OpenCores
URL https://opencores.org/ocsvn/s80186/s80186/trunk

Subversion Repositories s80186

[/] [s80186/] [trunk/] [vendor/] [googletest/] [googletest/] [test/] [gtest-printers_test.cc] - Blame information for rev 2

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 2 jamieiles
// Copyright 2007, Google Inc.
2
// All rights reserved.
3
//
4
// Redistribution and use in source and binary forms, with or without
5
// modification, are permitted provided that the following conditions are
6
// met:
7
//
8
//     * Redistributions of source code must retain the above copyright
9
// notice, this list of conditions and the following disclaimer.
10
//     * Redistributions in binary form must reproduce the above
11
// copyright notice, this list of conditions and the following disclaimer
12
// in the documentation and/or other materials provided with the
13
// distribution.
14
//     * Neither the name of Google Inc. nor the names of its
15
// contributors may be used to endorse or promote products derived from
16
// this software without specific prior written permission.
17
//
18
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
//
30
// Author: wan@google.com (Zhanyong Wan)
31
 
32
// Google Test - The Google C++ Testing Framework
33
//
34
// This file tests the universal value printer.
35
 
36
#include "gtest/gtest-printers.h"
37
 
38
#include <ctype.h>
39
#include <limits.h>
40
#include <string.h>
41
#include <algorithm>
42
#include <deque>
43
#include <list>
44
#include <map>
45
#include <set>
46
#include <sstream>
47
#include <string>
48
#include <utility>
49
#include <vector>
50
 
51
#include "gtest/gtest.h"
52
 
53
// hash_map and hash_set are available under Visual C++, or on Linux.
54
#if GTEST_HAS_HASH_MAP_
55
# include <hash_map>            // NOLINT
56
#endif  // GTEST_HAS_HASH_MAP_
57
#if GTEST_HAS_HASH_SET_
58
# include <hash_set>            // NOLINT
59
#endif  // GTEST_HAS_HASH_SET_
60
 
61
#if GTEST_HAS_STD_FORWARD_LIST_
62
# include <forward_list> // NOLINT
63
#endif  // GTEST_HAS_STD_FORWARD_LIST_
64
 
65
// Some user-defined types for testing the universal value printer.
66
 
67
// An anonymous enum type.
68
enum AnonymousEnum {
69
  kAE1 = -1,
70
  kAE2 = 1
71
};
72
 
73
// An enum without a user-defined printer.
74
enum EnumWithoutPrinter {
75
  kEWP1 = -2,
76
  kEWP2 = 42
77
};
78
 
79
// An enum with a << operator.
80
enum EnumWithStreaming {
81
  kEWS1 = 10
82
};
83
 
84
std::ostream& operator<<(std::ostream& os, EnumWithStreaming e) {
85
  return os << (e == kEWS1 ? "kEWS1" : "invalid");
86
}
87
 
88
// An enum with a PrintTo() function.
89
enum EnumWithPrintTo {
90
  kEWPT1 = 1
91
};
92
 
93
void PrintTo(EnumWithPrintTo e, std::ostream* os) {
94
  *os << (e == kEWPT1 ? "kEWPT1" : "invalid");
95
}
96
 
97
// A class implicitly convertible to BiggestInt.
98
class BiggestIntConvertible {
99
 public:
100
  operator ::testing::internal::BiggestInt() const { return 42; }
101
};
102
 
103
// A user-defined unprintable class template in the global namespace.
104
template <typename T>
105
class UnprintableTemplateInGlobal {
106
 public:
107
  UnprintableTemplateInGlobal() : value_() {}
108
 private:
109
  T value_;
110
};
111
 
112
// A user-defined streamable type in the global namespace.
113
class StreamableInGlobal {
114
 public:
115
  virtual ~StreamableInGlobal() {}
116
};
117
 
118
inline void operator<<(::std::ostream& os, const StreamableInGlobal& /* x */) {
119
  os << "StreamableInGlobal";
120
}
121
 
122
void operator<<(::std::ostream& os, const StreamableInGlobal* /* x */) {
123
  os << "StreamableInGlobal*";
124
}
125
 
126
namespace foo {
127
 
128
// A user-defined unprintable type in a user namespace.
129
class UnprintableInFoo {
130
 public:
131
  UnprintableInFoo() : z_(0) { memcpy(xy_, "\xEF\x12\x0\x0\x34\xAB\x0\x0", 8); }
132
  double z() const { return z_; }
133
 private:
134
  char xy_[8];
135
  double z_;
136
};
137
 
138
// A user-defined printable type in a user-chosen namespace.
139
struct PrintableViaPrintTo {
140
  PrintableViaPrintTo() : value() {}
141
  int value;
142
};
143
 
144
void PrintTo(const PrintableViaPrintTo& x, ::std::ostream* os) {
145
  *os << "PrintableViaPrintTo: " << x.value;
146
}
147
 
148
// A type with a user-defined << for printing its pointer.
149
struct PointerPrintable {
150
};
151
 
152
::std::ostream& operator<<(::std::ostream& os,
153
                           const PointerPrintable* /* x */) {
154
  return os << "PointerPrintable*";
155
}
156
 
157
// A user-defined printable class template in a user-chosen namespace.
158
template <typename T>
159
class PrintableViaPrintToTemplate {
160
 public:
161
  explicit PrintableViaPrintToTemplate(const T& a_value) : value_(a_value) {}
162
 
163
  const T& value() const { return value_; }
164
 private:
165
  T value_;
166
};
167
 
168
template <typename T>
169
void PrintTo(const PrintableViaPrintToTemplate<T>& x, ::std::ostream* os) {
170
  *os << "PrintableViaPrintToTemplate: " << x.value();
171
}
172
 
173
// A user-defined streamable class template in a user namespace.
174
template <typename T>
175
class StreamableTemplateInFoo {
176
 public:
177
  StreamableTemplateInFoo() : value_() {}
178
 
179
  const T& value() const { return value_; }
180
 private:
181
  T value_;
182
};
183
 
184
template <typename T>
185
inline ::std::ostream& operator<<(::std::ostream& os,
186
                                  const StreamableTemplateInFoo<T>& x) {
187
  return os << "StreamableTemplateInFoo: " << x.value();
188
}
189
 
190
}  // namespace foo
191
 
192
namespace testing {
193
namespace gtest_printers_test {
194
 
195
using ::std::deque;
196
using ::std::list;
197
using ::std::make_pair;
198
using ::std::map;
199
using ::std::multimap;
200
using ::std::multiset;
201
using ::std::pair;
202
using ::std::set;
203
using ::std::vector;
204
using ::testing::PrintToString;
205
using ::testing::internal::FormatForComparisonFailureMessage;
206
using ::testing::internal::ImplicitCast_;
207
using ::testing::internal::NativeArray;
208
using ::testing::internal::RE;
209
using ::testing::internal::RelationToSourceReference;
210
using ::testing::internal::Strings;
211
using ::testing::internal::UniversalPrint;
212
using ::testing::internal::UniversalPrinter;
213
using ::testing::internal::UniversalTersePrint;
214
using ::testing::internal::UniversalTersePrintTupleFieldsToStrings;
215
using ::testing::internal::string;
216
 
217
// The hash_* classes are not part of the C++ standard.  STLport
218
// defines them in namespace std.  MSVC defines them in ::stdext.  GCC
219
// defines them in ::.
220
#ifdef _STLP_HASH_MAP  // We got <hash_map> from STLport.
221
using ::std::hash_map;
222
using ::std::hash_set;
223
using ::std::hash_multimap;
224
using ::std::hash_multiset;
225
#elif _MSC_VER
226
using ::stdext::hash_map;
227
using ::stdext::hash_set;
228
using ::stdext::hash_multimap;
229
using ::stdext::hash_multiset;
230
#endif
231
 
232
// Prints a value to a string using the universal value printer.  This
233
// is a helper for testing UniversalPrinter<T>::Print() for various types.
234
template <typename T>
235
string Print(const T& value) {
236
  ::std::stringstream ss;
237
  UniversalPrinter<T>::Print(value, &ss);
238
  return ss.str();
239
}
240
 
241
// Prints a value passed by reference to a string, using the universal
242
// value printer.  This is a helper for testing
243
// UniversalPrinter<T&>::Print() for various types.
244
template <typename T>
245
string PrintByRef(const T& value) {
246
  ::std::stringstream ss;
247
  UniversalPrinter<T&>::Print(value, &ss);
248
  return ss.str();
249
}
250
 
251
// Tests printing various enum types.
252
 
253
TEST(PrintEnumTest, AnonymousEnum) {
254
  EXPECT_EQ("-1", Print(kAE1));
255
  EXPECT_EQ("1", Print(kAE2));
256
}
257
 
258
TEST(PrintEnumTest, EnumWithoutPrinter) {
259
  EXPECT_EQ("-2", Print(kEWP1));
260
  EXPECT_EQ("42", Print(kEWP2));
261
}
262
 
263
TEST(PrintEnumTest, EnumWithStreaming) {
264
  EXPECT_EQ("kEWS1", Print(kEWS1));
265
  EXPECT_EQ("invalid", Print(static_cast<EnumWithStreaming>(0)));
266
}
267
 
268
TEST(PrintEnumTest, EnumWithPrintTo) {
269
  EXPECT_EQ("kEWPT1", Print(kEWPT1));
270
  EXPECT_EQ("invalid", Print(static_cast<EnumWithPrintTo>(0)));
271
}
272
 
