OpenCores
URL https://opencores.org/ocsvn/scarts/scarts/trunk

Subversion Repositories scarts

[/] [scarts/] [trunk/] [toolchain/] [scarts-binutils/] [binutils-2.19.1/] [bfd/] [syms.c] - Blame information for rev 12

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 6 jlechner
/* Generic symbol-table support for the BFD library.
2
   Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3
   2000, 2001, 2002, 2003, 2004, 2007
4
   Free Software Foundation, Inc.
5
   Written by Cygnus Support.
6
 
7
   This file is part of BFD, the Binary File Descriptor library.
8
 
9
   This program is free software; you can redistribute it and/or modify
10
   it under the terms of the GNU General Public License as published by
11
   the Free Software Foundation; either version 3 of the License, or
12
   (at your option) any later version.
13
 
14
   This program is distributed in the hope that it will be useful,
15
   but WITHOUT ANY WARRANTY; without even the implied warranty of
16
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17
   GNU General Public License for more details.
18
 
19
   You should have received a copy of the GNU General Public License
20
   along with this program; if not, write to the Free Software
21
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22
   MA 02110-1301, USA.  */
23
 
24
/*
25
SECTION
26
        Symbols
27
 
28
        BFD tries to maintain as much symbol information as it can when
29
        it moves information from file to file. BFD passes information
30
        to applications though the <<asymbol>> structure. When the
31
        application requests the symbol table, BFD reads the table in
32
        the native form and translates parts of it into the internal
33
        format. To maintain more than the information passed to
34
        applications, some targets keep some information ``behind the
35
        scenes'' in a structure only the particular back end knows
36
        about. For example, the coff back end keeps the original
37
        symbol table structure as well as the canonical structure when
38
        a BFD is read in. On output, the coff back end can reconstruct
39
        the output symbol table so that no information is lost, even
40
        information unique to coff which BFD doesn't know or
41
        understand. If a coff symbol table were read, but were written
42
        through an a.out back end, all the coff specific information
43
        would be lost. The symbol table of a BFD
44
        is not necessarily read in until a canonicalize request is
45
        made. Then the BFD back end fills in a table provided by the
46
        application with pointers to the canonical information.  To
47
        output symbols, the application provides BFD with a table of
48
        pointers to pointers to <<asymbol>>s. This allows applications
49
        like the linker to output a symbol as it was read, since the ``behind
50
        the scenes'' information will be still available.
51
@menu
52
@* Reading Symbols::
53
@* Writing Symbols::
54
@* Mini Symbols::
55
@* typedef asymbol::
56
@* symbol handling functions::
57
@end menu
58
 
59
INODE
60
Reading Symbols, Writing Symbols, Symbols, Symbols
61
SUBSECTION
62
        Reading symbols
63
 
64
        There are two stages to reading a symbol table from a BFD:
65
        allocating storage, and the actual reading process. This is an
66
        excerpt from an application which reads the symbol table:
67
 
68
|         long storage_needed;
69
|         asymbol **symbol_table;
70
|         long number_of_symbols;
71
|         long i;
72
|
73
|         storage_needed = bfd_get_symtab_upper_bound (abfd);
74
|
75
|         if (storage_needed < 0)
76
|           FAIL
77
|
78
|         if (storage_needed == 0)
79
|           return;
80
|
81
|         symbol_table = xmalloc (storage_needed);
82
|           ...
83
|         number_of_symbols =
84
|            bfd_canonicalize_symtab (abfd, symbol_table);
85
|
86
|         if (number_of_symbols < 0)
87
|           FAIL
88
|
89
|         for (i = 0; i < number_of_symbols; i++)
90
|           process_symbol (symbol_table[i]);
91
 
92
        All storage for the symbols themselves is in an objalloc
93
        connected to the BFD; it is freed when the BFD is closed.
94
 
95
INODE
96
Writing Symbols, Mini Symbols, Reading Symbols, Symbols
97
SUBSECTION
98
        Writing symbols
99
 
100
        Writing of a symbol table is automatic when a BFD open for
101
        writing is closed. The application attaches a vector of
102
        pointers to pointers to symbols to the BFD being written, and
103
        fills in the symbol count. The close and cleanup code reads
104
        through the table provided and performs all the necessary
105
        operations. The BFD output code must always be provided with an
106
        ``owned'' symbol: one which has come from another BFD, or one
107
        which has been created using <<bfd_make_empty_symbol>>.  Here is an
108
        example showing the creation of a symbol table with only one element:
109
 
