OpenCores
URL https://opencores.org/ocsvn/s80186/s80186/trunk

Subversion Repositories s80186

[/] [s80186/] [trunk/] [vendor/] [googletest/] [googletest/] [include/] [gtest/] [internal/] [gtest-internal.h] - Blame information for rev 2

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 2 jamieiles
// Copyright 2005, Google Inc.
2
// All rights reserved.
3
//
4
// Redistribution and use in source and binary forms, with or without
5
// modification, are permitted provided that the following conditions are
6
// met:
7
//
8
//     * Redistributions of source code must retain the above copyright
9
// notice, this list of conditions and the following disclaimer.
10
//     * Redistributions in binary form must reproduce the above
11
// copyright notice, this list of conditions and the following disclaimer
12
// in the documentation and/or other materials provided with the
13
// distribution.
14
//     * Neither the name of Google Inc. nor the names of its
15
// contributors may be used to endorse or promote products derived from
16
// this software without specific prior written permission.
17
//
18
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
//
30
// Authors: wan@google.com (Zhanyong Wan), eefacm@gmail.com (Sean Mcafee)
31
//
32
// The Google C++ Testing Framework (Google Test)
33
//
34
// This header file declares functions and macros used internally by
35
// Google Test.  They are subject to change without notice.
36
 
37
#ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
38
#define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
39
 
40
#include "gtest/internal/gtest-port.h"
41
 
42
#if GTEST_OS_LINUX
43
# include <stdlib.h>
44
# include <sys/types.h>
45
# include <sys/wait.h>
46
# include <unistd.h>
47
#endif  // GTEST_OS_LINUX
48
 
49
#if GTEST_HAS_EXCEPTIONS
50
# include <stdexcept>
51
#endif
52
 
53
#include <ctype.h>
54
#include <float.h>
55
#include <string.h>
56
#include <iomanip>
57
#include <limits>
58
#include <map>
59
#include <set>
60
#include <string>
61
#include <vector>
62
 
63
#include "gtest/gtest-message.h"
64
#include "gtest/internal/gtest-string.h"
65
#include "gtest/internal/gtest-filepath.h"
66
#include "gtest/internal/gtest-type-util.h"
67
 
68
// Due to C++ preprocessor weirdness, we need double indirection to
69
// concatenate two tokens when one of them is __LINE__.  Writing
70
//
71
//   foo ## __LINE__
72
//
73
// will result in the token foo__LINE__, instead of foo followed by
74
// the current line number.  For more details, see
75
// http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
76
#define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
77
#define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
78
 
79
class ProtocolMessage;
80
namespace proto2 { class Message; }
81
 
82
namespace testing {
83
 
84
// Forward declarations.
85
 
86
class AssertionResult;                 // Result of an assertion.
87
class Message;                         // Represents a failure message.
88
class Test;                            // Represents a test.
89
class TestInfo;                        // Information about a test.
90
class TestPartResult;                  // Result of a test part.
91
class UnitTest;                        // A collection of test cases.
92
 
93
template <typename T>
94
::std::string PrintToString(const T& value);
95
 
96
namespace internal {
97
 
98
struct TraceInfo;                      // Information about a trace point.
99
class ScopedTrace;                     // Implements scoped trace.
100
class TestInfoImpl;                    // Opaque implementation of TestInfo
101
class UnitTestImpl;                    // Opaque implementation of UnitTest
102
 
103
// The text used in failure messages to indicate the start of the
104
// stack trace.
105
GTEST_API_ extern const char kStackTraceMarker[];
106
 
107
// Two overloaded helpers for checking at compile time whether an
108
// expression is a null pointer literal (i.e. NULL or any 0-valued
109
// compile-time integral constant).  Their return values have
110
// different sizes, so we can use sizeof() to test which version is
111
// picked by the compiler.  These helpers have no implementations, as
112
// we only need their signatures.
113
//
114
// Given IsNullLiteralHelper(x), the compiler will pick the first
115
// version if x can be implicitly converted to Secret*, and pick the
116
// second version otherwise.  Since Secret is a secret and incomplete
117
// type, the only expression a user can write that has type Secret* is
118
// a null pointer literal.  Therefore, we know that x is a null
119
// pointer literal if and only if the first version is picked by the
120
// compiler.
121
char IsNullLiteralHelper(Secret* p);
122
char (&IsNullLiteralHelper(...))[2];  // NOLINT
123
 
124
// A compile-time bool constant that is true if and only if x is a
125
// null pointer literal (i.e. NULL or any 0-valued compile-time
126
// integral constant).
127
#ifdef GTEST_ELLIPSIS_NEEDS_POD_
128
// We lose support for NULL detection where the compiler doesn't like
129
// passing non-POD classes through ellipsis (...).
130
# define GTEST_IS_NULL_LITERAL_(x) false
131
#else
132
# define GTEST_IS_NULL_LITERAL_(x) \
133
    (sizeof(::testing::internal::IsNullLiteralHelper(x)) == 1)
134
#endif  // GTEST_ELLIPSIS_NEEDS_POD_
135
 
136
// Appends the user-supplied message to the Google-Test-generated message.
137
GTEST_API_ std::string AppendUserMessage(
138
    const std::string& gtest_msg, const Message& user_msg);
139
 
140
#if GTEST_HAS_EXCEPTIONS
141
 
142
// This exception is thrown by (and only by) a failed Google Test
143
// assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions
144
// are enabled).  We derive it from std::runtime_error, which is for
145
// errors presumably detectable only at run time.  Since
146
// std::runtime_error inherits from std::exception, many testing
147
// frameworks know how to extract and print the message inside it.
148
class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error {
149
 public:
150
  explicit GoogleTestFailureException(const TestPartResult& failure);
151
};
152
 
153
#endif  // GTEST_HAS_EXCEPTIONS
154
 
155
// A helper class for creating scoped traces in user programs.
156
class GTEST_API_ ScopedTrace {
157
 public:
158
  // The c'tor pushes the given source file location and message onto
159
  // a trace stack maintained by Google Test.
160
  ScopedTrace(const char* file, int line, const Message& message);
161
 