273
// Tests printing a class implicitly convertible to BiggestInt.
274
 
275
TEST(PrintClassTest, BiggestIntConvertible) {
276
  EXPECT_EQ("42", Print(BiggestIntConvertible()));
277
}
278
 
279
// Tests printing various char types.
280
 
281
// char.
282
TEST(PrintCharTest, PlainChar) {
283
  EXPECT_EQ("'\\0'", Print('\0'));
284
  EXPECT_EQ("'\\'' (39, 0x27)", Print('\''));
285
  EXPECT_EQ("'\"' (34, 0x22)", Print('"'));
286
  EXPECT_EQ("'?' (63, 0x3F)", Print('?'));
287
  EXPECT_EQ("'\\\\' (92, 0x5C)", Print('\\'));
288
  EXPECT_EQ("'\\a' (7)", Print('\a'));
289
  EXPECT_EQ("'\\b' (8)", Print('\b'));
290
  EXPECT_EQ("'\\f' (12, 0xC)", Print('\f'));
291
  EXPECT_EQ("'\\n' (10, 0xA)", Print('\n'));
292
  EXPECT_EQ("'\\r' (13, 0xD)", Print('\r'));
293
  EXPECT_EQ("'\\t' (9)", Print('\t'));
294
  EXPECT_EQ("'\\v' (11, 0xB)", Print('\v'));
295
  EXPECT_EQ("'\\x7F' (127)", Print('\x7F'));
296
  EXPECT_EQ("'\\xFF' (255)", Print('\xFF'));
297
  EXPECT_EQ("' ' (32, 0x20)", Print(' '));
298
  EXPECT_EQ("'a' (97, 0x61)", Print('a'));
299
}
300
 
301
// signed char.
302
TEST(PrintCharTest, SignedChar) {
303
  EXPECT_EQ("'\\0'", Print(static_cast<signed char>('\0')));
304
  EXPECT_EQ("'\\xCE' (-50)",
305
            Print(static_cast<signed char>(-50)));
306
}
307
 
308
// unsigned char.
309
TEST(PrintCharTest, UnsignedChar) {
310
  EXPECT_EQ("'\\0'", Print(static_cast<unsigned char>('\0')));
311
  EXPECT_EQ("'b' (98, 0x62)",
312
            Print(static_cast<unsigned char>('b')));
313
}
314
 
315
// Tests printing other simple, built-in types.
316
 
317
// bool.
318
TEST(PrintBuiltInTypeTest, Bool) {
319
  EXPECT_EQ("false", Print(false));
320
  EXPECT_EQ("true", Print(true));
321
}
322
 
323
// wchar_t.
324
TEST(PrintBuiltInTypeTest, Wchar_t) {
325
  EXPECT_EQ("L'\\0'", Print(L'\0'));
326
  EXPECT_EQ("L'\\'' (39, 0x27)", Print(L'\''));
327
  EXPECT_EQ("L'\"' (34, 0x22)", Print(L'"'));
328
  EXPECT_EQ("L'?' (63, 0x3F)", Print(L'?'));
329
  EXPECT_EQ("L'\\\\' (92, 0x5C)", Print(L'\\'));
330
  EXPECT_EQ("L'\\a' (7)", Print(L'\a'));
331
  EXPECT_EQ("L'\\b' (8)", Print(L'\b'));
332
  EXPECT_EQ("L'\\f' (12, 0xC)", Print(L'\f'));
333
  EXPECT_EQ("L'\\n' (10, 0xA)", Print(L'\n'));
334
  EXPECT_EQ("L'\\r' (13, 0xD)", Print(L'\r'));
335
  EXPECT_EQ("L'\\t' (9)", Print(L'\t'));
336
  EXPECT_EQ("L'\\v' (11, 0xB)", Print(L'\v'));
337
  EXPECT_EQ("L'\\x7F' (127)", Print(L'\x7F'));
338
  EXPECT_EQ("L'\\xFF' (255)", Print(L'\xFF'));
339
  EXPECT_EQ("L' ' (32, 0x20)", Print(L' '));
340
  EXPECT_EQ("L'a' (97, 0x61)", Print(L'a'));
341
  EXPECT_EQ("L'\\x576' (1398)", Print(static_cast<wchar_t>(0x576)));
342
  EXPECT_EQ("L'\\xC74D' (51021)", Print(static_cast<wchar_t>(0xC74D)));
343
}
344
 
345
// Test that Int64 provides more storage than wchar_t.
346
TEST(PrintTypeSizeTest, Wchar_t) {
347
  EXPECT_LT(sizeof(wchar_t), sizeof(testing::internal::Int64));
348
}
349
 
350
// Various integer types.
351
TEST(PrintBuiltInTypeTest, Integer) {
352
  EXPECT_EQ("'\\xFF' (255)", Print(static_cast<unsigned char>(255)));  // uint8
353
  EXPECT_EQ("'\\x80' (-128)", Print(static_cast<signed char>(-128)));  // int8
354
  EXPECT_EQ("65535", Print(USHRT_MAX));  // uint16
355
  EXPECT_EQ("-32768", Print(SHRT_MIN));  // int16
356
  EXPECT_EQ("4294967295", Print(UINT_MAX));  // uint32
357
  EXPECT_EQ("-2147483648", Print(INT_MIN));  // int32
358
  EXPECT_EQ("18446744073709551615",
359
            Print(static_cast<testing::internal::UInt64>(-1)));  // uint64
360
  EXPECT_EQ("-9223372036854775808",
361
            Print(static_cast<testing::internal::Int64>(1) << 63));  // int64
362
}
363
 
364
// Size types.
365
TEST(PrintBuiltInTypeTest, Size_t) {
366
  EXPECT_EQ("1", Print(sizeof('a')));  // size_t.
367
#if !GTEST_OS_WINDOWS
368
  // Windows has no ssize_t type.
369
  EXPECT_EQ("-2", Print(static_cast<ssize_t>(-2)));  // ssize_t.
370
#endif  // !GTEST_OS_WINDOWS
371
}
372
 
373
// Floating-points.
374
TEST(PrintBuiltInTypeTest, FloatingPoints) {
375
  EXPECT_EQ("1.5", Print(1.5f));   // float
376
  EXPECT_EQ("-2.5", Print(-2.5));  // double
377
}
378
 
379
// Since ::std::stringstream::operator<<(const void *) formats the pointer
380
// output differently with different compilers, we have to create the expected
381
// output first and use it as our expectation.
382
static string PrintPointer(const void *p) {
383
  ::std::stringstream expected_result_stream;
384
  expected_result_stream << p;
385
  return expected_result_stream.str();
386
}
387
 
388
// Tests printing C strings.
389
 
390
// const char*.
391
TEST(PrintCStringTest, Const) {
392
  const char* p = "World";
393
  EXPECT_EQ(PrintPointer(p) + " pointing to \"World\"", Print(p));
394
}
395
 
396
// char*.
397
TEST(PrintCStringTest, NonConst) {
398
  char p[] = "Hi";
399
  EXPECT_EQ(PrintPointer(p) + " pointing to \"Hi\"",
400
            Print(static_cast<char*>(p)));
401
}
402
 
403
// NULL C string.
404
TEST(PrintCStringTest, Null) {
405
  const char* p = NULL;
406
  EXPECT_EQ("NULL", Print(p));
407
}
408
 
409
// Tests that C strings are escaped properly.
410
TEST(PrintCStringTest, EscapesProperly) {
411
  const char* p = "'\"?\\\a\b\f\n\r\t\v\x7F\xFF a";
412
  EXPECT_EQ(PrintPointer(p) + " pointing to \"'\\\"?\\\\\\a\\b\\f"
413
            "\\n\\r\\t\\v\\x7F\\xFF a\"",
414
            Print(p));
415
}
416
 
417
// MSVC compiler can be configured to define whar_t as a typedef
418
// of unsigned short. Defining an overload for const wchar_t* in that case
419
// would cause pointers to unsigned shorts be printed as wide strings,
420
// possibly accessing more memory than intended and causing invalid
421
// memory accesses. MSVC defines _NATIVE_WCHAR_T_DEFINED symbol when
422
// wchar_t is implemented as a native type.
423
#if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED)
424
 
425
// const wchar_t*.
426
TEST(PrintWideCStringTest, Const) {
427
  const wchar_t* p = L"World";
428
  EXPECT_EQ(PrintPointer(p) + " pointing to L\"World\"", Print(p));
429
}
430
 
431
// wchar_t*.
432
TEST(PrintWideCStringTest, NonConst) {
433
  wchar_t p[] = L"Hi";
434
  EXPECT_EQ(PrintPointer(p) + " pointing to L\"Hi\"",
435
            Print(static_cast<wchar_t*>(p)));
436
}
437
 
438
// NULL wide C string.
439
TEST(PrintWideCStringTest, Null) {
440
  const wchar_t* p = NULL;
441
  EXPECT_EQ("NULL", Print(p));
442
}
443
 
444
// Tests that wide C strings are escaped properly.
445
TEST(PrintWideCStringTest, EscapesProperly) {
446
  const wchar_t s[] = {'\'', '"', '?', '\\', '\a', '\b', '\f', '\n', '\r',
447
                       '\t', '\v', 0xD3, 0x576, 0x8D3, 0xC74D, ' ', 'a', '\0'};
448
  EXPECT_EQ(PrintPointer(s) + " pointing to L\"'\\\"?\\\\\\a\\b\\f"
449
            "\\n\\r\\t\\v\\xD3\\x576\\x8D3\\xC74D a\"",
450
            Print(static_cast<const wchar_t*>(s)));
451
}
452
#endif  // native wchar_t
453
 