110
|       #include "bfd.h"
111
|       int main (void)
112
|       {
113
|         bfd *abfd;
114
|         asymbol *ptrs[2];
115
|         asymbol *new;
116
|
117
|         abfd = bfd_openw ("foo","a.out-sunos-big");
118
|         bfd_set_format (abfd, bfd_object);
119
|         new = bfd_make_empty_symbol (abfd);
120
|         new->name = "dummy_symbol";
121
|         new->section = bfd_make_section_old_way (abfd, ".text");
122
|         new->flags = BSF_GLOBAL;
123
|         new->value = 0x12345;
124
|
125
|         ptrs[0] = new;
126
|         ptrs[1] = 0;
127
|
128
|         bfd_set_symtab (abfd, ptrs, 1);
129
|         bfd_close (abfd);
130
|         return 0;
131
|       }
132
|
133
|       ./makesym
134
|       nm foo
135
|       00012345 A dummy_symbol
136
 
137
        Many formats cannot represent arbitrary symbol information; for
138
        instance, the <<a.out>> object format does not allow an
139
        arbitrary number of sections. A symbol pointing to a section
140
        which is not one  of <<.text>>, <<.data>> or <<.bss>> cannot
141
        be described.
142
 
143
INODE
144
Mini Symbols, typedef asymbol, Writing Symbols, Symbols
145
SUBSECTION
146
        Mini Symbols
147
 
148
        Mini symbols provide read-only access to the symbol table.
149
        They use less memory space, but require more time to access.
150
        They can be useful for tools like nm or objdump, which may
151
        have to handle symbol tables of extremely large executables.
152
 
153
        The <<bfd_read_minisymbols>> function will read the symbols
154
        into memory in an internal form.  It will return a <<void *>>
155
        pointer to a block of memory, a symbol count, and the size of
156
        each symbol.  The pointer is allocated using <<malloc>>, and
157
        should be freed by the caller when it is no longer needed.
158
 
159
        The function <<bfd_minisymbol_to_symbol>> will take a pointer
160
        to a minisymbol, and a pointer to a structure returned by
161
        <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
162
        The return value may or may not be the same as the value from
163
        <<bfd_make_empty_symbol>> which was passed in.
164
 
165
*/
166
 
167
/*
168
DOCDD
169
INODE
170
typedef asymbol, symbol handling functions, Mini Symbols, Symbols
171
 
