in namespace
43
// foo):
44
//
45
//   1. foo::PrintTo(const T&, ostream*)
46
//   2. operator<<(ostream&, const T&) defined in either foo or the
47
//      global namespace.
48
//
49
// If none of the above is defined, it will print the debug string of
50
// the value if it is a protocol buffer, or print the raw bytes in the
51
// value otherwise.
52
//
53
// To aid debugging: when T is a reference type, the address of the
54
// value is also printed; when T is a (const) char pointer, both the
55
// pointer value and the NUL-terminated string it points to are
56
// printed.
57
//
58
// We also provide some convenient wrappers:
59
//
60
//   // Prints a value to a string.  For a (const or not) char
61
//   // pointer, the NUL-terminated string (but not the pointer) is
62
//   // printed.
63
//   std::string ::testing::PrintToString(const T& value);
64
//
65
//   // Prints a value tersely: for a reference type, the referenced
66
//   // value (but not the address) is printed; for a (const or not) char
67
//   // pointer, the NUL-terminated string (but not the pointer) is
68
//   // printed.
69
//   void ::testing::internal::UniversalTersePrint(const T& value, ostream*);
70
//
71
//   // Prints value using the type inferred by the compiler.  The difference
72
//   // from UniversalTersePrint() is that this function prints both the
73
//   // pointer and the NUL-terminated string for a (const or not) char pointer.
74
//   void ::testing::internal::UniversalPrint(const T& value, ostream*);
75
//
76
//   // Prints the fields of a tuple tersely to a string vector, one
77
//   // element for each field. Tuple support must be enabled in
78
//   // gtest-port.h.
79
//   std::vector<string> UniversalTersePrintTupleFieldsToStrings(
80
//       const Tuple& value);
81
//
82
// Known limitation:
83
//
84
// The print primitives print the elements of an STL-style container
85
// using the compiler-inferred type of *iter where iter is a
86
// const_iterator of the container.  When const_iterator is an input
87
// iterator but not a forward iterator, this inferred type may not
88
// match value_type, and the print output may be incorrect.  In
89
// practice, this is rarely a problem as for most containers
90
// const_iterator is a forward iterator.  We'll fix this if there's an
91
// actual need for it.  Note that this fix cannot rely on value_type
92
// being defined as many user-defined container types don't have
93
// value_type.
94
 
95
#ifndef GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_
96
#define GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_
97
 
98
#include <ostream>  // NOLINT
99
#include <sstream>
100
#include <string>
101
#include <utility>
102
#include <vector>
103
#include "gtest/internal/gtest-port.h"
104
#include "gtest/internal/gtest-internal.h"
105
 
106
#if GTEST_HAS_STD_TUPLE_
107
# include <tuple>
108
#endif
109
 
110
namespace testing {
111
 
112
// Definitions in the 'internal' and 'internal2' name spaces are
113
// subject to change without notice.  DO NOT USE THEM IN USER CODE!
114
namespace internal2 {
115
 
116
// Prints the given number of bytes in the given object to the given
117
// ostream.
118
GTEST_API_ void PrintBytesInObjectTo(const unsigned char* obj_bytes,
119
                                     size_t count,
120
                                     ::std::ostream* os);
121
 
122
// For selecting which printer to use when a given type has neither <<
123
// nor PrintTo().
124
enum TypeKind {
125
  kProtobuf,              // a protobuf type
126
  kConvertibleToInteger,  // a type implicitly convertible to BiggestInt
127
                          // (e.g. a named or unnamed enum type)
128
  kOtherType              // anything else
129
};
130
 
131
// TypeWithoutFormatter<T, kTypeKind>::PrintValue(value, os) is called
132
// by the universal printer to print a value of type T when neither
133
// operator<< nor PrintTo() is defined for T, where kTypeKind is the
134
// "kind" of T as defined by enum TypeKind.
135
template <typename T, TypeKind kTypeKind>
136
class TypeWithoutFormatter {
137
 public:
138
  // This default version is called when kTypeKind is kOtherType.
139
  static void PrintValue(const T& value, ::std::ostream* os) {
140
    PrintBytesInObjectTo(reinterpret_cast<const unsigned char*>(&value),
141
                         sizeof(value), os);
142
  }
143
};
144
 
145
// We print a protobuf using its ShortDebugString() when the string
146
// doesn't exceed this many characters; otherwise we print it using
147
// DebugString() for better readability.
148
const size_t kProtobufOneLinerMaxLength = 50;
149
 
150
template <typename T>
151
class TypeWithoutFormatter<T, kProtobuf> {
152
 public:
153
  static void PrintValue(const T& value, ::std::ostream* os) {
154
    const ::testing::internal::string short_str = value.ShortDebugString();
155
    const ::testing::internal::string pretty_str =
156
        short_str.length() <= kProtobufOneLinerMaxLength ?
157
        short_str : ("\n" + value.DebugString());
158
    *os << ("<" + pretty_str + ">");
159
  }
160
};
161
 