454
// Tests printing pointers to other char types.
455
 
456
// signed char*.
457
TEST(PrintCharPointerTest, SignedChar) {
458
  signed char* p = reinterpret_cast<signed char*>(0x1234);
459
  EXPECT_EQ(PrintPointer(p), Print(p));
460
  p = NULL;
461
  EXPECT_EQ("NULL", Print(p));
462
}
463
 
464
// const signed char*.
465
TEST(PrintCharPointerTest, ConstSignedChar) {
466
  signed char* p = reinterpret_cast<signed char*>(0x1234);
467
  EXPECT_EQ(PrintPointer(p), Print(p));
468
  p = NULL;
469
  EXPECT_EQ("NULL", Print(p));
470
}
471
 
472
// unsigned char*.
473
TEST(PrintCharPointerTest, UnsignedChar) {
474
  unsigned char* p = reinterpret_cast<unsigned char*>(0x1234);
475
  EXPECT_EQ(PrintPointer(p), Print(p));
476
  p = NULL;
477
  EXPECT_EQ("NULL", Print(p));
478
}
479
 
480
// const unsigned char*.
481
TEST(PrintCharPointerTest, ConstUnsignedChar) {
482
  const unsigned char* p = reinterpret_cast<const unsigned char*>(0x1234);
483
  EXPECT_EQ(PrintPointer(p), Print(p));
484
  p = NULL;
485
  EXPECT_EQ("NULL", Print(p));
486
}
487
 
488
// Tests printing pointers to simple, built-in types.
489
 
490
// bool*.
491
TEST(PrintPointerToBuiltInTypeTest, Bool) {
492
  bool* p = reinterpret_cast<bool*>(0xABCD);
493
  EXPECT_EQ(PrintPointer(p), Print(p));
494
  p = NULL;
495
  EXPECT_EQ("NULL", Print(p));
496
}
497
 
498
// void*.
499
TEST(PrintPointerToBuiltInTypeTest, Void) {
500
  void* p = reinterpret_cast<void*>(0xABCD);
501
  EXPECT_EQ(PrintPointer(p), Print(p));
502
  p = NULL;
503
  EXPECT_EQ("NULL", Print(p));
504
}
505
 
506
// const void*.
507
TEST(PrintPointerToBuiltInTypeTest, ConstVoid) {
508
  const void* p = reinterpret_cast<const void*>(0xABCD);
509
  EXPECT_EQ(PrintPointer(p), Print(p));
510
  p = NULL;
511
  EXPECT_EQ("NULL", Print(p));
512
}
513
 
514
// Tests printing pointers to pointers.
515
TEST(PrintPointerToPointerTest, IntPointerPointer) {
516
  int** p = reinterpret_cast<int**>(0xABCD);
517
  EXPECT_EQ(PrintPointer(p), Print(p));
518
  p = NULL;
519
  EXPECT_EQ("NULL", Print(p));
520
}
521
 
522
// Tests printing (non-member) function pointers.
523
 
524
void MyFunction(int /* n */) {}
525
 
526
TEST(PrintPointerTest, NonMemberFunctionPointer) {
527
  // We cannot directly cast &MyFunction to const void* because the
528
  // standard disallows casting between pointers to functions and
529
  // pointers to objects, and some compilers (e.g. GCC 3.4) enforce
530
  // this limitation.
531
  EXPECT_EQ(
532
      PrintPointer(reinterpret_cast<const void*>(
533
          reinterpret_cast<internal::BiggestInt>(&MyFunction))),
534
      Print(&MyFunction));
535
  int (*p)(bool) = NULL;  // NOLINT
536
  EXPECT_EQ("NULL", Print(p));
537
}
538
 
539
// An assertion predicate determining whether a one string is a prefix for
540
// another.
541
template <typename StringType>
542
AssertionResult HasPrefix(const StringType& str, const StringType& prefix) {
543
  if (str.find(prefix, 0) == 0)
544
    return AssertionSuccess();
545
 
546
  const bool is_wide_string = sizeof(prefix[0]) > 1;
547
  const char* const begin_string_quote = is_wide_string ? "L\"" : "\"";
548
  return AssertionFailure()
549
      << begin_string_quote << prefix << "\" is not a prefix of "
550
      << begin_string_quote << str << "\"\n";
551
}
552
 
553
// Tests printing member variable pointers.  Although they are called
554
// pointers, they don't point to a location in the address space.
555
// Their representation is implementation-defined.  Thus they will be
556
// printed as raw bytes.
557
 
558
struct Foo {
559
 public:
560
  virtual ~Foo() {}
561
  int MyMethod(char x) { return x + 1; }
562
  virtual char MyVirtualMethod(int /* n */) { return 'a'; }
563
 
564
  int value;
565
};
566
 
567
TEST(PrintPointerTest, MemberVariablePointer) {
568
  EXPECT_TRUE(HasPrefix(Print(&Foo::value),
569
                        Print(sizeof(&Foo::value)) + "-byte object "));
570
  int (Foo::*p) = NULL;  // NOLINT
571
  EXPECT_TRUE(HasPrefix(Print(p),
572
                        Print(sizeof(p)) + "-byte object "));
573
}
574
 
575
// Tests printing member function pointers.  Although they are called
576
// pointers, they don't point to a location in the address space.
577
// Their representation is implementation-defined.  Thus they will be
578
// printed as raw bytes.
579
TEST(PrintPointerTest, MemberFunctionPointer) {
580
  EXPECT_TRUE(HasPrefix(Print(&Foo::MyMethod),
581
                        Print(sizeof(&Foo::MyMethod)) + "-byte object "));
582
  EXPECT_TRUE(
583
      HasPrefix(Print(&Foo::MyVirtualMethod),
584
                Print(sizeof((&Foo::MyVirtualMethod))) + "-byte object "));
585
  int (Foo::*p)(char) = NULL;  // NOLINT
586
  EXPECT_TRUE(HasPrefix(Print(p),
587
                        Print(sizeof(p)) + "-byte object "));
588
}
589
 
590
// Tests printing C arrays.
591
 
592
// The difference between this and Print() is that it ensures that the
593
// argument is a reference to an array.
594
template <typename T, size_t N>
595
string PrintArrayHelper(T (&a)[N]) {
596
  return Print(a);
597
}
598
 
599
// One-dimensional array.
600
TEST(PrintArrayTest, OneDimensionalArray) {
601
  int a[5] = { 1, 2, 3, 4, 5 };
602
  EXPECT_EQ("{ 1, 2, 3, 4, 5 }", PrintArrayHelper(a));
603
}
604
 
605
// Two-dimensional array.
606
TEST(PrintArrayTest, TwoDimensionalArray) {
607
  int a[2][5] = {
608
    { 1, 2, 3, 4, 5 },
609
    { 6, 7, 8, 9, 0 }
610
  };
611
  EXPECT_EQ("{ { 1, 2, 3, 4, 5 }, { 6, 7, 8, 9, 0 } }", PrintArrayHelper(a));
612
}
613
 
614
// Array of const elements.
615
TEST(PrintArrayTest, ConstArray) {
616
  const bool a[1] = { false };
617
  EXPECT_EQ("{ false }", PrintArrayHelper(a));
618
}
619
 
620
// char array without terminating NUL.
621
TEST(PrintArrayTest, CharArrayWithNoTerminatingNul) {
622
  // Array a contains '\0' in the middle and doesn't end with '\0'.
623
  char a[] = { 'H', '\0', 'i' };
624
  EXPECT_EQ("\"H\\0i\" (no terminating NUL)", PrintArrayHelper(a));
625
}
626
 
627
// const char array with terminating NUL.
628
TEST(PrintArrayTest, ConstCharArrayWithTerminatingNul) {
629
  const char a[] = "\0Hi";
630
  EXPECT_EQ("\"\\0Hi\"", PrintArrayHelper(a));
631
}
632
 
633
// const wchar_t array without terminating NUL.
634
TEST(PrintArrayTest, WCharArrayWithNoTerminatingNul) {
635
  // Array a contains '\0' in the middle and doesn't end with '\0'.
636
  const wchar_t a[] = { L'H', L'\0', L'i' };
637
  EXPECT_EQ("L\"H\\0i\" (no terminating NUL)", PrintArrayHelper(a));
638
}
639
 
640
// wchar_t array with terminating NUL.
641
TEST(PrintArrayTest, WConstCharArrayWithTerminatingNul) {
642
  const wchar_t a[] = L"\0Hi";
643
  EXPECT_EQ("L\"\\0Hi\"", PrintArrayHelper(a));
644
}
645
 
646
// Array of objects.
647
TEST(PrintArrayTest, ObjectArray) {
648
  string a[3] = { "Hi", "Hello", "Ni hao" };
649
  EXPECT_EQ("{ \"Hi\", \"Hello\", \"Ni hao\" }", PrintArrayHelper(a));
650
}
651
 
652
// Array with many elements.
653
TEST(PrintArrayTest, BigArray) {
654
  int a[100] = { 1, 2, 3 };
655
  EXPECT_EQ("{ 1, 2, 3, 0, 0, 0, 0, 0, ..., 0, 0, 0, 0, 0, 0, 0, 0 }",
656
            PrintArrayHelper(a));
657
}
658
 