162
  // The d'tor pops the info pushed by the c'tor.
163
  //
164
  // Note that the d'tor is not virtual in order to be efficient.
165
  // Don't inherit from ScopedTrace!
166
  ~ScopedTrace();
167
 
168
 private:
169
  GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedTrace);
170
} GTEST_ATTRIBUTE_UNUSED_;  // A ScopedTrace object does its job in its
171
                            // c'tor and d'tor.  Therefore it doesn't
172
                            // need to be used otherwise.
173
 
174
namespace edit_distance {
175
// Returns the optimal edits to go from 'left' to 'right'.
176
// All edits cost the same, with replace having lower priority than
177
// add/remove.
178
// Simple implementation of the Wagner–Fischer algorithm.
179
// See http://en.wikipedia.org/wiki/Wagner-Fischer_algorithm
180
enum EditType { kMatch, kAdd, kRemove, kReplace };
181
GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
182
    const std::vector<size_t>& left, const std::vector<size_t>& right);
183
 
184
// Same as above, but the input is represented as strings.
185
GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
186
    const std::vector<std::string>& left,
187
    const std::vector<std::string>& right);
188
 
189
// Create a diff of the input strings in Unified diff format.
190
GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left,
191
                                         const std::vector<std::string>& right,
192
                                         size_t context = 2);
193
 
194
}  // namespace edit_distance
195
 
196
// Calculate the diff between 'left' and 'right' and return it in unified diff
197
// format.
198
// If not null, stores in 'total_line_count' the total number of lines found
199
// in left + right.
200
GTEST_API_ std::string DiffStrings(const std::string& left,
201
                                   const std::string& right,
202
                                   size_t* total_line_count);
203
 
204
// Constructs and returns the message for an equality assertion
205
// (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
206
//
207
// The first four parameters are the expressions used in the assertion
208
// and their values, as strings.  For example, for ASSERT_EQ(foo, bar)
209
// where foo is 5 and bar is 6, we have:
210
//
211
//   expected_expression: "foo"
212
//   actual_expression:   "bar"
213
//   expected_value:      "5"
214
//   actual_value:        "6"
215
//
216
// The ignoring_case parameter is true iff the assertion is a
217
// *_STRCASEEQ*.  When it's true, the string " (ignoring case)" will
218
// be inserted into the message.
219
GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
220
                                     const char* actual_expression,
221
                                     const std::string& expected_value,
222
                                     const std::string& actual_value,
223
                                     bool ignoring_case);
224
 
225
// Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
226
GTEST_API_ std::string GetBoolAssertionFailureMessage(
227
    const AssertionResult& assertion_result,
228
    const char* expression_text,
229
    const char* actual_predicate_value,
230
    const char* expected_predicate_value);
231
 
232
// This template class represents an IEEE floating-point number
233
// (either single-precision or double-precision, depending on the
234
// template parameters).
235
//
236
// The purpose of this class is to do more sophisticated number
237
// comparison.  (Due to round-off error, etc, it's very unlikely that
238
// two floating-points will be equal exactly.  Hence a naive
239
// comparison by the == operation often doesn't work.)
240
//
241
// Format of IEEE floating-point:
242
//
243
//   The most-significant bit being the leftmost, an IEEE
244
//   floating-point looks like
245
//
246
//     sign_bit exponent_bits fraction_bits
247
//
248
//   Here, sign_bit is a single bit that designates the sign of the
249
//   number.
250
//
251
//   For float, there are 8 exponent bits and 23 fraction bits.
252
//
253
//   For double, there are 11 exponent bits and 52 fraction bits.
254
//
255
//   More details can be found at
256
//   http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
257
//
258
// Template parameter:
259
//
260
//   RawType: the raw floating-point type (either float or double)
261
template <typename RawType>
262
class FloatingPoint {
263
 public:
264
  // Defines the unsigned integer type that has the same size as the
265
  // floating point number.
266
  typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
267
 
268
  // Constants.
269
 
270
  // # of bits in a number.
271
  static const size_t kBitCount = 8*sizeof(RawType);
272
 
273
  // # of fraction bits in a number.
274
  static const size_t kFractionBitCount =
275
    std::numeric_limits<RawType>::digits - 1;
276
 
277
  // # of exponent bits in a number.
278
  static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
279
 
280
  // The mask for the sign bit.
281
  static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
282
 
283
  // The mask for the fraction bits.
284
  static const Bits kFractionBitMask =
285
    ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
286
 
287
  // The mask for the exponent bits.
288
  static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
289
 
290
  // How many ULP's (Units in the Last Place) we want to tolerate when
291
  // comparing two numbers.  The larger the value, the more error we
292
  // allow.  A 0 value means that two numbers must be exactly the same
293
  // to be considered equal.
294
  //
295
  // The maximum error of a single floating-point operation is 0.5
296
  // units in the last place.  On Intel CPU's, all floating-point
297
  // calculations are done with 80-bit precision, while double has 64
298
  // bits.  Therefore, 4 should be enough for ordinary use.
299
  //
300
  // See the following article for more details on ULP:
301
  // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
302
  static const size_t kMaxUlps = 4;
303
 
304
  // Constructs a FloatingPoint from a raw floating-point number.
305
  //
306
  // On an Intel CPU, passing a non-normalized NAN (Not a Number)
307
  // around may change its bits, although the new value is guaranteed
308
  // to be also a NAN.  Therefore, don't expect this constructor to
309
  // preserve the bits in x when x is a NAN.
310
  explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
311
 
312
  // Static methods
313
 
314
  // Reinterprets a bit pattern as a floating-point number.
315
  //
316
  // This function is needed to test the AlmostEquals() method.
317
  static RawType ReinterpretBits(const Bits bits) {
318
    FloatingPoint fp(0);
319
    fp.u_.bits_ = bits;
320
    return fp.u_.value_;
321
  }
322
 