162
template <typename T>
163
class TypeWithoutFormatter<T, kConvertibleToInteger> {
164
 public:
165
  // Since T has no << operator or PrintTo() but can be implicitly
166
  // converted to BiggestInt, we print it as a BiggestInt.
167
  //
168
  // Most likely T is an enum type (either named or unnamed), in which
169
  // case printing it as an integer is the desired behavior.  In case
170
  // T is not an enum, printing it as an integer is the best we can do
171
  // given that it has no user-defined printer.
172
  static void PrintValue(const T& value, ::std::ostream* os) {
173
    const internal::BiggestInt kBigInt = value;
174
    *os << kBigInt;
175
  }
176
};
177
 
178
// Prints the given value to the given ostream.  If the value is a
179
// protocol message, its debug string is printed; if it's an enum or
180
// of a type implicitly convertible to BiggestInt, it's printed as an
181
// integer; otherwise the bytes in the value are printed.  This is
182
// what UniversalPrinter<T>::Print() does when it knows nothing about
183
// type T and T has neither << operator nor PrintTo().
184
//
185
// A user can override this behavior for a class type Foo by defining
186
// a << operator in the namespace where Foo is defined.
187
//
188
// We put this operator in namespace 'internal2' instead of 'internal'
189
// to simplify the implementation, as much code in 'internal' needs to
190
// use << in STL, which would conflict with our own << were it defined
191
// in 'internal'.
192
//
193
// Note that this operator<< takes a generic std::basic_ostream<Char,
194
// CharTraits> type instead of the more restricted std::ostream.  If
195
// we define it to take an std::ostream instead, we'll get an
196
// "ambiguous overloads" compiler error when trying to print a type
197
// Foo that supports streaming to std::basic_ostream<Char,
198
// CharTraits>, as the compiler cannot tell whether
199
// operator<<(std::ostream&, const T&) or
200
// operator<<(std::basic_stream<Char, CharTraits>, const Foo&) is more
201
// specific.
202
template <typename Char, typename CharTraits, typename T>
203
::std::basic_ostream<Char, CharTraits>& operator<<(
204
    ::std::basic_ostream<Char, CharTraits>& os, const T& x) {
205
  TypeWithoutFormatter<T,
206
      (internal::IsAProtocolMessage<T>::value ? kProtobuf :
207
       internal::ImplicitlyConvertible<const T&, internal::BiggestInt>::value ?
208
       kConvertibleToInteger : kOtherType)>::PrintValue(x, &os);
209
  return os;
210
}
211
 
212
}  // namespace internal2
213
}  // namespace testing
214
 
215
// This namespace MUST NOT BE NESTED IN ::testing, or the name look-up
216
// magic needed for implementing UniversalPrinter won't work.
217
namespace testing_internal {
218
 
219
// Used to print a value that is not an STL-style container when the
220
// user doesn't define PrintTo() for it.
221
template <typename T>
222
void DefaultPrintNonContainerTo(const T& value, ::std::ostream* os) {
223
  // With the following statement, during unqualified name lookup,
224
  // testing::internal2::operator<< appears as if it was declared in
225
  // the nearest enclosing namespace that contains both
226
  // ::testing_internal and ::testing::internal2, i.e. the global
227
  // namespace.  For more details, refer to the C++ Standard section
228
  // 7.3.4-1 [namespace.udir].  This allows us to fall back onto
229
  // testing::internal2::operator<< in case T doesn't come with a <<
230
  // operator.
231
  //
232
  // We cannot write 'using ::testing::internal2::operator<<;', which
233
  // gcc 3.3 fails to compile due to a compiler bug.
234
  using namespace ::testing::internal2;  // NOLINT
235
 
236
  // Assuming T is defined in namespace foo, in the next statement,
237
  // the compiler will consider all of:
238
  //
239
  //   1. foo::operator<< (thanks to Koenig look-up),
240
  //   2. ::operator<< (as the current namespace is enclosed in ::),
241
  //   3. testing::internal2::operator<< (thanks to the using statement above).
242
  //
243
  // The operator<< whose type matches T best will be picked.
244
  //
245
  // We deliberately allow #2 to be a candidate, as sometimes it's
246
  // impossible to define #1 (e.g. when foo is ::std, defining
247
  // anything in it is undefined behavior unless you are a compiler
248
  // vendor.).
249
  *os << value;
250
}
251
 
252
}  // namespace testing_internal
253
 
254
namespace testing {
255
namespace internal {
256
 
257
// FormatForComparison<ToPrint, OtherOperand>::Format(value) formats a
258
// value of type ToPrint that is an operand of a comparison assertion
259
// (e.g. ASSERT_EQ).  OtherOperand is the type of the other operand in
260
// the comparison, and is used to help determine the best way to
261
// format the value.  In particular, when the value is a C string
262
// (char pointer) and the other operand is an STL string object, we
263
// want to format the C string as a string, since we know it is
264
// compared by value with the string object.  If the value is a char
265
// pointer but the other operand is not an STL string object, we don't
266
// know whether the pointer is supposed to point to a NUL-terminated
267
// string, and thus want to print it as a pointer to be safe.
268
//
269
// INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM.
270
 