659
// Tests printing ::string and ::std::string.
660
 
661
#if GTEST_HAS_GLOBAL_STRING
662
// ::string.
663
TEST(PrintStringTest, StringInGlobalNamespace) {
664
  const char s[] = "'\"?\\\a\b\f\n\0\r\t\v\x7F\xFF a";
665
  const ::string str(s, sizeof(s));
666
  EXPECT_EQ("\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v\\x7F\\xFF a\\0\"",
667
            Print(str));
668
}
669
#endif  // GTEST_HAS_GLOBAL_STRING
670
 
671
// ::std::string.
672
TEST(PrintStringTest, StringInStdNamespace) {
673
  const char s[] = "'\"?\\\a\b\f\n\0\r\t\v\x7F\xFF a";
674
  const ::std::string str(s, sizeof(s));
675
  EXPECT_EQ("\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v\\x7F\\xFF a\\0\"",
676
            Print(str));
677
}
678
 
679
TEST(PrintStringTest, StringAmbiguousHex) {
680
  // "\x6BANANA" is ambiguous, it can be interpreted as starting with either of:
681
  // '\x6', '\x6B', or '\x6BA'.
682
 
683
  // a hex escaping sequence following by a decimal digit
684
  EXPECT_EQ("\"0\\x12\" \"3\"", Print(::std::string("0\x12" "3")));
685
  // a hex escaping sequence following by a hex digit (lower-case)
686
  EXPECT_EQ("\"mm\\x6\" \"bananas\"", Print(::std::string("mm\x6" "bananas")));
687
  // a hex escaping sequence following by a hex digit (upper-case)
688
  EXPECT_EQ("\"NOM\\x6\" \"BANANA\"", Print(::std::string("NOM\x6" "BANANA")));
689
  // a hex escaping sequence following by a non-xdigit
690
  EXPECT_EQ("\"!\\x5-!\"", Print(::std::string("!\x5-!")));
691
}
692
 
693
// Tests printing ::wstring and ::std::wstring.
694
 
695
#if GTEST_HAS_GLOBAL_WSTRING
696
// ::wstring.
697
TEST(PrintWideStringTest, StringInGlobalNamespace) {
698
  const wchar_t s[] = L"'\"?\\\a\b\f\n\0\r\t\v\xD3\x576\x8D3\xC74D a";
699
  const ::wstring str(s, sizeof(s)/sizeof(wchar_t));
700
  EXPECT_EQ("L\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v"
701
            "\\xD3\\x576\\x8D3\\xC74D a\\0\"",
702
            Print(str));
703
}
704
#endif  // GTEST_HAS_GLOBAL_WSTRING
705
 
706
#if GTEST_HAS_STD_WSTRING
707
// ::std::wstring.
708
TEST(PrintWideStringTest, StringInStdNamespace) {
709
  const wchar_t s[] = L"'\"?\\\a\b\f\n\0\r\t\v\xD3\x576\x8D3\xC74D a";
710
  const ::std::wstring str(s, sizeof(s)/sizeof(wchar_t));
711
  EXPECT_EQ("L\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v"
712
            "\\xD3\\x576\\x8D3\\xC74D a\\0\"",
713
            Print(str));
714
}
715
 
716
TEST(PrintWideStringTest, StringAmbiguousHex) {
717
  // same for wide strings.
718
  EXPECT_EQ("L\"0\\x12\" L\"3\"", Print(::std::wstring(L"0\x12" L"3")));
719
  EXPECT_EQ("L\"mm\\x6\" L\"bananas\"",
720
            Print(::std::wstring(L"mm\x6" L"bananas")));
721
  EXPECT_EQ("L\"NOM\\x6\" L\"BANANA\"",
722
            Print(::std::wstring(L"NOM\x6" L"BANANA")));
723
  EXPECT_EQ("L\"!\\x5-!\"", Print(::std::wstring(L"!\x5-!")));
724
}
725
#endif  // GTEST_HAS_STD_WSTRING
726
 
727
// Tests printing types that support generic streaming (i.e. streaming
728
// to std::basic_ostream<Char, CharTraits> for any valid Char and
729
// CharTraits types).
730
 
731
// Tests printing a non-template type that supports generic streaming.
732
 
733
class AllowsGenericStreaming {};
734
 
735
template <typename Char, typename CharTraits>
736
std::basic_ostream<Char, CharTraits>& operator<<(
737
    std::basic_ostream<Char, CharTraits>& os,
738
    const AllowsGenericStreaming& /* a */) {
739
  return os << "AllowsGenericStreaming";
740
}
741
 
742
TEST(PrintTypeWithGenericStreamingTest, NonTemplateType) {
743
  AllowsGenericStreaming a;
744
  EXPECT_EQ("AllowsGenericStreaming", Print(a));
745
}
746
 
747
// Tests printing a template type that supports generic streaming.
748
 
749
template <typename T>
750
class AllowsGenericStreamingTemplate {};
751
 
752
template <typename Char, typename CharTraits, typename T>
753
std::basic_ostream<Char, CharTraits>& operator<<(
754
    std::basic_ostream<Char, CharTraits>& os,
755
    const AllowsGenericStreamingTemplate<T>& /* a */) {
756
  return os << "AllowsGenericStreamingTemplate";
757
}
758
 
759
TEST(PrintTypeWithGenericStreamingTest, TemplateType) {
760
  AllowsGenericStreamingTemplate<int> a;
761
  EXPECT_EQ("AllowsGenericStreamingTemplate", Print(a));
762
}
763
 
764
// Tests printing a type that supports generic streaming and can be
765
// implicitly converted to another printable type.
766
 
767
template <typename T>
768
class AllowsGenericStreamingAndImplicitConversionTemplate {
769
 public:
770
  operator bool() const { return false; }
771
};
772
 
773
template <typename Char, typename CharTraits, typename T>
774
std::basic_ostream<Char, CharTraits>& operator<<(
775
    std::basic_ostream<Char, CharTraits>& os,
776
    const AllowsGenericStreamingAndImplicitConversionTemplate<T>& /* a */) {
777
  return os << "AllowsGenericStreamingAndImplicitConversionTemplate";
778
}
779
 
780
TEST(PrintTypeWithGenericStreamingTest, TypeImplicitlyConvertible) {
781
  AllowsGenericStreamingAndImplicitConversionTemplate<int> a;
782
  EXPECT_EQ("AllowsGenericStreamingAndImplicitConversionTemplate", Print(a));
783
}
784
 
785
#if GTEST_HAS_STRING_PIECE_
786
 
787
// Tests printing StringPiece.
788
 
789
TEST(PrintStringPieceTest, SimpleStringPiece) {
790
  const StringPiece sp = "Hello";
791
  EXPECT_EQ("\"Hello\"", Print(sp));
792
}
793
 
794
TEST(PrintStringPieceTest, UnprintableCharacters) {
795
  const char str[] = "NUL (\0) and \r\t";
796
  const StringPiece sp(str, sizeof(str) - 1);
797
  EXPECT_EQ("\"NUL (\\0) and \\r\\t\"", Print(sp));
798
}
799
 
800
#endif  // GTEST_HAS_STRING_PIECE_
801
 
802
// Tests printing STL containers.
803
 
804
TEST(PrintStlContainerTest, EmptyDeque) {
805
  deque<char> empty;
806
  EXPECT_EQ("{}", Print(empty));
807
}
808
 
809
TEST(PrintStlContainerTest, NonEmptyDeque) {
810
  deque<int> non_empty;
811
  non_empty.push_back(1);
812
  non_empty.push_back(3);
813
  EXPECT_EQ("{ 1, 3 }", Print(non_empty));
814
}
815
 
816
#if GTEST_HAS_HASH_MAP_
817
 
818
TEST(PrintStlContainerTest, OneElementHashMap) {
819
  hash_map<int, char> map1;
820
  map1[1] = 'a';
821
  EXPECT_EQ("{ (1, 'a' (97, 0x61)) }", Print(map1));
822
}
823
 
824
TEST(PrintStlContainerTest, HashMultiMap) {
825
  hash_multimap<int, bool> map1;
826
  map1.insert(make_pair(5, true));
827
  map1.insert(make_pair(5, false));
828
 
829
  // Elements of hash_multimap can be printed in any order.
830
  const string result = Print(map1);
831
  EXPECT_TRUE(result == "{ (5, true), (5, false) }" ||
832
              result == "{ (5, false), (5, true) }")
833
                  << " where Print(map1) returns \"" << result << "\".";
834
}
835
 
836
#endif  // GTEST_HAS_HASH_MAP_
837
 
838
#if GTEST_HAS_HASH_SET_
839
 
840
TEST(PrintStlContainerTest, HashSet) {
841
  hash_set<string> set1;
842
  set1.insert("hello");
843
  EXPECT_EQ("{ \"hello\" }", Print(set1));
844
}
845
 
846
TEST(PrintStlContainerTest, HashMultiSet) {
847
  const int kSize = 5;
848
  int a[kSize] = { 1, 1, 2, 5, 1 };
849
  hash_multiset<int> set1(a, a + kSize);
850
 
851
  // Elements of hash_multiset can be printed in any order.
852
  const string result = Print(set1);
853
  const string expected_pattern = "{ d, d, d, d, d }";  // d means a digit.
854
 