323
  // Returns the floating-point number that represent positive infinity.
324
  static RawType Infinity() {
325
    return ReinterpretBits(kExponentBitMask);
326
  }
327
 
328
  // Returns the maximum representable finite floating-point number.
329
  static RawType Max();
330
 
331
  // Non-static methods
332
 
333
  // Returns the bits that represents this number.
334
  const Bits &bits() const { return u_.bits_; }
335
 
336
  // Returns the exponent bits of this number.
337
  Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
338
 
339
  // Returns the fraction bits of this number.
340
  Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
341
 
342
  // Returns the sign bit of this number.
343
  Bits sign_bit() const { return kSignBitMask & u_.bits_; }
344
 
345
  // Returns true iff this is NAN (not a number).
346
  bool is_nan() const {
347
    // It's a NAN if the exponent bits are all ones and the fraction
348
    // bits are not entirely zeros.
349
    return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
350
  }
351
 
352
  // Returns true iff this number is at most kMaxUlps ULP's away from
353
  // rhs.  In particular, this function:
354
  //
355
  //   - returns false if either number is (or both are) NAN.
356
  //   - treats really large numbers as almost equal to infinity.
357
  //   - thinks +0.0 and -0.0 are 0 DLP's apart.
358
  bool AlmostEquals(const FloatingPoint& rhs) const {
359
    // The IEEE standard says that any comparison operation involving
360
    // a NAN must return false.
361
    if (is_nan() || rhs.is_nan()) return false;
362
 
363
    return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_)
364
        <= kMaxUlps;
365
  }
366
 
367
 private:
368
  // The data type used to store the actual floating-point number.
369
  union FloatingPointUnion {
370
    RawType value_;  // The raw floating-point number.
371
    Bits bits_;      // The bits that represent the number.
372
  };
373
 
374
  // Converts an integer from the sign-and-magnitude representation to
375
  // the biased representation.  More precisely, let N be 2 to the
376
  // power of (kBitCount - 1), an integer x is represented by the
377
  // unsigned number x + N.
378
  //
379
  // For instance,
380
  //
381
  //   -N + 1 (the most negative number representable using
382
  //          sign-and-magnitude) is represented by 1;
383
  //   0      is represented by N; and
384
  //   N - 1  (the biggest number representable using
385
  //          sign-and-magnitude) is represented by 2N - 1.
386
  //
387
  // Read http://en.wikipedia.org/wiki/Signed_number_representations
388
  // for more details on signed number representations.
389
  static Bits SignAndMagnitudeToBiased(const Bits &sam) {
390
    if (kSignBitMask & sam) {
391
      // sam represents a negative number.
392
      return ~sam + 1;
393
    } else {
394
      // sam represents a positive number.
395
      return kSignBitMask | sam;
396
    }
397
  }
398
 
399
  // Given two numbers in the sign-and-magnitude representation,
400
  // returns the distance between them as an unsigned number.
401
  static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
402
                                                     const Bits &sam2) {
403
    const Bits biased1 = SignAndMagnitudeToBiased(sam1);
404
    const Bits biased2 = SignAndMagnitudeToBiased(sam2);
405
    return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
406
  }
407
 
408
  FloatingPointUnion u_;
409
};
410
 
411
// We cannot use std::numeric_limits<T>::max() as it clashes with the max()
412
// macro defined by <windows.h>.
413
template <>
414
inline float FloatingPoint<float>::Max() { return FLT_MAX; }
415
template <>
416
inline double FloatingPoint<double>::Max() { return DBL_MAX; }
417
 
418
// Typedefs the instances of the FloatingPoint template class that we
419
// care to use.
420
typedef FloatingPoint<float> Float;
421
typedef FloatingPoint<double> Double;
422
 
423
// In order to catch the mistake of putting tests that use different
424
// test fixture classes in the same test case, we need to assign
425
// unique IDs to fixture classes and compare them.  The TypeId type is
426
// used to hold such IDs.  The user should treat TypeId as an opaque
427
// type: the only operation allowed on TypeId values is to compare
428
// them for equality using the == operator.
429
typedef const void* TypeId;
430
 
431
template <typename T>
432
class TypeIdHelper {
433
 public:
434
  // dummy_ must not have a const type.  Otherwise an overly eager
435
  // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
436
  // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
437
  static bool dummy_;
438
};
439
 
440
template <typename T>
441
bool TypeIdHelper<T>::dummy_ = false;
442
 
443
// GetTypeId<T>() returns the ID of type T.  Different values will be
444
// returned for different types.  Calling the function twice with the
445
// same type argument is guaranteed to return the same ID.
446
template <typename T>
447
TypeId GetTypeId() {
448
  // The compiler is required to allocate a different
449
  // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
450
  // the template.  Therefore, the address of dummy_ is guaranteed to
451
  // be unique.
452
  return &(TypeIdHelper<T>::dummy_);
453
}
454
 
455
// Returns the type ID of ::testing::Test.  Always call this instead
456
// of GetTypeId< ::testing::Test>() to get the type ID of
457
// ::testing::Test, as the latter may give the wrong result due to a
458
// suspected linker bug when compiling Google Test as a Mac OS X
459
// framework.
460
GTEST_API_ TypeId GetTestTypeId();
461
 
462
// Defines the abstract factory interface that creates instances
463
// of a Test object.
464
class TestFactoryBase {
465
 public:
466
  virtual ~TestFactoryBase() {}
467
 
468
  // Creates a test instance to run. The instance is both created and destroyed
469
  // within TestInfoImpl::Run()
470
  virtual Test* CreateTest() = 0;
471
 
472
 protected:
473
  TestFactoryBase() {}
474
 
475
 private:
476
  GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase);
477
};
478
 
479
// This class provides implementation of TeastFactoryBase interface.
480
// It is used in TEST and TEST_F macros.
481
template <class TestClass>
482
class TestFactoryImpl : public TestFactoryBase {
483
 public:
484
  virtual Test* CreateTest() { return new TestClass; }
485
};
486
 