271
// The default case.
272
template <typename ToPrint, typename OtherOperand>
273
class FormatForComparison {
274
 public:
275
  static ::std::string Format(const ToPrint& value) {
276
    return ::testing::PrintToString(value);
277
  }
278
};
279
 
280
// Array.
281
template <typename ToPrint, size_t N, typename OtherOperand>
282
class FormatForComparison<ToPrint[N], OtherOperand> {
283
 public:
284
  static ::std::string Format(const ToPrint* value) {
285
    return FormatForComparison<const ToPrint*, OtherOperand>::Format(value);
286
  }
287
};
288
 
289
// By default, print C string as pointers to be safe, as we don't know
290
// whether they actually point to a NUL-terminated string.
291
 
292
#define GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(CharType)                \
293
  template <typename OtherOperand>                                      \
294
  class FormatForComparison<CharType*, OtherOperand> {                  \
295
   public:                                                              \
296
    static ::std::string Format(CharType* value) {                      \
297
      return ::testing::PrintToString(static_cast<const void*>(value)); \
298
    }                                                                   \
299
  }
300
 
301
GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(char);
302
GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const char);
303
GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(wchar_t);
304
GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const wchar_t);
305
 
306
#undef GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_
307
 
308
// If a C string is compared with an STL string object, we know it's meant
309
// to point to a NUL-terminated string, and thus can print it as a string.
310
 
311
#define GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(CharType, OtherStringType) \
312
  template <>                                                           \
313
  class FormatForComparison<CharType*, OtherStringType> {               \
314
   public:                                                              \
315
    static ::std::string Format(CharType* value) {                      \
316
      return ::testing::PrintToString(value);                           \
317
    }                                                                   \
318
  }
319
 
320
GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(char, ::std::string);
321
GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const char, ::std::string);
322
 
323
#if GTEST_HAS_GLOBAL_STRING
324
GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(char, ::string);
325
GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const char, ::string);
326
#endif
327
 
328
#if GTEST_HAS_GLOBAL_WSTRING
329
GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(wchar_t, ::wstring);
330
GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const wchar_t, ::wstring);
331
#endif
332
 
333
#if GTEST_HAS_STD_WSTRING
334
GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(wchar_t, ::std::wstring);
335
GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const wchar_t, ::std::wstring);
336
#endif
337
 
338
#undef GTEST_IMPL_FORMAT_C_STRING_AS_STRING_
339
 
340
// Formats a comparison assertion (e.g. ASSERT_EQ, EXPECT_LT, and etc)
341
// operand to be used in a failure message.  The type (but not value)
342
// of the other operand may affect the format.  This allows us to
343
// print a char* as a raw pointer when it is compared against another
344
// char* or void*, and print it as a C string when it is compared
345
// against an std::string object, for example.
346
//
347
// INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM.
348
template <typename T1, typename T2>
349
std::string FormatForComparisonFailureMessage(
350
    const T1& value, const T2& /* other_operand */) {
351
  return FormatForComparison<T1, T2>::Format(value);
352
}
353
 
354
// UniversalPrinter<T>::Print(value, ostream_ptr) prints the given
355
// value to the given ostream.  The caller must ensure that
356
// 'ostream_ptr' is not NULL, or the behavior is undefined.
357
//
358
// We define UniversalPrinter as a class template (as opposed to a
359
// function template), as we need to partially specialize it for
360
// reference types, which cannot be done with function templates.
361
template <typename T>
362
class UniversalPrinter;
363
 
364
template <typename T>
365
void UniversalPrint(const T& value, ::std::ostream* os);
366
 
367
// Used to print an STL-style container when the user doesn't define
368
// a PrintTo() for it.
369
template <typename C>
370
void DefaultPrintTo(IsContainer /* dummy */,
371
                    false_type /* is not a pointer */,
372
                    const C& container, ::std::ostream* os) {
373
  const size_t kMaxCount = 32;  // The maximum number of elements to print.
374
  *os << '{';
375
  size_t count = 0;
376
  for (typename C::const_iterator it = container.begin();
377
       it != container.end(); ++it, ++count) {
378
    if (count > 0) {
379
      *os << ',';
380
      if (count == kMaxCount) {  // Enough has been printed.
381
        *os << " ...";
382
        break;
383
      }
384
    }
385
    *os << ' ';
386
    // We cannot call PrintTo(*it, os) here as PrintTo() doesn't
387
    // handle *it being a native array.
388
    internal::UniversalPrint(*it, os);
389
  }
390
 