855
  // Verifies the result matches the expected pattern; also extracts
856
  // the numbers in the result.
857
  ASSERT_EQ(expected_pattern.length(), result.length());
858
  std::vector<int> numbers;
859
  for (size_t i = 0; i != result.length(); i++) {
860
    if (expected_pattern[i] == 'd') {
861
      ASSERT_NE(isdigit(static_cast<unsigned char>(result[i])), 0);
862
      numbers.push_back(result[i] - '0');
863
    } else {
864
      EXPECT_EQ(expected_pattern[i], result[i]) << " where result is "
865
                                                << result;
866
    }
867
  }
868
 
869
  // Makes sure the result contains the right numbers.
870
  std::sort(numbers.begin(), numbers.end());
871
  std::sort(a, a + kSize);
872
  EXPECT_TRUE(std::equal(a, a + kSize, numbers.begin()));
873
}
874
 
875
#endif  // GTEST_HAS_HASH_SET_
876
 
877
TEST(PrintStlContainerTest, List) {
878
  const string a[] = {
879
    "hello",
880
    "world"
881
  };
882
  const list<string> strings(a, a + 2);
883
  EXPECT_EQ("{ \"hello\", \"world\" }", Print(strings));
884
}
885
 
886
TEST(PrintStlContainerTest, Map) {
887
  map<int, bool> map1;
888
  map1[1] = true;
889
  map1[5] = false;
890
  map1[3] = true;
891
  EXPECT_EQ("{ (1, true), (3, true), (5, false) }", Print(map1));
892
}
893
 
894
TEST(PrintStlContainerTest, MultiMap) {
895
  multimap<bool, int> map1;
896
  // The make_pair template function would deduce the type as
897
  // pair<bool, int> here, and since the key part in a multimap has to
898
  // be constant, without a templated ctor in the pair class (as in
899
  // libCstd on Solaris), make_pair call would fail to compile as no
900
  // implicit conversion is found.  Thus explicit typename is used
901
  // here instead.
902
  map1.insert(pair<const bool, int>(true, 0));
903
  map1.insert(pair<const bool, int>(true, 1));
904
  map1.insert(pair<const bool, int>(false, 2));
905
  EXPECT_EQ("{ (false, 2), (true, 0), (true, 1) }", Print(map1));
906
}
907
 
908
TEST(PrintStlContainerTest, Set) {
909
  const unsigned int a[] = { 3, 0, 5 };
910
  set<unsigned int> set1(a, a + 3);
911
  EXPECT_EQ("{ 0, 3, 5 }", Print(set1));
912
}
913
 
914
TEST(PrintStlContainerTest, MultiSet) {
915
  const int a[] = { 1, 1, 2, 5, 1 };
916
  multiset<int> set1(a, a + 5);
917
  EXPECT_EQ("{ 1, 1, 1, 2, 5 }", Print(set1));
918
}
919
 
920
#if GTEST_HAS_STD_FORWARD_LIST_
921
// <slist> is available on Linux in the google3 mode, but not on
922
// Windows or Mac OS X.
923
 
924
TEST(PrintStlContainerTest, SinglyLinkedList) {
925
  int a[] = { 9, 2, 8 };
926
  const std::forward_list<int> ints(a, a + 3);
927
  EXPECT_EQ("{ 9, 2, 8 }", Print(ints));
928
}
929
#endif  // GTEST_HAS_STD_FORWARD_LIST_
930
 
931
TEST(PrintStlContainerTest, Pair) {
932
  pair<const bool, int> p(true, 5);
933
  EXPECT_EQ("(true, 5)", Print(p));
934
}
935
 
936
TEST(PrintStlContainerTest, Vector) {
937
  vector<int> v;
938
  v.push_back(1);
939
  v.push_back(2);
940
  EXPECT_EQ("{ 1, 2 }", Print(v));
941
}
942
 
943
TEST(PrintStlContainerTest, LongSequence) {
944
  const int a[100] = { 1, 2, 3 };
945
  const vector<int> v(a, a + 100);
946
  EXPECT_EQ("{ 1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "
947
            "0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... }", Print(v));
948
}
949
 
950
TEST(PrintStlContainerTest, NestedContainer) {
951
  const int a1[] = { 1, 2 };
952
  const int a2[] = { 3, 4, 5 };
953
  const list<int> l1(a1, a1 + 2);
954
  const list<int> l2(a2, a2 + 3);
955
 
956
  vector<list<int> > v;
957
  v.push_back(l1);
958
  v.push_back(l2);
959
  EXPECT_EQ("{ { 1, 2 }, { 3, 4, 5 } }", Print(v));
960
}
961
 
962
TEST(PrintStlContainerTest, OneDimensionalNativeArray) {
963
  const int a[3] = { 1, 2, 3 };
964
  NativeArray<int> b(a, 3, RelationToSourceReference());
965
  EXPECT_EQ("{ 1, 2, 3 }", Print(b));
966
}
967
 
968
TEST(PrintStlContainerTest, TwoDimensionalNativeArray) {
969
  const int a[2][3] = { { 1, 2, 3 }, { 4, 5, 6 } };
970
  NativeArray<int[3]> b(a, 2, RelationToSourceReference());
971
  EXPECT_EQ("{ { 1, 2, 3 }, { 4, 5, 6 } }", Print(b));
972
}
973
 
974
// Tests that a class named iterator isn't treated as a container.
975
 
976
struct iterator {
977
  char x;
978
};
979
 
980
TEST(PrintStlContainerTest, Iterator) {
981
  iterator it = {};
982
  EXPECT_EQ("1-byte object <00>", Print(it));
983
}
984
 
985
// Tests that a class named const_iterator isn't treated as a container.
986
 
987
struct const_iterator {
988
  char x;
989
};
990
 
991
TEST(PrintStlContainerTest, ConstIterator) {
992
  const_iterator it = {};
993
  EXPECT_EQ("1-byte object <00>", Print(it));
994
}
995
 
996
#if GTEST_HAS_TR1_TUPLE
997
// Tests printing ::std::tr1::tuples.
998
 
999
// Tuples of various arities.
1000
TEST(PrintTr1TupleTest, VariousSizes) {
1001
  ::std::tr1::tuple<> t0;
1002
  EXPECT_EQ("()", Print(t0));
1003
 
1004
  ::std::tr1::tuple<int> t1(5);
1005
  EXPECT_EQ("(5)", Print(t1));
1006
 
1007
  ::std::tr1::tuple<char, bool> t2('a', true);
1008
  EXPECT_EQ("('a' (97, 0x61), true)", Print(t2));
1009
 
1010
  ::std::tr1::tuple<bool, int, int> t3(false, 2, 3);
1011
  EXPECT_EQ("(false, 2, 3)", Print(t3));
1012
 
1013
  ::std::tr1::tuple<bool, int, int, int> t4(false, 2, 3, 4);
1014
  EXPECT_EQ("(false, 2, 3, 4)", Print(t4));
1015
 
1016
  ::std::tr1::tuple<bool, int, int, int, bool> t5(false, 2, 3, 4, true);
1017
  EXPECT_EQ("(false, 2, 3, 4, true)", Print(t5));
1018
 
1019
  ::std::tr1::tuple<bool, int, int, int, bool, int> t6(false, 2, 3, 4, true, 6);
1020
  EXPECT_EQ("(false, 2, 3, 4, true, 6)", Print(t6));
1021
 
1022
  ::std::tr1::tuple<bool, int, int, int, bool, int, int> t7(
1023
      false, 2, 3, 4, true, 6, 7);
1024
  EXPECT_EQ("(false, 2, 3, 4, true, 6, 7)", Print(t7));
1025
 
1026
  ::std::tr1::tuple<bool, int, int, int, bool, int, int, bool> t8(
1027
      false, 2, 3, 4, true, 6, 7, true);
1028
  EXPECT_EQ("(false, 2, 3, 4, true, 6, 7, true)", Print(t8));
1029
 
1030
  ::std::tr1::tuple<bool, int, int, int, bool, int, int, bool, int> t9(
1031
      false, 2, 3, 4, true, 6, 7, true, 9);
1032
  EXPECT_EQ("(false, 2, 3, 4, true, 6, 7, true, 9)", Print(t9));
1033
 
1034
  const char* const str = "8";
1035
  // VC++ 2010's implementation of tuple of C++0x is deficient, requiring
1036
  // an explicit type cast of NULL to be used.
1037
  ::std::tr1::tuple<bool, char, short, testing::internal::Int32,  // NOLINT
1038
      testing::internal::Int64, float, double, const char*, void*, string>
1039
      t10(false, 'a', 3, 4, 5, 1.5F, -2.5, str,
1040
          ImplicitCast_<void*>(NULL), "10");
1041
  EXPECT_EQ("(false, 'a' (97, 0x61), 3, 4, 5, 1.5, -2.5, " + PrintPointer(str) +
1042
            " pointing to \"8\", NULL, \"10\")",
1043
            Print(t10));
1044
}
1045
 
1046
// Nested tuples.
1047
TEST(PrintTr1TupleTest, NestedTuple) {
1048
  ::std::tr1::tuple< ::std::tr1::tuple<int, bool>, char> nested(
1049
      ::std::tr1::make_tuple(5, true), 'a');
1050
  EXPECT_EQ("((5, true), 'a' (97, 0x61))", Print(nested));
1051
}
1052
 