487
#if GTEST_OS_WINDOWS
488
 
489
// Predicate-formatters for implementing the HRESULT checking macros
490
// {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
491
// We pass a long instead of HRESULT to avoid causing an
492
// include dependency for the HRESULT type.
493
GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
494
                                            long hr);  // NOLINT
495
GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
496
                                            long hr);  // NOLINT
497
 
498
#endif  // GTEST_OS_WINDOWS
499
 
500
// Types of SetUpTestCase() and TearDownTestCase() functions.
501
typedef void (*SetUpTestCaseFunc)();
502
typedef void (*TearDownTestCaseFunc)();
503
 
504
struct CodeLocation {
505
  CodeLocation(const string& a_file, int a_line) : file(a_file), line(a_line) {}
506
 
507
  string file;
508
  int line;
509
};
510
 
511
// Creates a new TestInfo object and registers it with Google Test;
512
// returns the created object.
513
//
514
// Arguments:
515
//
516
//   test_case_name:   name of the test case
517
//   name:             name of the test
518
//   type_param        the name of the test's type parameter, or NULL if
519
//                     this is not a typed or a type-parameterized test.
520
//   value_param       text representation of the test's value parameter,
521
//                     or NULL if this is not a type-parameterized test.
522
//   code_location:    code location where the test is defined
523
//   fixture_class_id: ID of the test fixture class
524
//   set_up_tc:        pointer to the function that sets up the test case
525
//   tear_down_tc:     pointer to the function that tears down the test case
526
//   factory:          pointer to the factory that creates a test object.
527
//                     The newly created TestInfo instance will assume
528
//                     ownership of the factory object.
529
GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
530
    const char* test_case_name,
531
    const char* name,
532
    const char* type_param,
533
    const char* value_param,
534
    CodeLocation code_location,
535
    TypeId fixture_class_id,
536
    SetUpTestCaseFunc set_up_tc,
537
    TearDownTestCaseFunc tear_down_tc,
538
    TestFactoryBase* factory);
539
 
540
// If *pstr starts with the given prefix, modifies *pstr to be right
541
// past the prefix and returns true; otherwise leaves *pstr unchanged
542
// and returns false.  None of pstr, *pstr, and prefix can be NULL.
543
GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
544
 
545
#if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
546
 
547
// State of the definition of a type-parameterized test case.
548
class GTEST_API_ TypedTestCasePState {
549
 public:
550
  TypedTestCasePState() : registered_(false) {}
551
 
552
  // Adds the given test name to defined_test_names_ and return true
553
  // if the test case hasn't been registered; otherwise aborts the
554
  // program.
555
  bool AddTestName(const char* file, int line, const char* case_name,
556
                   const char* test_name) {
557
    if (registered_) {
558
      fprintf(stderr, "%s Test %s must be defined before "
559
              "REGISTER_TYPED_TEST_CASE_P(%s, ...).\n",
560
              FormatFileLocation(file, line).c_str(), test_name, case_name);
561
      fflush(stderr);
562
      posix::Abort();
563
    }
564
    registered_tests_.insert(
565
        ::std::make_pair(test_name, CodeLocation(file, line)));
566
    return true;
567
  }
568
 
569
  bool TestExists(const std::string& test_name) const {
570
    return registered_tests_.count(test_name) > 0;
571
  }
572
 
573
  const CodeLocation& GetCodeLocation(const std::string& test_name) const {
574
    RegisteredTestsMap::const_iterator it = registered_tests_.find(test_name);
575
    GTEST_CHECK_(it != registered_tests_.end());
576
    return it->second;
577
  }
578
 
579
  // Verifies that registered_tests match the test names in
580
  // defined_test_names_; returns registered_tests if successful, or
581
  // aborts the program otherwise.
582
  const char* VerifyRegisteredTestNames(
583
      const char* file, int line, const char* registered_tests);
584
 
585
 private:
586
  typedef ::std::map<std::string, CodeLocation> RegisteredTestsMap;
587
 
588
  bool registered_;
589
  RegisteredTestsMap registered_tests_;
590
};
591
 
592
// Skips to the first non-space char after the first comma in 'str';
593
// returns NULL if no comma is found in 'str'.
594
inline const char* SkipComma(const char* str) {
595
  const char* comma = strchr(str, ',');
596
  if (comma == NULL) {
597
    return NULL;
598
  }
599
  while (IsSpace(*(++comma))) {}
600
  return comma;
601
}
602
 
603
// Returns the prefix of 'str' before the first comma in it; returns
604
// the entire string if it contains no comma.
605
inline std::string GetPrefixUntilComma(const char* str) {
606
  const char* comma = strchr(str, ',');
607
  return comma == NULL ? str : std::string(str, comma);
608
}
609
 
610
// Splits a given string on a given delimiter, populating a given
611
// vector with the fields.
612
void SplitString(const ::std::string& str, char delimiter,
613
                 ::std::vector< ::std::string>* dest);
614
 
615
// TypeParameterizedTest<Fixture, TestSel, Types>::Register()
616
// registers a list of type-parameterized tests with Google Test.  The
617
// return value is insignificant - we just need to return something
618
// such that we can call this function in a namespace scope.
619
//
620
// Implementation note: The GTEST_TEMPLATE_ macro declares a template
621
// template parameter.  It's defined in gtest-type-util.h.
622
template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
623
class TypeParameterizedTest {
624
 public:
625
  // 'index' is the index of the test in the type list 'Types'
626
  // specified in INSTANTIATE_TYPED_TEST_CASE_P(Prefix, TestCase,
627
  // Types).  Valid values for 'index' are [0, N - 1] where N is the
628
  // length of Types.
629
  static bool Register(const char* prefix,
630
                       CodeLocation code_location,
631
                       const char* case_name, const char* test_names,
632
                       int index) {
633
    typedef typename Types::Head Type;
634
    typedef Fixture<Type> FixtureClass;
635
    typedef typename GTEST_BIND_(TestSel, Type) TestClass;
636
 