391
  if (count > 0) {
392
    *os << ' ';
393
  }
394
  *os << '}';
395
}
396
 
397
// Used to print a pointer that is neither a char pointer nor a member
398
// pointer, when the user doesn't define PrintTo() for it.  (A member
399
// variable pointer or member function pointer doesn't really point to
400
// a location in the address space.  Their representation is
401
// implementation-defined.  Therefore they will be printed as raw
402
// bytes.)
403
template <typename T>
404
void DefaultPrintTo(IsNotContainer /* dummy */,
405
                    true_type /* is a pointer */,
406
                    T* p, ::std::ostream* os) {
407
  if (p == NULL) {
408
    *os << "NULL";
409
  } else {
410
    // C++ doesn't allow casting from a function pointer to any object
411
    // pointer.
412
    //
413
    // IsTrue() silences warnings: "Condition is always true",
414
    // "unreachable code".
415
    if (IsTrue(ImplicitlyConvertible<T*, const void*>::value)) {
416
      // T is not a function type.  We just call << to print p,
417
      // relying on ADL to pick up user-defined << for their pointer
418
      // types, if any.
419
      *os << p;
420
    } else {
421
      // T is a function type, so '*os << p' doesn't do what we want
422
      // (it just prints p as bool).  We want to print p as a const
423
      // void*.  However, we cannot cast it to const void* directly,
424
      // even using reinterpret_cast, as earlier versions of gcc
425
      // (e.g. 3.4.5) cannot compile the cast when p is a function
426
      // pointer.  Casting to UInt64 first solves the problem.
427
      *os << reinterpret_cast<const void*>(
428
          reinterpret_cast<internal::UInt64>(p));
429
    }
430
  }
431
}
432
 
433
// Used to print a non-container, non-pointer value when the user
434
// doesn't define PrintTo() for it.
435
template <typename T>
436
void DefaultPrintTo(IsNotContainer /* dummy */,
437
                    false_type /* is not a pointer */,
438
                    const T& value, ::std::ostream* os) {
439
  ::testing_internal::DefaultPrintNonContainerTo(value, os);
440
}
441
 
442
// Prints the given value using the << operator if it has one;
443
// otherwise prints the bytes in it.  This is what
444
// UniversalPrinter<T>::Print() does when PrintTo() is not specialized
445
// or overloaded for type T.
446
//
447
// A user can override this behavior for a class type Foo by defining
448
// an overload of PrintTo() in the namespace where Foo is defined.  We
449
// give the user this option as sometimes defining a << operator for
450
// Foo is not desirable (e.g. the coding style may prevent doing it,
451
// or there is already a << operator but it doesn't do what the user
452
// wants).
453
template <typename T>
454
void PrintTo(const T& value, ::std::ostream* os) {
455
  // DefaultPrintTo() is overloaded.  The type of its first two
456
  // arguments determine which version will be picked.  If T is an
457
  // STL-style container, the version for container will be called; if
458
  // T is a pointer, the pointer version will be called; otherwise the
459
  // generic version will be called.
460
  //
461
  // Note that we check for container types here, prior to we check
462
  // for protocol message types in our operator<<.  The rationale is:
463
  //
464
  // For protocol messages, we want to give people a chance to
465
  // override Google Mock's format by defining a PrintTo() or
466
  // operator<<.  For STL containers, other formats can be
467
  // incompatible with Google Mock's format for the container
468
  // elements; therefore we check for container types here to ensure
469
  // that our format is used.
470
  //
471
  // The second argument of DefaultPrintTo() is needed to bypass a bug
472
  // in Symbian's C++ compiler that prevents it from picking the right
473
  // overload between:
474
  //
475
  //   PrintTo(const T& x, ...);
476
  //   PrintTo(T* x, ...);
477
  DefaultPrintTo(IsContainerTest<T>(0), is_pointer<T>(), value, os);
478
}
479
 
480
// The following list of PrintTo() overloads tells
481
// UniversalPrinter<T>::Print() how to print standard types (built-in
482
// types, strings, plain arrays, and pointers).
483
 
484
// Overloads for various char types.
485
GTEST_API_ void PrintTo(unsigned char c, ::std::ostream* os);
486
GTEST_API_ void PrintTo(signed char c, ::std::ostream* os);
487
inline void PrintTo(char c, ::std::ostream* os) {
488
  // When printing a plain char, we always treat it as unsigned.  This
489
  // way, the output won't be affected by whether the compiler thinks
490
  // char is signed or not.
491
  PrintTo(static_cast<unsigned char>(c), os);
492
}
493
 
494
// Overloads for other simple built-in types.
495
inline void PrintTo(bool x, ::std::ostream* os) {
496
  *os << (x ? "true" : "false");
497
}
498
 
499
// Overload for wchar_t type.
500
// Prints a wchar_t as a symbol if it is printable or as its internal
501
// code otherwise and also as its decimal code (except for L'\0').
502
// The L'\0' char is printed as "L'\\0'". The decimal code is printed
503
// as signed integer when wchar_t is implemented by the compiler
504
// as a signed type and is printed as an unsigned integer when wchar_t
505
// is implemented as an unsigned type.
506
GTEST_API_ void PrintTo(wchar_t wc, ::std::ostream* os);
507
 