1053
#endif  // GTEST_HAS_TR1_TUPLE
1054
 
1055
#if GTEST_HAS_STD_TUPLE_
1056
// Tests printing ::std::tuples.
1057
 
1058
// Tuples of various arities.
1059
TEST(PrintStdTupleTest, VariousSizes) {
1060
  ::std::tuple<> t0;
1061
  EXPECT_EQ("()", Print(t0));
1062
 
1063
  ::std::tuple<int> t1(5);
1064
  EXPECT_EQ("(5)", Print(t1));
1065
 
1066
  ::std::tuple<char, bool> t2('a', true);
1067
  EXPECT_EQ("('a' (97, 0x61), true)", Print(t2));
1068
 
1069
  ::std::tuple<bool, int, int> t3(false, 2, 3);
1070
  EXPECT_EQ("(false, 2, 3)", Print(t3));
1071
 
1072
  ::std::tuple<bool, int, int, int> t4(false, 2, 3, 4);
1073
  EXPECT_EQ("(false, 2, 3, 4)", Print(t4));
1074
 
1075
  ::std::tuple<bool, int, int, int, bool> t5(false, 2, 3, 4, true);
1076
  EXPECT_EQ("(false, 2, 3, 4, true)", Print(t5));
1077
 
1078
  ::std::tuple<bool, int, int, int, bool, int> t6(false, 2, 3, 4, true, 6);
1079
  EXPECT_EQ("(false, 2, 3, 4, true, 6)", Print(t6));
1080
 
1081
  ::std::tuple<bool, int, int, int, bool, int, int> t7(
1082
      false, 2, 3, 4, true, 6, 7);
1083
  EXPECT_EQ("(false, 2, 3, 4, true, 6, 7)", Print(t7));
1084
 
1085
  ::std::tuple<bool, int, int, int, bool, int, int, bool> t8(
1086
      false, 2, 3, 4, true, 6, 7, true);
1087
  EXPECT_EQ("(false, 2, 3, 4, true, 6, 7, true)", Print(t8));
1088
 
1089
  ::std::tuple<bool, int, int, int, bool, int, int, bool, int> t9(
1090
      false, 2, 3, 4, true, 6, 7, true, 9);
1091
  EXPECT_EQ("(false, 2, 3, 4, true, 6, 7, true, 9)", Print(t9));
1092
 
1093
  const char* const str = "8";
1094
  // VC++ 2010's implementation of tuple of C++0x is deficient, requiring
1095
  // an explicit type cast of NULL to be used.
1096
  ::std::tuple<bool, char, short, testing::internal::Int32,  // NOLINT
1097
      testing::internal::Int64, float, double, const char*, void*, string>
1098
      t10(false, 'a', 3, 4, 5, 1.5F, -2.5, str,
1099
          ImplicitCast_<void*>(NULL), "10");
1100
  EXPECT_EQ("(false, 'a' (97, 0x61), 3, 4, 5, 1.5, -2.5, " + PrintPointer(str) +
1101
            " pointing to \"8\", NULL, \"10\")",
1102
            Print(t10));
1103
}
1104
 
1105
// Nested tuples.
1106
TEST(PrintStdTupleTest, NestedTuple) {
1107
  ::std::tuple< ::std::tuple<int, bool>, char> nested(
1108
      ::std::make_tuple(5, true), 'a');
1109
  EXPECT_EQ("((5, true), 'a' (97, 0x61))", Print(nested));
1110
}
1111
 
1112
#endif  // GTEST_LANG_CXX11
1113
 
1114
// Tests printing user-defined unprintable types.
1115
 
1116
// Unprintable types in the global namespace.
1117
TEST(PrintUnprintableTypeTest, InGlobalNamespace) {
1118
  EXPECT_EQ("1-byte object <00>",
1119
            Print(UnprintableTemplateInGlobal<char>()));
1120
}
1121
 
1122
// Unprintable types in a user namespace.
1123
TEST(PrintUnprintableTypeTest, InUserNamespace) {
1124
  EXPECT_EQ("16-byte object <EF-12 00-00 34-AB 00-00 00-00 00-00 00-00 00-00>",
1125
            Print(::foo::UnprintableInFoo()));
1126
}
1127
 
1128
// Unprintable types are that too big to be printed completely.
1129
 
1130
struct Big {
1131
  Big() { memset(array, 0, sizeof(array)); }
1132
  char array[257];
1133
};
1134
 
1135
TEST(PrintUnpritableTypeTest, BigObject) {
1136
  EXPECT_EQ("257-byte object <00-00 00-00 00-00 00-00 00-00 00-00 "
1137
            "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
1138
            "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
1139
            "00-00 00-00 00-00 00-00 00-00 00-00 ... 00-00 00-00 00-00 "
1140
            "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
1141
            "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
1142
            "00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00>",
1143
            Print(Big()));
1144
}
1145
 
1146
// Tests printing user-defined streamable types.
1147
 
1148
// Streamable types in the global namespace.
1149
TEST(PrintStreamableTypeTest, InGlobalNamespace) {
1150
  StreamableInGlobal x;
1151
  EXPECT_EQ("StreamableInGlobal", Print(x));
1152
  EXPECT_EQ("StreamableInGlobal*", Print(&x));
1153
}
1154
 
1155
// Printable template types in a user namespace.
1156
TEST(PrintStreamableTypeTest, TemplateTypeInUserNamespace) {
1157
  EXPECT_EQ("StreamableTemplateInFoo: 0",
1158
            Print(::foo::StreamableTemplateInFoo<int>()));
1159
}
1160
 
1161
// Tests printing user-defined types that have a PrintTo() function.
1162
TEST(PrintPrintableTypeTest, InUserNamespace) {
1163
  EXPECT_EQ("PrintableViaPrintTo: 0",
1164
            Print(::foo::PrintableViaPrintTo()));
1165
}
1166
 
1167
// Tests printing a pointer to a user-defined type that has a <<
1168
// operator for its pointer.
1169
TEST(PrintPrintableTypeTest, PointerInUserNamespace) {
1170
  ::foo::PointerPrintable x;
1171
  EXPECT_EQ("PointerPrintable*", Print(&x));
1172
}
1173
 
1174
// Tests printing user-defined class template that have a PrintTo() function.
1175
TEST(PrintPrintableTypeTest, TemplateInUserNamespace) {
1176
  EXPECT_EQ("PrintableViaPrintToTemplate: 5",
1177
            Print(::foo::PrintableViaPrintToTemplate<int>(5)));
1178
}
1179
 
1180
// Tests that the universal printer prints both the address and the
1181
// value of a reference.
1182
TEST(PrintReferenceTest, PrintsAddressAndValue) {
1183
  int n = 5;
1184
  EXPECT_EQ("@" + PrintPointer(&n) + " 5", PrintByRef(n));
1185
 
1186
  int a[2][3] = {
1187
    { 0, 1, 2 },
1188
    { 3, 4, 5 }
1189
  };
1190
  EXPECT_EQ("@" + PrintPointer(a) + " { { 0, 1, 2 }, { 3, 4, 5 } }",
1191
            PrintByRef(a));
1192
 
1193
  const ::foo::UnprintableInFoo x;
1194
  EXPECT_EQ("@" + PrintPointer(&x) + " 16-byte object "
1195
            "<EF-12 00-00 34-AB 00-00 00-00 00-00 00-00 00-00>",
1196
            PrintByRef(x));
1197
}
1198
 
1199
// Tests that the universal printer prints a function pointer passed by
1200
// reference.
1201
TEST(PrintReferenceTest, HandlesFunctionPointer) {
1202
  void (*fp)(int n) = &MyFunction;
1203
  const string fp_pointer_string =
1204
      PrintPointer(reinterpret_cast<const void*>(&fp));
1205
  // We cannot directly cast &MyFunction to const void* because the
1206
  // standard disallows casting between pointers to functions and
1207
  // pointers to objects, and some compilers (e.g. GCC 3.4) enforce
1208
  // this limitation.
1209
  const string fp_string = PrintPointer(reinterpret_cast<const void*>(
1210
      reinterpret_cast<internal::BiggestInt>(fp)));
1211
  EXPECT_EQ("@" + fp_pointer_string + " " + fp_string,
1212
            PrintByRef(fp));
1213
}
1214
 
1215
// Tests that the universal printer prints a member function pointer
1216
// passed by reference.
1217
TEST(PrintReferenceTest, HandlesMemberFunctionPointer) {
1218
  int (Foo::*p)(char ch) = &Foo::MyMethod;
1219
  EXPECT_TRUE(HasPrefix(
1220
      PrintByRef(p),
1221
      "@" + PrintPointer(reinterpret_cast<const void*>(&p)) + " " +
1222
          Print(sizeof(p)) + "-byte object "));
1223
 
1224
  char (Foo::*p2)(int n) = &Foo::MyVirtualMethod;
1225
  EXPECT_TRUE(HasPrefix(
1226
      PrintByRef(p2),
1227
      "@" + PrintPointer(reinterpret_cast<const void*>(&p2)) + " " +
1228
          Print(sizeof(p2)) + "-byte object "));
1229
}
1230
 
1231
// Tests that the universal printer prints a member variable pointer
1232
// passed by reference.
1233
TEST(PrintReferenceTest, HandlesMemberVariablePointer) {
1234
  int (Foo::*p) = &Foo::value;  // NOLINT
1235
  EXPECT_TRUE(HasPrefix(
1236
      PrintByRef(p),
1237
      "@" + PrintPointer(&p) + " " + Print(sizeof(p)) + "-byte object "));
1238
}
1239
 