637
    // First, registers the first type-parameterized test in the type
638
    // list.
639
    MakeAndRegisterTestInfo(
640
        (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name + "/"
641
         + StreamableToString(index)).c_str(),
642
        StripTrailingSpaces(GetPrefixUntilComma(test_names)).c_str(),
643
        GetTypeName<Type>().c_str(),
644
        NULL,  // No value parameter.
645
        code_location,
646
        GetTypeId<FixtureClass>(),
647
        TestClass::SetUpTestCase,
648
        TestClass::TearDownTestCase,
649
        new TestFactoryImpl<TestClass>);
650
 
651
    // Next, recurses (at compile time) with the tail of the type list.
652
    return TypeParameterizedTest<Fixture, TestSel, typename Types::Tail>
653
        ::Register(prefix, code_location, case_name, test_names, index + 1);
654
  }
655
};
656
 
657
// The base case for the compile time recursion.
658
template <GTEST_TEMPLATE_ Fixture, class TestSel>
659
class TypeParameterizedTest<Fixture, TestSel, Types0> {
660
 public:
661
  static bool Register(const char* /*prefix*/, CodeLocation,
662
                       const char* /*case_name*/, const char* /*test_names*/,
663
                       int /*index*/) {
664
    return true;
665
  }
666
};
667
 
668
// TypeParameterizedTestCase<Fixture, Tests, Types>::Register()
669
// registers *all combinations* of 'Tests' and 'Types' with Google
670
// Test.  The return value is insignificant - we just need to return
671
// something such that we can call this function in a namespace scope.
672
template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
673
class TypeParameterizedTestCase {
674
 public:
675
  static bool Register(const char* prefix, CodeLocation code_location,
676
                       const TypedTestCasePState* state,
677
                       const char* case_name, const char* test_names) {
678
    std::string test_name = StripTrailingSpaces(
679
        GetPrefixUntilComma(test_names));
680
    if (!state->TestExists(test_name)) {
681
      fprintf(stderr, "Failed to get code location for test %s.%s at %s.",
682
              case_name, test_name.c_str(),
683
              FormatFileLocation(code_location.file.c_str(),
684
                                 code_location.line).c_str());
685
      fflush(stderr);
686
      posix::Abort();
687
    }
688
    const CodeLocation& test_location = state->GetCodeLocation(test_name);
689
 
690
    typedef typename Tests::Head Head;
691
 
692
    // First, register the first test in 'Test' for each type in 'Types'.
693
    TypeParameterizedTest<Fixture, Head, Types>::Register(
694
        prefix, test_location, case_name, test_names, 0);
695
 
696
    // Next, recurses (at compile time) with the tail of the test list.
697
    return TypeParameterizedTestCase<Fixture, typename Tests::Tail, Types>
698
        ::Register(prefix, code_location, state,
699
                   case_name, SkipComma(test_names));
700
  }
701
};
702
 
703
// The base case for the compile time recursion.
704
template <GTEST_TEMPLATE_ Fixture, typename Types>
705
class TypeParameterizedTestCase<Fixture, Templates0, Types> {
706
 public:
707
  static bool Register(const char* /*prefix*/, CodeLocation,
708
                       const TypedTestCasePState* /*state*/,
709
                       const char* /*case_name*/, const char* /*test_names*/) {
710
    return true;
711
  }
712
};
713
 
714
#endif  // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
715
 
716
// Returns the current OS stack trace as an std::string.
717
//
718
// The maximum number of stack frames to be included is specified by
719
// the gtest_stack_trace_depth flag.  The skip_count parameter
720
// specifies the number of top frames to be skipped, which doesn't
721
// count against the number of frames to be included.
722
//
723
// For example, if Foo() calls Bar(), which in turn calls
724
// GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
725
// the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
726
GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(
727
    UnitTest* unit_test, int skip_count);
728
 
729
// Helpers for suppressing warnings on unreachable code or constant
730
// condition.
731
 
732
// Always returns true.
733
GTEST_API_ bool AlwaysTrue();
734
 
735
// Always returns false.
736
inline bool AlwaysFalse() { return !AlwaysTrue(); }
737
 
738
// Helper for suppressing false warning from Clang on a const char*
739
// variable declared in a conditional expression always being NULL in
740
// the else branch.
741
struct GTEST_API_ ConstCharPtr {
742
  ConstCharPtr(const char* str) : value(str) {}
743
  operator bool() const { return true; }
744
  const char* value;
745
};
746
 
747
// A simple Linear Congruential Generator for generating random
748
// numbers with a uniform distribution.  Unlike rand() and srand(), it
749
// doesn't use global state (and therefore can't interfere with user
750
// code).  Unlike rand_r(), it's portable.  An LCG isn't very random,
751
// but it's good enough for our purposes.
752
class GTEST_API_ Random {
753
 public:
754
  static const UInt32 kMaxRange = 1u << 31;
755
 
756
  explicit Random(UInt32 seed) : state_(seed) {}
757
 
758
  void Reseed(UInt32 seed) { state_ = seed; }
759
 
760
  // Generates a random number from [0, range).  Crashes if 'range' is
761
  // 0 or greater than kMaxRange.
762
  UInt32 Generate(UInt32 range);
763
 
764
 private:
765
  UInt32 state_;
766
  GTEST_DISALLOW_COPY_AND_ASSIGN_(Random);
767
};
768
 
769
// Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a
770
// compiler error iff T1 and T2 are different types.
771
template <typename T1, typename T2>
772
struct CompileAssertTypesEqual;
773
 
774
template <typename T>
775
struct CompileAssertTypesEqual<T, T> {
776
};
777
 
778
// Removes the reference from a type if it is a reference type,
779
// otherwise leaves it unchanged.  This is the same as
780
// tr1::remove_reference, which is not widely available yet.
781
template <typename T>
782
struct RemoveReference { typedef T type; };  // NOLINT
783
template <typename T>
784
struct RemoveReference<T&> { typedef T type; };  // NOLINT
785
 