508
// Overloads for C strings.
509
GTEST_API_ void PrintTo(const char* s, ::std::ostream* os);
510
inline void PrintTo(char* s, ::std::ostream* os) {
511
  PrintTo(ImplicitCast_<const char*>(s), os);
512
}
513
 
514
// signed/unsigned char is often used for representing binary data, so
515
// we print pointers to it as void* to be safe.
516
inline void PrintTo(const signed char* s, ::std::ostream* os) {
517
  PrintTo(ImplicitCast_<const void*>(s), os);
518
}
519
inline void PrintTo(signed char* s, ::std::ostream* os) {
520
  PrintTo(ImplicitCast_<const void*>(s), os);
521
}
522
inline void PrintTo(const unsigned char* s, ::std::ostream* os) {
523
  PrintTo(ImplicitCast_<const void*>(s), os);
524
}
525
inline void PrintTo(unsigned char* s, ::std::ostream* os) {
526
  PrintTo(ImplicitCast_<const void*>(s), os);
527
}
528
 
529
// MSVC can be configured to define wchar_t as a typedef of unsigned
530
// short.  It defines _NATIVE_WCHAR_T_DEFINED when wchar_t is a native
531
// type.  When wchar_t is a typedef, defining an overload for const
532
// wchar_t* would cause unsigned short* be printed as a wide string,
533
// possibly causing invalid memory accesses.
534
#if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED)
535
// Overloads for wide C strings
536
GTEST_API_ void PrintTo(const wchar_t* s, ::std::ostream* os);
537
inline void PrintTo(wchar_t* s, ::std::ostream* os) {
538
  PrintTo(ImplicitCast_<const wchar_t*>(s), os);
539
}
540
#endif
541
 
542
// Overload for C arrays.  Multi-dimensional arrays are printed
543
// properly.
544
 
545
// Prints the given number of elements in an array, without printing
546
// the curly braces.
547
template <typename T>
548
void PrintRawArrayTo(const T a[], size_t count, ::std::ostream* os) {
549
  UniversalPrint(a[0], os);
550
  for (size_t i = 1; i != count; i++) {
551
    *os << ", ";
552
    UniversalPrint(a[i], os);
553
  }
554
}
555
 
556
// Overloads for ::string and ::std::string.
557
#if GTEST_HAS_GLOBAL_STRING
558
GTEST_API_ void PrintStringTo(const ::string&s, ::std::ostream* os);
559
inline void PrintTo(const ::string& s, ::std::ostream* os) {
560
  PrintStringTo(s, os);
561
}
562
#endif  // GTEST_HAS_GLOBAL_STRING
563
 
564
GTEST_API_ void PrintStringTo(const ::std::string&s, ::std::ostream* os);
565
inline void PrintTo(const ::std::string& s, ::std::ostream* os) {
566
  PrintStringTo(s, os);
567
}
568
 
569
// Overloads for ::wstring and ::std::wstring.
570
#if GTEST_HAS_GLOBAL_WSTRING
571
GTEST_API_ void PrintWideStringTo(const ::wstring&s, ::std::ostream* os);
572
inline void PrintTo(const ::wstring& s, ::std::ostream* os) {
573
  PrintWideStringTo(s, os);
574
}
575
#endif  // GTEST_HAS_GLOBAL_WSTRING
576
 
577
#if GTEST_HAS_STD_WSTRING
578
GTEST_API_ void PrintWideStringTo(const ::std::wstring&s, ::std::ostream* os);
579
inline void PrintTo(const ::std::wstring& s, ::std::ostream* os) {
580
  PrintWideStringTo(s, os);
581
}
582
#endif  // GTEST_HAS_STD_WSTRING
583
 
584
#if GTEST_HAS_TR1_TUPLE || GTEST_HAS_STD_TUPLE_
585
// Helper function for printing a tuple.  T must be instantiated with
586
// a tuple type.
587
template <typename T>
588
void PrintTupleTo(const T& t, ::std::ostream* os);
589
#endif  // GTEST_HAS_TR1_TUPLE || GTEST_HAS_STD_TUPLE_
590
 
591
#if GTEST_HAS_TR1_TUPLE
592
// Overload for ::std::tr1::tuple.  Needed for printing function arguments,
593
// which are packed as tuples.
594
 
595
// Overloaded PrintTo() for tuples of various arities.  We support
596
// tuples of up-to 10 fields.  The following implementation works
597
// regardless of whether tr1::tuple is implemented using the
598
// non-standard variadic template feature or not.
599
 
600
inline void PrintTo(const ::std::tr1::tuple<>& t, ::std::ostream* os) {
601
  PrintTupleTo(t, os);
602
}
603
 
604
template <typename T1>
605
void PrintTo(const ::std::tr1::tuple<T1>& t, ::std::ostream* os) {
606
  PrintTupleTo(t, os);
607
}
608
 
609
template <typename T1, typename T2>
610
void PrintTo(const ::std::tr1::tuple<T1, T2>& t, ::std::ostream* os) {
611
  PrintTupleTo(t, os);
612
}
613
 