1240
// Tests that FormatForComparisonFailureMessage(), which is used to print
1241
// an operand in a comparison assertion (e.g. ASSERT_EQ) when the assertion
1242
// fails, formats the operand in the desired way.
1243
 
1244
// scalar
1245
TEST(FormatForComparisonFailureMessageTest, WorksForScalar) {
1246
  EXPECT_STREQ("123",
1247
               FormatForComparisonFailureMessage(123, 124).c_str());
1248
}
1249
 
1250
// non-char pointer
1251
TEST(FormatForComparisonFailureMessageTest, WorksForNonCharPointer) {
1252
  int n = 0;
1253
  EXPECT_EQ(PrintPointer(&n),
1254
            FormatForComparisonFailureMessage(&n, &n).c_str());
1255
}
1256
 
1257
// non-char array
1258
TEST(FormatForComparisonFailureMessageTest, FormatsNonCharArrayAsPointer) {
1259
  // In expression 'array == x', 'array' is compared by pointer.
1260
  // Therefore we want to print an array operand as a pointer.
1261
  int n[] = { 1, 2, 3 };
1262
  EXPECT_EQ(PrintPointer(n),
1263
            FormatForComparisonFailureMessage(n, n).c_str());
1264
}
1265
 
1266
// Tests formatting a char pointer when it's compared with another pointer.
1267
// In this case we want to print it as a raw pointer, as the comparision is by
1268
// pointer.
1269
 
1270
// char pointer vs pointer
1271
TEST(FormatForComparisonFailureMessageTest, WorksForCharPointerVsPointer) {
1272
  // In expression 'p == x', where 'p' and 'x' are (const or not) char
1273
  // pointers, the operands are compared by pointer.  Therefore we
1274
  // want to print 'p' as a pointer instead of a C string (we don't
1275
  // even know if it's supposed to point to a valid C string).
1276
 
1277
  // const char*
1278
  const char* s = "hello";
1279
  EXPECT_EQ(PrintPointer(s),
1280
            FormatForComparisonFailureMessage(s, s).c_str());
1281
 
1282
  // char*
1283
  char ch = 'a';
1284
  EXPECT_EQ(PrintPointer(&ch),
1285
            FormatForComparisonFailureMessage(&ch, &ch).c_str());
1286
}
1287
 
1288
// wchar_t pointer vs pointer
1289
TEST(FormatForComparisonFailureMessageTest, WorksForWCharPointerVsPointer) {
1290
  // In expression 'p == x', where 'p' and 'x' are (const or not) char
1291
  // pointers, the operands are compared by pointer.  Therefore we
1292
  // want to print 'p' as a pointer instead of a wide C string (we don't
1293
  // even know if it's supposed to point to a valid wide C string).
1294
 
1295
  // const wchar_t*
1296
  const wchar_t* s = L"hello";
1297
  EXPECT_EQ(PrintPointer(s),
1298
            FormatForComparisonFailureMessage(s, s).c_str());
1299
 
1300
  // wchar_t*
1301
  wchar_t ch = L'a';
1302
  EXPECT_EQ(PrintPointer(&ch),
1303
            FormatForComparisonFailureMessage(&ch, &ch).c_str());
1304
}
1305
 
1306
// Tests formatting a char pointer when it's compared to a string object.
1307
// In this case we want to print the char pointer as a C string.
1308
 
1309
#if GTEST_HAS_GLOBAL_STRING
1310
// char pointer vs ::string
1311
TEST(FormatForComparisonFailureMessageTest, WorksForCharPointerVsString) {
1312
  const char* s = "hello \"world";
1313
  EXPECT_STREQ("\"hello \\\"world\"",  // The string content should be escaped.
1314
               FormatForComparisonFailureMessage(s, ::string()).c_str());
1315
 
1316
  // char*
1317
  char str[] = "hi\1";
1318
  char* p = str;
1319
  EXPECT_STREQ("\"hi\\x1\"",  // The string content should be escaped.
1320
               FormatForComparisonFailureMessage(p, ::string()).c_str());
1321
}
1322
#endif
1323
 
1324
// char pointer vs std::string
1325
TEST(FormatForComparisonFailureMessageTest, WorksForCharPointerVsStdString) {
1326
  const char* s = "hello \"world";
1327
  EXPECT_STREQ("\"hello \\\"world\"",  // The string content should be escaped.
1328
               FormatForComparisonFailureMessage(s, ::std::string()).c_str());
1329
 
1330
  // char*
1331
  char str[] = "hi\1";
1332
  char* p = str;
1333
  EXPECT_STREQ("\"hi\\x1\"",  // The string content should be escaped.
1334
               FormatForComparisonFailureMessage(p, ::std::string()).c_str());
1335
}
1336
 
1337
#if GTEST_HAS_GLOBAL_WSTRING
1338
// wchar_t pointer vs ::wstring
1339
TEST(FormatForComparisonFailureMessageTest, WorksForWCharPointerVsWString) {
1340
  const wchar_t* s = L"hi \"world";
1341
  EXPECT_STREQ("L\"hi \\\"world\"",  // The string content should be escaped.
1342
               FormatForComparisonFailureMessage(s, ::wstring()).c_str());
1343
 
1344
  // wchar_t*
1345
  wchar_t str[] = L"hi\1";
1346
  wchar_t* p = str;
1347
  EXPECT_STREQ("L\"hi\\x1\"",  // The string content should be escaped.
1348
               FormatForComparisonFailureMessage(p, ::wstring()).c_str());
1349
}
1350
#endif
1351
 
1352
#if GTEST_HAS_STD_WSTRING
1353
// wchar_t pointer vs std::wstring
1354
TEST(FormatForComparisonFailureMessageTest, WorksForWCharPointerVsStdWString) {
1355
  const wchar_t* s = L"hi \"world";
1356
  EXPECT_STREQ("L\"hi \\\"world\"",  // The string content should be escaped.
1357
               FormatForComparisonFailureMessage(s, ::std::wstring()).c_str());
1358
 
1359
  // wchar_t*
1360
  wchar_t str[] = L"hi\1";
1361
  wchar_t* p = str;
1362
  EXPECT_STREQ("L\"hi\\x1\"",  // The string content should be escaped.
1363
               FormatForComparisonFailureMessage(p, ::std::wstring()).c_str());
1364
}
1365
#endif
1366
 
1367
// Tests formatting a char array when it's compared with a pointer or array.
1368
// In this case we want to print the array as a row pointer, as the comparison
1369
// is by pointer.
1370
 
1371
// char array vs pointer
1372
TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsPointer) {
1373
  char str[] = "hi \"world\"";
1374
  char* p = NULL;
1375
  EXPECT_EQ(PrintPointer(str),
1376
            FormatForComparisonFailureMessage(str, p).c_str());
1377
}
1378
 
1379
// char array vs char array
1380
TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsCharArray) {
1381
  const char str[] = "hi \"world\"";
1382
  EXPECT_EQ(PrintPointer(str),
1383
            FormatForComparisonFailureMessage(str, str).c_str());
1384
}
1385
 
1386
// wchar_t array vs pointer
1387
TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsPointer) {
1388
  wchar_t str[] = L"hi \"world\"";
1389
  wchar_t* p = NULL;
1390
  EXPECT_EQ(PrintPointer(str),
1391
            FormatForComparisonFailureMessage(str, p).c_str());
1392
}
1393
 
1394
// wchar_t array vs wchar_t array
1395
TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsWCharArray) {
1396
  const wchar_t str[] = L"hi \"world\"";
1397
  EXPECT_EQ(PrintPointer(str),
1398
            FormatForComparisonFailureMessage(str, str).c_str());
1399
}
1400
 
1401
// Tests formatting a char array when it's compared with a string object.
1402
// In this case we want to print the array as a C string.
1403
 
1404
#if GTEST_HAS_GLOBAL_STRING
1405
// char array vs string
1406
TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsString) {
1407
  const char str[] = "hi \"w\0rld\"";
1408
  EXPECT_STREQ("\"hi \\\"w\"",  // The content should be escaped.
1409
                                // Embedded NUL terminates the string.
1410
               FormatForComparisonFailureMessage(str, ::string()).c_str());
1411
}
1412
#endif
1413
 
1414
// char array vs std::string
1415
TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsStdString) {
1416
  const char str[] = "hi \"world\"";
1417
  EXPECT_STREQ("\"hi \\\"world\\\"\"",  // The content should be escaped.
1418
               FormatForComparisonFailureMessage(str, ::std::string()).c_str());
1419
}
1420
 
1421
#if GTEST_HAS_GLOBAL_WSTRING
1422
// wchar_t array vs wstring
1423
TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsWString) {
1424
  const wchar_t str[] = L"hi \"world\"";
1425
  EXPECT_STREQ("L\"hi \\\"world\\\"\"",  // The content should be escaped.
1426
               FormatForComparisonFailureMessage(str, ::wstring()).c_str());
1427
}
1428
#endif
1429
 
1430
#if GTEST_HAS_STD_WSTRING
1431
// wchar_t array vs std::wstring
1432
TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsStdWString) {
1433
  const wchar_t str[] = L"hi \"w\0rld\"";
1434
  EXPECT_STREQ(
1435
      "L\"hi \\\"w\"",  // The content should be escaped.
1436
                        // Embedded NUL terminates the string.
1437
      FormatForComparisonFailureMessage(str, ::std::wstring()).c_str());
1438
}
1439
#endif
1440
 