786
// A handy wrapper around RemoveReference that works when the argument
787
// T depends on template parameters.
788
#define GTEST_REMOVE_REFERENCE_(T) \
789
    typename ::testing::internal::RemoveReference<T>::type
790
 
791
// Removes const from a type if it is a const type, otherwise leaves
792
// it unchanged.  This is the same as tr1::remove_const, which is not
793
// widely available yet.
794
template <typename T>
795
struct RemoveConst { typedef T type; };  // NOLINT
796
template <typename T>
797
struct RemoveConst<const T> { typedef T type; };  // NOLINT
798
 
799
// MSVC 8.0, Sun C++, and IBM XL C++ have a bug which causes the above
800
// definition to fail to remove the const in 'const int[3]' and 'const
801
// char[3][4]'.  The following specialization works around the bug.
802
template <typename T, size_t N>
803
struct RemoveConst<const T[N]> {
804
  typedef typename RemoveConst<T>::type type[N];
805
};
806
 
807
#if defined(_MSC_VER) && _MSC_VER < 1400
808
// This is the only specialization that allows VC++ 7.1 to remove const in
809
// 'const int[3] and 'const int[3][4]'.  However, it causes trouble with GCC
810
// and thus needs to be conditionally compiled.
811
template <typename T, size_t N>
812
struct RemoveConst<T[N]> {
813
  typedef typename RemoveConst<T>::type type[N];
814
};
815
#endif
816
 
817
// A handy wrapper around RemoveConst that works when the argument
818
// T depends on template parameters.
819
#define GTEST_REMOVE_CONST_(T) \
820
    typename ::testing::internal::RemoveConst<T>::type
821
 
822
// Turns const U&, U&, const U, and U all into U.
823
#define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
824
    GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T))
825
 
826
// Adds reference to a type if it is not a reference type,
827
// otherwise leaves it unchanged.  This is the same as
828
// tr1::add_reference, which is not widely available yet.
829
template <typename T>
830
struct AddReference { typedef T& type; };  // NOLINT
831
template <typename T>
832
struct AddReference<T&> { typedef T& type; };  // NOLINT
833
 
834
// A handy wrapper around AddReference that works when the argument T
835
// depends on template parameters.
836
#define GTEST_ADD_REFERENCE_(T) \
837
    typename ::testing::internal::AddReference<T>::type
838
 
839
// Adds a reference to const on top of T as necessary.  For example,
840
// it transforms
841
//
842
//   char         ==> const char&
843
//   const char   ==> const char&
844
//   char&        ==> const char&
845
//   const char&  ==> const char&
846
//
847
// The argument T must depend on some template parameters.
848
#define GTEST_REFERENCE_TO_CONST_(T) \
849
    GTEST_ADD_REFERENCE_(const GTEST_REMOVE_REFERENCE_(T))
850
 
851
// ImplicitlyConvertible<From, To>::value is a compile-time bool
852
// constant that's true iff type From can be implicitly converted to
853
// type To.
854
template <typename From, typename To>
855
class ImplicitlyConvertible {
856
 private:
857
  // We need the following helper functions only for their types.
858
  // They have no implementations.
859
 
860
  // MakeFrom() is an expression whose type is From.  We cannot simply
861
  // use From(), as the type From may not have a public default
862
  // constructor.
863
  static typename AddReference<From>::type MakeFrom();
864
 
865
  // These two functions are overloaded.  Given an expression
866
  // Helper(x), the compiler will pick the first version if x can be
867
  // implicitly converted to type To; otherwise it will pick the
868
  // second version.
869
  //
870
  // The first version returns a value of size 1, and the second
871
  // version returns a value of size 2.  Therefore, by checking the
872
  // size of Helper(x), which can be done at compile time, we can tell
873
  // which version of Helper() is used, and hence whether x can be
874
  // implicitly converted to type To.
875
  static char Helper(To);
876
  static char (&Helper(...))[2];  // NOLINT
877
 
878
  // We have to put the 'public' section after the 'private' section,
879
  // or MSVC refuses to compile the code.
880
 public:
881
#if defined(__BORLANDC__)
882
  // C++Builder cannot use member overload resolution during template
883
  // instantiation.  The simplest workaround is to use its C++0x type traits
884
  // functions (C++Builder 2009 and above only).
885
  static const bool value = __is_convertible(From, To);
886
#else
887
  // MSVC warns about implicitly converting from double to int for
888
  // possible loss of data, so we need to temporarily disable the
889
  // warning.
890
  GTEST_DISABLE_MSC_WARNINGS_PUSH_(4244)
891
  static const bool value =
892
      sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
893
  GTEST_DISABLE_MSC_WARNINGS_POP_()
894
#endif  // __BORLANDC__
895
};
896
template <typename From, typename To>
897
const bool ImplicitlyConvertible<From, To>::value;
898
 
899
// IsAProtocolMessage<T>::value is a compile-time bool constant that's
900
// true iff T is type ProtocolMessage, proto2::Message, or a subclass
901
// of those.
902
template <typename T>
903
struct IsAProtocolMessage
904
    : public bool_constant<
905
  ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value ||
906
  ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> {
907
};
908
 
909
// When the compiler sees expression IsContainerTest<C>(0), if C is an
910
// STL-style container class, the first overload of IsContainerTest
911
// will be viable (since both C::iterator* and C::const_iterator* are
912
// valid types and NULL can be implicitly converted to them).  It will
913
// be picked over the second overload as 'int' is a perfect match for
914
// the type of argument 0.  If C::iterator or C::const_iterator is not
915
// a valid type, the first overload is not viable, and the second
916
// overload will be picked.  Therefore, we can determine whether C is
917
// a container class by checking the type of IsContainerTest<C>(0).
918
// The value of the expression is insignificant.
919
//
920
// Note that we look for both C::iterator and C::const_iterator.  The
921
// reason is that C++ injects the name of a class as a member of the
922
// class itself (e.g. you can refer to class iterator as either
923
// 'iterator' or 'iterator::iterator').  If we look for C::iterator
924
// only, for example, we would mistakenly think that a class named
925
// iterator is an STL container.
926
//
927
// Also note that the simpler approach of overloading
928
// IsContainerTest(typename C::const_iterator*) and
929
// IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
930
typedef int IsContainer;
931
template <class C>
932
IsContainer IsContainerTest(int /* dummy */,
933
                            typename C::iterator* /* it */ = NULL,
934
                            typename C::const_iterator* /* const_it */ = NULL) {
935
  return 0;
936
}
937
 