614
template <typename T1, typename T2, typename T3>
615
void PrintTo(const ::std::tr1::tuple<T1, T2, T3>& t, ::std::ostream* os) {
616
  PrintTupleTo(t, os);
617
}
618
 
619
template <typename T1, typename T2, typename T3, typename T4>
620
void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4>& t, ::std::ostream* os) {
621
  PrintTupleTo(t, os);
622
}
623
 
624
template <typename T1, typename T2, typename T3, typename T4, typename T5>
625
void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5>& t,
626
             ::std::ostream* os) {
627
  PrintTupleTo(t, os);
628
}
629
 
630
template <typename T1, typename T2, typename T3, typename T4, typename T5,
631
          typename T6>
632
void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6>& t,
633
             ::std::ostream* os) {
634
  PrintTupleTo(t, os);
635
}
636
 
637
template <typename T1, typename T2, typename T3, typename T4, typename T5,
638
          typename T6, typename T7>
639
void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7>& t,
640
             ::std::ostream* os) {
641
  PrintTupleTo(t, os);
642
}
643
 
644
template <typename T1, typename T2, typename T3, typename T4, typename T5,
645
          typename T6, typename T7, typename T8>
646
void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8>& t,
647
             ::std::ostream* os) {
648
  PrintTupleTo(t, os);
649
}
650
 
651
template <typename T1, typename T2, typename T3, typename T4, typename T5,
652
          typename T6, typename T7, typename T8, typename T9>
653
void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9>& t,
654
             ::std::ostream* os) {
655
  PrintTupleTo(t, os);
656
}
657
 
658
template <typename T1, typename T2, typename T3, typename T4, typename T5,
659
          typename T6, typename T7, typename T8, typename T9, typename T10>
660
void PrintTo(
661
    const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>& t,
662
    ::std::ostream* os) {
663
  PrintTupleTo(t, os);
664
}
665
#endif  // GTEST_HAS_TR1_TUPLE
666
 
667
#if GTEST_HAS_STD_TUPLE_
668
template <typename... Types>
669
void PrintTo(const ::std::tuple<Types...>& t, ::std::ostream* os) {
670
  PrintTupleTo(t, os);
671
}
672
#endif  // GTEST_HAS_STD_TUPLE_
673
 
674
// Overload for std::pair.
675
template <typename T1, typename T2>
676
void PrintTo(const ::std::pair<T1, T2>& value, ::std::ostream* os) {
677
  *os << '(';
678
  // We cannot use UniversalPrint(value.first, os) here, as T1 may be
679
  // a reference type.  The same for printing value.second.
680
  UniversalPrinter<T1>::Print(value.first, os);
681
  *os << ", ";
682
  UniversalPrinter<T2>::Print(value.second, os);
683
  *os << ')';
684
}
685
 
686
// Implements printing a non-reference type T by letting the compiler
687
// pick the right overload of PrintTo() for T.
688
template <typename T>
689
class UniversalPrinter {
690
 public:
691
  // MSVC warns about adding const to a function type, so we want to
692
  // disable the warning.
693
  GTEST_DISABLE_MSC_WARNINGS_PUSH_(4180)
694
 
695
  // Note: we deliberately don't call this PrintTo(), as that name
696
  // conflicts with ::testing::internal::PrintTo in the body of the
697
  // function.
698
  static void Print(const T& value, ::std::ostream* os) {
699
    // By default, ::testing::internal::PrintTo() is used for printing
700
    // the value.
701
    //
702
    // Thanks to Koenig look-up, if T is a class and has its own
703
    // PrintTo() function defined in its namespace, that function will
704
    // be visible here.  Since it is more specific than the generic ones
705
    // in ::testing::internal, it will be picked by the compiler in the
706
    // following statement - exactly what we want.
707
    PrintTo(value, os);
708
  }
709
 
710
  GTEST_DISABLE_MSC_WARNINGS_POP_()
711
};
712
 
713
// UniversalPrintArray(begin, len, os) prints an array of 'len'
714
// elements, starting at address 'begin'.
715
template <typename T>
716
void UniversalPrintArray(const T* begin, size_t len, ::std::ostream* os) {
717
  if (len == 0) {
718
    *os << "{}";
719
  } else {
720
    *os << "{ ";
721
    const size_t kThreshold = 18;
722
    const size_t kChunkSize = 8;
723
    // If the array has more than kThreshold elements, we'll have to
724
    // omit some details by printing only the first and the last
725
    // kChunkSize elements.
726
    // TODO(wan@google.com): let the user control the threshold using a flag.
727
    if (len <= kThreshold) {
728
      PrintRawArrayTo(begin, len, os);
729
    } else {
730
      PrintRawArrayTo(begin, kChunkSize, os);
731
      *os << ", ..., ";
732
      PrintRawArrayTo(begin + len - kChunkSize, kChunkSize, os);
733
    }
734
    *os << " }";
735
  }
736
}
737
// This overload prints a (const) char array compactly.
738
GTEST_API_ void UniversalPrintArray(
739
    const char* begin, size_t len, ::std::ostream* os);
740
 