1441
// Useful for testing PrintToString().  We cannot use EXPECT_EQ()
1442
// there as its implementation uses PrintToString().  The caller must
1443
// ensure that 'value' has no side effect.
1444
#define EXPECT_PRINT_TO_STRING_(value, expected_string)         \
1445
  EXPECT_TRUE(PrintToString(value) == (expected_string))        \
1446
      << " where " #value " prints as " << (PrintToString(value))
1447
 
1448
TEST(PrintToStringTest, WorksForScalar) {
1449
  EXPECT_PRINT_TO_STRING_(123, "123");
1450
}
1451
 
1452
TEST(PrintToStringTest, WorksForPointerToConstChar) {
1453
  const char* p = "hello";
1454
  EXPECT_PRINT_TO_STRING_(p, "\"hello\"");
1455
}
1456
 
1457
TEST(PrintToStringTest, WorksForPointerToNonConstChar) {
1458
  char s[] = "hello";
1459
  char* p = s;
1460
  EXPECT_PRINT_TO_STRING_(p, "\"hello\"");
1461
}
1462
 
1463
TEST(PrintToStringTest, EscapesForPointerToConstChar) {
1464
  const char* p = "hello\n";
1465
  EXPECT_PRINT_TO_STRING_(p, "\"hello\\n\"");
1466
}
1467
 
1468
TEST(PrintToStringTest, EscapesForPointerToNonConstChar) {
1469
  char s[] = "hello\1";
1470
  char* p = s;
1471
  EXPECT_PRINT_TO_STRING_(p, "\"hello\\x1\"");
1472
}
1473
 
1474
TEST(PrintToStringTest, WorksForArray) {
1475
  int n[3] = { 1, 2, 3 };
1476
  EXPECT_PRINT_TO_STRING_(n, "{ 1, 2, 3 }");
1477
}
1478
 
1479
TEST(PrintToStringTest, WorksForCharArray) {
1480
  char s[] = "hello";
1481
  EXPECT_PRINT_TO_STRING_(s, "\"hello\"");
1482
}
1483
 
1484
TEST(PrintToStringTest, WorksForCharArrayWithEmbeddedNul) {
1485
  const char str_with_nul[] = "hello\0 world";
1486
  EXPECT_PRINT_TO_STRING_(str_with_nul, "\"hello\\0 world\"");
1487
 
1488
  char mutable_str_with_nul[] = "hello\0 world";
1489
  EXPECT_PRINT_TO_STRING_(mutable_str_with_nul, "\"hello\\0 world\"");
1490
}
1491
 
1492
#undef EXPECT_PRINT_TO_STRING_
1493
 
1494
TEST(UniversalTersePrintTest, WorksForNonReference) {
1495
  ::std::stringstream ss;
1496
  UniversalTersePrint(123, &ss);
1497
  EXPECT_EQ("123", ss.str());
1498
}
1499
 
1500
TEST(UniversalTersePrintTest, WorksForReference) {
1501
  const int& n = 123;
1502
  ::std::stringstream ss;
1503
  UniversalTersePrint(n, &ss);
1504
  EXPECT_EQ("123", ss.str());
1505
}
1506
 
1507
TEST(UniversalTersePrintTest, WorksForCString) {
1508
  const char* s1 = "abc";
1509
  ::std::stringstream ss1;
1510
  UniversalTersePrint(s1, &ss1);
1511
  EXPECT_EQ("\"abc\"", ss1.str());
1512
 
1513
  char* s2 = const_cast<char*>(s1);
1514
  ::std::stringstream ss2;
1515
  UniversalTersePrint(s2, &ss2);
1516
  EXPECT_EQ("\"abc\"", ss2.str());
1517
 
1518
  const char* s3 = NULL;
1519
  ::std::stringstream ss3;
1520
  UniversalTersePrint(s3, &ss3);
1521
  EXPECT_EQ("NULL", ss3.str());
1522
}
1523
 
1524
TEST(UniversalPrintTest, WorksForNonReference) {
1525
  ::std::stringstream ss;
1526
  UniversalPrint(123, &ss);
1527
  EXPECT_EQ("123", ss.str());
1528
}
1529
 
1530
TEST(UniversalPrintTest, WorksForReference) {
1531
  const int& n = 123;
1532
  ::std::stringstream ss;
1533
  UniversalPrint(n, &ss);
1534
  EXPECT_EQ("123", ss.str());
1535
}
1536
 
1537
TEST(UniversalPrintTest, WorksForCString) {
1538
  const char* s1 = "abc";
1539
  ::std::stringstream ss1;
1540
  UniversalPrint(s1, &ss1);
1541
  EXPECT_EQ(PrintPointer(s1) + " pointing to \"abc\"", string(ss1.str()));
1542
 
1543
  char* s2 = const_cast<char*>(s1);
1544
  ::std::stringstream ss2;
1545
  UniversalPrint(s2, &ss2);
1546
  EXPECT_EQ(PrintPointer(s2) + " pointing to \"abc\"", string(ss2.str()));
1547
 
1548
  const char* s3 = NULL;
1549
  ::std::stringstream ss3;
1550
  UniversalPrint(s3, &ss3);
1551
  EXPECT_EQ("NULL", ss3.str());
1552
}
1553
 
1554
TEST(UniversalPrintTest, WorksForCharArray) {
1555
  const char str[] = "\"Line\0 1\"\nLine 2";
1556
  ::std::stringstream ss1;
1557
  UniversalPrint(str, &ss1);
1558
  EXPECT_EQ("\"\\\"Line\\0 1\\\"\\nLine 2\"", ss1.str());
1559
 
1560
  const char mutable_str[] = "\"Line\0 1\"\nLine 2";
1561
  ::std::stringstream ss2;
1562
  UniversalPrint(mutable_str, &ss2);
1563
  EXPECT_EQ("\"\\\"Line\\0 1\\\"\\nLine 2\"", ss2.str());
1564
}
1565
 
1566
#if GTEST_HAS_TR1_TUPLE
1567
 
1568
TEST(UniversalTersePrintTupleFieldsToStringsTestWithTr1, PrintsEmptyTuple) {
1569
  Strings result = UniversalTersePrintTupleFieldsToStrings(
1570
      ::std::tr1::make_tuple());
1571
  EXPECT_EQ(0u, result.size());
1572
}
1573
 
1574
TEST(UniversalTersePrintTupleFieldsToStringsTestWithTr1, PrintsOneTuple) {
1575
  Strings result = UniversalTersePrintTupleFieldsToStrings(
1576
      ::std::tr1::make_tuple(1));
1577
  ASSERT_EQ(1u, result.size());
1578
  EXPECT_EQ("1", result[0]);
1579
}
1580
 
1581
TEST(UniversalTersePrintTupleFieldsToStringsTestWithTr1, PrintsTwoTuple) {
1582
  Strings result = UniversalTersePrintTupleFieldsToStrings(
1583
      ::std::tr1::make_tuple(1, 'a'));
1584
  ASSERT_EQ(2u, result.size());
1585
  EXPECT_EQ("1", result[0]);
1586
  EXPECT_EQ("'a' (97, 0x61)", result[1]);
1587
}
1588
 
1589
TEST(UniversalTersePrintTupleFieldsToStringsTestWithTr1, PrintsTersely) {
1590
  const int n = 1;
1591
  Strings result = UniversalTersePrintTupleFieldsToStrings(
1592
      ::std::tr1::tuple<const int&, const char*>(n, "a"));
1593
  ASSERT_EQ(2u, result.size());
1594
  EXPECT_EQ("1", result[0]);
1595
  EXPECT_EQ("\"a\"", result[1]);
1596
}
1597
 
1598
#endif  // GTEST_HAS_TR1_TUPLE
1599
 
1600
#if GTEST_HAS_STD_TUPLE_
1601
 
1602
TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsEmptyTuple) {
1603
  Strings result = UniversalTersePrintTupleFieldsToStrings(::std::make_tuple());
1604
  EXPECT_EQ(0u, result.size());
1605
}
1606
 
1607
TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsOneTuple) {
1608
  Strings result = UniversalTersePrintTupleFieldsToStrings(
1609
      ::std::make_tuple(1));
1610
  ASSERT_EQ(1u, result.size());
1611
  EXPECT_EQ("1", result[0]);
1612
}
1613
 
1614
TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsTwoTuple) {
1615
  Strings result = UniversalTersePrintTupleFieldsToStrings(
1616
      ::std::make_tuple(1, 'a'));
1617
  ASSERT_EQ(2u, result.size());
1618
  EXPECT_EQ("1", result[0]);
1619
  EXPECT_EQ("'a' (97, 0x61)", result[1]);
1620
}
1621
 
1622
TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsTersely) {
1623
  const int n = 1;
1624
  Strings result = UniversalTersePrintTupleFieldsToStrings(
1625
      ::std::tuple<const int&, const char*>(n, "a"));
1626
  ASSERT_EQ(2u, result.size());
1627
  EXPECT_EQ("1", result[0]);
1628
  EXPECT_EQ("\"a\"", result[1]);
1629
}
1630
 
1631
#endif  // GTEST_HAS_STD_TUPLE_
1632
 
1633
}  // namespace gtest_printers_test
1634
}  // namespace testing
1635
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.