938
typedef char IsNotContainer;
939
template <class C>
940
IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
941
 
942
// EnableIf<condition>::type is void when 'Cond' is true, and
943
// undefined when 'Cond' is false.  To use SFINAE to make a function
944
// overload only apply when a particular expression is true, add
945
// "typename EnableIf<expression>::type* = 0" as the last parameter.
946
template<bool> struct EnableIf;
947
template<> struct EnableIf<true> { typedef void type; };  // NOLINT
948
 
949
// Utilities for native arrays.
950
 
951
// ArrayEq() compares two k-dimensional native arrays using the
952
// elements' operator==, where k can be any integer >= 0.  When k is
953
// 0, ArrayEq() degenerates into comparing a single pair of values.
954
 
955
template <typename T, typename U>
956
bool ArrayEq(const T* lhs, size_t size, const U* rhs);
957
 
958
// This generic version is used when k is 0.
959
template <typename T, typename U>
960
inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
961
 
962
// This overload is used when k >= 1.
963
template <typename T, typename U, size_t N>
964
inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
965
  return internal::ArrayEq(lhs, N, rhs);
966
}
967
 
968
// This helper reduces code bloat.  If we instead put its logic inside
969
// the previous ArrayEq() function, arrays with different sizes would
970
// lead to different copies of the template code.
971
template <typename T, typename U>
972
bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
973
  for (size_t i = 0; i != size; i++) {
974
    if (!internal::ArrayEq(lhs[i], rhs[i]))
975
      return false;
976
  }
977
  return true;
978
}
979
 
980
// Finds the first element in the iterator range [begin, end) that
981
// equals elem.  Element may be a native array type itself.
982
template <typename Iter, typename Element>
983
Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
984
  for (Iter it = begin; it != end; ++it) {
985
    if (internal::ArrayEq(*it, elem))
986
      return it;
987
  }
988
  return end;
989
}
990
 
991
// CopyArray() copies a k-dimensional native array using the elements'
992
// operator=, where k can be any integer >= 0.  When k is 0,
993
// CopyArray() degenerates into copying a single value.
994
 
995
template <typename T, typename U>
996
void CopyArray(const T* from, size_t size, U* to);
997
 
998
// This generic version is used when k is 0.
999
template <typename T, typename U>
1000
inline void CopyArray(const T& from, U* to) { *to = from; }
1001
 
1002
// This overload is used when k >= 1.
1003
template <typename T, typename U, size_t N>
1004
inline void CopyArray(const T(&from)[N], U(*to)[N]) {
1005
  internal::CopyArray(from, N, *to);
1006
}
1007
 
1008
// This helper reduces code bloat.  If we instead put its logic inside
1009
// the previous CopyArray() function, arrays with different sizes
1010
// would lead to different copies of the template code.
1011
template <typename T, typename U>
1012
void CopyArray(const T* from, size_t size, U* to) {
1013
  for (size_t i = 0; i != size; i++) {
1014
    internal::CopyArray(from[i], to + i);
1015
  }
1016
}
1017
 
1018
// The relation between an NativeArray object (see below) and the
1019
// native array it represents.
1020
// We use 2 different structs to allow non-copyable types to be used, as long
1021
// as RelationToSourceReference() is passed.
1022
struct RelationToSourceReference {};
1023
struct RelationToSourceCopy {};
1024
 
1025
// Adapts a native array to a read-only STL-style container.  Instead
1026
// of the complete STL container concept, this adaptor only implements
1027
// members useful for Google Mock's container matchers.  New members
1028
// should be added as needed.  To simplify the implementation, we only
1029
// support Element being a raw type (i.e. having no top-level const or
1030
// reference modifier).  It's the client's responsibility to satisfy
1031
// this requirement.  Element can be an array type itself (hence
1032
// multi-dimensional arrays are supported).
1033
template <typename Element>
1034
class NativeArray {
1035
 public:
1036
  // STL-style container typedefs.
1037
  typedef Element value_type;
1038
  typedef Element* iterator;
1039
  typedef const Element* const_iterator;
1040
 
1041
  // Constructs from a native array. References the source.
1042
  NativeArray(const Element* array, size_t count, RelationToSourceReference) {
1043
    InitRef(array, count);
1044
  }
1045
 
1046
  // Constructs from a native array. Copies the source.
1047
  NativeArray(const Element* array, size_t count, RelationToSourceCopy) {
1048
    InitCopy(array, count);
1049
  }
1050
 
1051
  // Copy constructor.
1052
  NativeArray(const NativeArray& rhs) {
1053
    (this->*rhs.clone_)(rhs.array_, rhs.size_);
1054
  }
1055
 
1056
  ~NativeArray() {
1057
    if (clone_ != &NativeArray::InitRef)
1058
      delete[] array_;
1059
  }
1060
 
1061
  // STL-style container methods.
1062
  size_t size() const { return size_; }
1063
  const_iterator begin() const { return array_; }
1064
  const_iterator end() const { return array_ + size_; }
1065
  bool operator==(const NativeArray& rhs) const {
1066
    return size() == rhs.size() &&
1067
        ArrayEq(begin(), size(), rhs.begin());
1068
  }
1069
 
1070
 private:
1071
  enum {
1072
    kCheckTypeIsNotConstOrAReference = StaticAssertTypeEqHelper<
1073
        Element, GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>::value,
1074
  };
1075
 