741
// This overload prints a (const) wchar_t array compactly.
742
GTEST_API_ void UniversalPrintArray(
743
    const wchar_t* begin, size_t len, ::std::ostream* os);
744
 
745
// Implements printing an array type T[N].
746
template <typename T, size_t N>
747
class UniversalPrinter<T[N]> {
748
 public:
749
  // Prints the given array, omitting some elements when there are too
750
  // many.
751
  static void Print(const T (&a)[N], ::std::ostream* os) {
752
    UniversalPrintArray(a, N, os);
753
  }
754
};
755
 
756
// Implements printing a reference type T&.
757
template <typename T>
758
class UniversalPrinter<T&> {
759
 public:
760
  // MSVC warns about adding const to a function type, so we want to
761
  // disable the warning.
762
  GTEST_DISABLE_MSC_WARNINGS_PUSH_(4180)
763
 
764
  static void Print(const T& value, ::std::ostream* os) {
765
    // Prints the address of the value.  We use reinterpret_cast here
766
    // as static_cast doesn't compile when T is a function type.
767
    *os << "@" << reinterpret_cast<const void*>(&value) << " ";
768
 
769
    // Then prints the value itself.
770
    UniversalPrint(value, os);
771
  }
772
 
773
  GTEST_DISABLE_MSC_WARNINGS_POP_()
774
};
775
 
776
// Prints a value tersely: for a reference type, the referenced value
777
// (but not the address) is printed; for a (const) char pointer, the
778
// NUL-terminated string (but not the pointer) is printed.
779
 
780
template <typename T>
781
class UniversalTersePrinter {
782
 public:
783
  static void Print(const T& value, ::std::ostream* os) {
784
    UniversalPrint(value, os);
785
  }
786
};
787
template <typename T>
788
class UniversalTersePrinter<T&> {
789
 public:
790
  static void Print(const T& value, ::std::ostream* os) {
791
    UniversalPrint(value, os);
792
  }
793
};
794
template <typename T, size_t N>
795
class UniversalTersePrinter<T[N]> {
796
 public:
797
  static void Print(const T (&value)[N], ::std::ostream* os) {
798
    UniversalPrinter<T[N]>::Print(value, os);
799
  }
800
};
801
template <>
802
class UniversalTersePrinter<const char*> {
803
 public:
804
  static void Print(const char* str, ::std::ostream* os) {
805
    if (str == NULL) {
806
      *os << "NULL";
807
    } else {
808
      UniversalPrint(string(str), os);
809
    }
810
  }
811
};
812
template <>
813
class UniversalTersePrinter<char*> {
814
 public:
815
  static void Print(char* str, ::std::ostream* os) {
816
    UniversalTersePrinter<const char*>::Print(str, os);
817
  }
818
};
819
 
820
#if GTEST_HAS_STD_WSTRING
821
template <>
822
class UniversalTersePrinter<const wchar_t*> {
823
 public:
824
  static void Print(const wchar_t* str, ::std::ostream* os) {
825
    if (str == NULL) {
826
      *os << "NULL";
827
    } else {
828
      UniversalPrint(::std::wstring(str), os);
829
    }
830
  }
831
};
832
#endif
833
 
834
template <>
835
class UniversalTersePrinter<wchar_t*> {
836
 public:
837
  static void Print(wchar_t* str, ::std::ostream* os) {
838
    UniversalTersePrinter<const wchar_t*>::Print(str, os);
839
  }
840
};
841
 
842
template <typename T>
843
void UniversalTersePrint(const T& value, ::std::ostream* os) {
844
  UniversalTersePrinter<T>::Print(value, os);
845
}
846
 
847
// Prints a value using the type inferred by the compiler.  The
848
// difference between this and UniversalTersePrint() is that for a
849
// (const) char pointer, this prints both the pointer and the
850
// NUL-terminated string.
851
template <typename T>
852
void UniversalPrint(const T& value, ::std::ostream* os) {
853
  // A workarond for the bug in VC++ 7.1 that prevents us from instantiating
854
  // UniversalPrinter with T directly.
855
  typedef T T1;
856
  UniversalPrinter<T1>::Print(value, os);
857
}
858
 
859
typedef ::std::vector<string> Strings;
860
 
861
// TuplePolicy<TupleT> must provide:
862
// - tuple_size
863
//     size of tuple TupleT.
864
// - get<size_t I>(const TupleT& t)
865
//     static function extracting element I of tuple TupleT.
866
// - tuple_element<size_t I>::type
867
//     type of element I of tuple TupleT.
868
template <typename TupleT>
869
struct TuplePolicy;
870
 
871
#if GTEST_HAS_TR1_TUPLE
872
template <typename TupleT>
873
struct TuplePolicy {
874
  typedef TupleT Tuple;
875
  static const size_t tuple_size = ::std::tr1::tuple_size<Tuple>::value;
876
 
877
  template <size_t I>
878
  struct tuple_element : ::std::tr1::tuple_element<I, Tuple> {};
879
 
880
  template <size_t I>
881
  static typename AddReference<
882
      const typename ::std::tr1::tuple_element<I, Tuple>::type>::type get(
883
      const Tuple& tuple) {
884
    return ::std::tr1::get<I>(tuple);
885
  }
886
};
887
template <typename TupleT>
888
const size_t TuplePolicy<TupleT>::tuple_size;
889
#endif  // GTEST_HAS_TR1_TUPLE
890
 
891
#if GTEST_HAS_STD_TUPLE_
892
template <typename... Types>
893
struct TuplePolicy< ::std::tuple<Types...> > {
894
  typedef ::std::tuple<Types...> Tuple;
895
  static const size_t tuple_size = ::std::tuple_size<Tuple>::value;
896
 
897
  template <size_t I>
898
  struct tuple_element : ::std::tuple_element<I, Tuple> {};
899
 
900
  template <size_t I>
901
  static const typename ::std::tuple_element<I, Tuple>::type& get(
902
      const Tuple& tuple) {
903
    return ::std::get<I>(tuple);
904
  }
905
};
906
template <typename... Types>
907
const size_t TuplePolicy< ::std::tuple<Types...> >::tuple_size;
908
#endif  // GTEST_HAS_STD_TUPLE_
909
 
910
#if GTEST_HAS_TR1_TUPLE || GTEST_HAS_STD_TUPLE_
911
// This helper template allows PrintTo() for tuples and
912
// UniversalTersePrintTupleFieldsToStrings() to be defined by
913
// induction on the number of tuple fields.  The idea is that
914
// TuplePrefixPrinter<N>::PrintPrefixTo(t, os) prints the first N
915
// fields in tuple t, and can be defined in terms of
916
// TuplePrefixPrinter<N - 1>.
917
//
918
// The inductive case.
919
template <size_t N>
920
struct TuplePrefixPrinter {
921
  // Prints the first N fields of a tuple.
922
  template <typename Tuple>
923
  static void PrintPrefixTo(const Tuple& t, ::std::ostream* os) {
924
    TuplePrefixPrinter<N - 1>::PrintPrefixTo(t, os);
925
    GTEST_INTENTIONAL_CONST_COND_PUSH_()
926
    if (N > 1) {
927
    GTEST_INTENTIONAL_CONST_COND_POP_()
928
      *os << ", ";
929
    }
930
    UniversalPrinter<
931
        typename TuplePolicy<Tuple>::template tuple_element<N - 1>::type>
932
        ::Print(TuplePolicy<Tuple>::template get<N - 1>(t), os);
933
  }
934
 
935
  // Tersely prints the first N fields of a tuple to a string vector,
936
  // one element for each field.
937
  template <typename Tuple>
938
  static void TersePrintPrefixToStrings(const Tuple& t, Strings* strings) {
939
    TuplePrefixPrinter<N - 1>::TersePrintPrefixToStrings(t, strings);
940
    ::std::stringstream ss;
941
    UniversalTersePrint(TuplePolicy<Tuple>::template get<N - 1>(t), &ss);
942
    strings->push_back(ss.str());
943
  }
944
};
945
 
946
// Base case.
947
template <>
948
struct TuplePrefixPrinter<0> {
949
  template <typename Tuple>
950
  static void PrintPrefixTo(const Tuple&, ::std::ostream*) {}
951
 
952
  template <typename Tuple>
953
  static void TersePrintPrefixToStrings(const Tuple&, Strings*) {}
954
};
955
 
956
// Helper function for printing a tuple.
957
// Tuple must be either std::tr1::tuple or std::tuple type.
958
template <typename Tuple>
959
void PrintTupleTo(const Tuple& t, ::std::ostream* os) {
960
  *os << "(";
961
  TuplePrefixPrinter<TuplePolicy<Tuple>::tuple_size>::PrintPrefixTo(t, os);
962
  *os << ")";
963
}
964
 
965
// Prints the fields of a tuple tersely to a string vector, one
966
// element for each field.  See the comment before
967
// UniversalTersePrint() for how we define "tersely".
968
template <typename Tuple>
969
Strings UniversalTersePrintTupleFieldsToStrings(const Tuple& value) {
970
  Strings result;
971
  TuplePrefixPrinter<TuplePolicy<Tuple>::tuple_size>::
972
      TersePrintPrefixToStrings(value, &result);
973
  return result;
974
}
975
#endif  // GTEST_HAS_TR1_TUPLE || GTEST_HAS_STD_TUPLE_
976
 
977
}  // namespace internal
978
 
979
template <typename T>
980
::std::string PrintToString(const T& value) {
981
  ::std::stringstream ss;
982
  internal::UniversalTersePrinter<T>::Print(value, &ss);
983
  return ss.str();
984
}
985
 
986
}  // namespace testing
987
 
988
// Include any custom printer added by the local installation.
989
// We must include this header at the end to make sure it can use the
990
// declarations from this file.
991
#include "gtest/internal/custom/gtest-printers.h"
992
 
993
#endif  // GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.