1076
  // Initializes this object with a copy of the input.
1077
  void InitCopy(const Element* array, size_t a_size) {
1078
    Element* const copy = new Element[a_size];
1079
    CopyArray(array, a_size, copy);
1080
    array_ = copy;
1081
    size_ = a_size;
1082
    clone_ = &NativeArray::InitCopy;
1083
  }
1084
 
1085
  // Initializes this object with a reference of the input.
1086
  void InitRef(const Element* array, size_t a_size) {
1087
    array_ = array;
1088
    size_ = a_size;
1089
    clone_ = &NativeArray::InitRef;
1090
  }
1091
 
1092
  const Element* array_;
1093
  size_t size_;
1094
  void (NativeArray::*clone_)(const Element*, size_t);
1095
 
1096
  GTEST_DISALLOW_ASSIGN_(NativeArray);
1097
};
1098
 
1099
}  // namespace internal
1100
}  // namespace testing
1101
 
1102
#define GTEST_MESSAGE_AT_(file, line, message, result_type) \
1103
  ::testing::internal::AssertHelper(result_type, file, line, message) \
1104
    = ::testing::Message()
1105
 
1106
#define GTEST_MESSAGE_(message, result_type) \
1107
  GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
1108
 
1109
#define GTEST_FATAL_FAILURE_(message) \
1110
  return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
1111
 
1112
#define GTEST_NONFATAL_FAILURE_(message) \
1113
  GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
1114
 
1115
#define GTEST_SUCCESS_(message) \
1116
  GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
1117
 
1118
// Suppresses MSVC warnings 4072 (unreachable code) for the code following
1119
// statement if it returns or throws (or doesn't return or throw in some
1120
// situations).
1121
#define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
1122
  if (::testing::internal::AlwaysTrue()) { statement; }
1123
 
1124
#define GTEST_TEST_THROW_(statement, expected_exception, fail) \
1125
  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1126
  if (::testing::internal::ConstCharPtr gtest_msg = "") { \
1127
    bool gtest_caught_expected = false; \
1128
    try { \
1129
      GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1130
    } \
1131
    catch (expected_exception const&) { \
1132
      gtest_caught_expected = true; \
1133
    } \
1134
    catch (...) { \
1135
      gtest_msg.value = \
1136
          "Expected: " #statement " throws an exception of type " \
1137
          #expected_exception ".\n  Actual: it throws a different type."; \
1138
      goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1139
    } \
1140
    if (!gtest_caught_expected) { \
1141
      gtest_msg.value = \
1142
          "Expected: " #statement " throws an exception of type " \
1143
          #expected_exception ".\n  Actual: it throws nothing."; \
1144
      goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
1145
    } \
1146
  } else \
1147
    GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \
1148
      fail(gtest_msg.value)
1149
 
1150
#define GTEST_TEST_NO_THROW_(statement, fail) \
1151
  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1152
  if (::testing::internal::AlwaysTrue()) { \
1153
    try { \
1154
      GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1155
    } \
1156
    catch (...) { \
1157
      goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
1158
    } \
1159
  } else \
1160
    GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
1161
      fail("Expected: " #statement " doesn't throw an exception.\n" \
1162
           "  Actual: it throws.")
1163
 
1164
#define GTEST_TEST_ANY_THROW_(statement, fail) \
1165
  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1166
  if (::testing::internal::AlwaysTrue()) { \
1167
    bool gtest_caught_any = false; \
1168
    try { \
1169
      GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1170
    } \
1171
    catch (...) { \
1172
      gtest_caught_any = true; \
1173
    } \
1174
    if (!gtest_caught_any) { \
1175
      goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
1176
    } \
1177
  } else \
1178
    GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
1179
      fail("Expected: " #statement " throws an exception.\n" \
1180
           "  Actual: it doesn't.")
1181
 
1182
 
1183
// Implements Boolean test assertions such as EXPECT_TRUE. expression can be
1184
// either a boolean expression or an AssertionResult. text is a textual
1185
// represenation of expression as it was passed into the EXPECT_TRUE.
1186
#define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
1187
  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1188
  if (const ::testing::AssertionResult gtest_ar_ = \
1189
      ::testing::AssertionResult(expression)) \
1190
    ; \
1191
  else \
1192
    fail(::testing::internal::GetBoolAssertionFailureMessage(\
1193
        gtest_ar_, text, #actual, #expected).c_str())
1194
 
1195
#define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
1196
  GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
1197
  if (::testing::internal::AlwaysTrue()) { \
1198
    ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
1199
    GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
1200
    if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
1201
      goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
1202
    } \
1203
  } else \
1204
    GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
1205
      fail("Expected: " #statement " doesn't generate new fatal " \
1206
           "failures in the current thread.\n" \
1207
           "  Actual: it does.")
1208
 
1209
// Expands to the name of the class that implements the given test.
1210
#define GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \
1211
  test_case_name##_##test_name##_Test
1212
 
1213
// Helper macro for defining tests.
1214
#define GTEST_TEST_(test_case_name, test_name, parent_class, parent_id)\
1215
class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) : public parent_class {\
1216
 public:\
1217
  GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {}\
1218
 private:\
1219
  virtual void TestBody();\
1220
  static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;\
1221
  GTEST_DISALLOW_COPY_AND_ASSIGN_(\
1222
      GTEST_TEST_CLASS_NAME_(test_case_name, test_name));\
1223
};\
1224
\
1225
::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_case_name, test_name)\
1226
  ::test_info_ =\
1227
    ::testing::internal::MakeAndRegisterTestInfo(\
1228
        #test_case_name, #test_name, NULL, NULL, \
1229
        ::testing::internal::CodeLocation(__FILE__, __LINE__), \
1230
        (parent_id), \
1231
        parent_class::SetUpTestCase, \
1232
        parent_class::TearDownTestCase, \
1233
        new ::testing::internal::TestFactoryImpl<\
1234
            GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>);\
1235
void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody()
1236
 
1237
#endif  // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
1238
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.