172
*/
173
/*
174
SUBSECTION
175
        typedef asymbol
176
 
177
        An <<asymbol>> has the form:
178
 
179
*/
180
 
181
/*
182
CODE_FRAGMENT
183
 
184
.
185
.typedef struct bfd_symbol
186
.{
187
.  {* A pointer to the BFD which owns the symbol. This information
188
.     is necessary so that a back end can work out what additional
189
.     information (invisible to the application writer) is carried
190
.     with the symbol.
191
.
192
.     This field is *almost* redundant, since you can use section->owner
193
.     instead, except that some symbols point to the global sections
194
.     bfd_{abs,com,und}_section.  This could be fixed by making
195
.     these globals be per-bfd (or per-target-flavor).  FIXME.  *}
196
.  struct bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field.  *}
197
.
198
.  {* The text of the symbol. The name is left alone, and not copied; the
199
.     application may not alter it.  *}
200
.  const char *name;
201
.
202
.  {* The value of the symbol.  This really should be a union of a
203
.     numeric value with a pointer, since some flags indicate that
204
.     a pointer to another symbol is stored here.  *}
205
.  symvalue value;
206
.
207
.  {* Attributes of a symbol.  *}
208
.#define BSF_NO_FLAGS    0x00
209
.
210
.  {* The symbol has local scope; <<static>> in <<C>>. The value
211
.     is the offset into the section of the data.  *}
212
.#define BSF_LOCAL      0x01
213
.
214
.  {* The symbol has global scope; initialized data in <<C>>. The
215
.     value is the offset into the section of the data.  *}
216
.#define BSF_GLOBAL     0x02
217
.
218
.  {* The symbol has global scope and is exported. The value is
219
.     the offset into the section of the data.  *}
220
.#define BSF_EXPORT     BSF_GLOBAL {* No real difference.  *}
221
.
222
.  {* A normal C symbol would be one of:
223
.     <<BSF_LOCAL>>, <<BSF_FORT_COMM>>,  <<BSF_UNDEFINED>> or
224
.     <<BSF_GLOBAL>>.  *}
225
.
226
.  {* The symbol is a debugging record. The value has an arbitrary
227
.     meaning, unless BSF_DEBUGGING_RELOC is also set.  *}
228
.#define BSF_DEBUGGING  0x08
229
.
230
.  {* The symbol denotes a function entry point.  Used in ELF,
231
.     perhaps others someday.  *}
232
.#define BSF_FUNCTION    0x10
233
.
234
.  {* Used by the linker.  *}
235
.#define BSF_KEEP        0x20
236
.#define BSF_KEEP_G      0x40
237
.
238
.  {* A weak global symbol, overridable without warnings by
239
.     a regular global symbol of the same name.  *}
240
.#define BSF_WEAK        0x80
241
.
242
.  {* This symbol was created to point to a section, e.g. ELF's
243
.     STT_SECTION symbols.  *}
244
.#define BSF_SECTION_SYM 0x100
245
.
246
.  {* The symbol used to be a common symbol, but now it is
247
.     allocated.  *}
248
.#define BSF_OLD_COMMON  0x200
249
.
250
.  {* The default value for common data.  *}
251
.#define BFD_FORT_COMM_DEFAULT_VALUE 0
252
.
253
.  {* In some files the type of a symbol sometimes alters its
254
.     location in an output file - ie in coff a <<ISFCN>> symbol
255
.     which is also <<C_EXT>> symbol appears where it was
256
.     declared and not at the end of a section.  This bit is set
257
.     by the target BFD part to convey this information.  *}
258
.#define BSF_NOT_AT_END    0x400
259
.
260
.  {* Signal that the symbol is the label of constructor section.  *}
261
.#define BSF_CONSTRUCTOR   0x800
262
.
263
.  {* Signal that the symbol is a warning symbol.  The name is a
264
.     warning.  The name of the next symbol is the one to warn about;
265
.     if a reference is made to a symbol with the same name as the next
266
.     symbol, a warning is issued by the linker.  *}
267
.#define BSF_WARNING       0x1000
268
.
269
.  {* Signal that the symbol is indirect.  This symbol is an indirect
270
.     pointer to the symbol with the same name as the next symbol.  *}
271
.#define BSF_INDIRECT      0x2000
272
.
273
.  {* BSF_FILE marks symbols that contain a file name.  This is used
274
.     for ELF STT_FILE symbols.  *}
275
.#define BSF_FILE          0x4000
276
.
277
.  {* Symbol is from dynamic linking information.  *}
278
.#define BSF_DYNAMIC       0x8000
279
.
280
.  {* The symbol denotes a data object.  Used in ELF, and perhaps
281
.     others someday.  *}
282
.#define BSF_OBJECT        0x10000
283
.
284
.  {* This symbol is a debugging symbol.  The value is the offset
285
.     into the section of the data.  BSF_DEBUGGING should be set
286
.     as well.  *}
287
.#define BSF_DEBUGGING_RELOC 0x20000
288
.
289
.  {* This symbol is thread local.  Used in ELF.  *}
290
.#define BSF_THREAD_LOCAL  0x40000
291
.
292
.  {* This symbol represents a complex relocation expression,
293
.     with the expression tree serialized in the symbol name.  *}
294
.#define BSF_RELC 0x80000
295
.
296
.  {* This symbol represents a signed complex relocation expression,
297
.     with the expression tree serialized in the symbol name.  *}
298
.#define BSF_SRELC 0x100000
299
.
300
.  {* This symbol was created by bfd_get_synthetic_symtab.  *}
301
.#define BSF_SYNTHETIC 0x200000
302
.
303
.  flagword flags;
304
.
305
.  {* A pointer to the section to which this symbol is
306
.     relative.  This will always be non NULL, there are special
307
.     sections for undefined and absolute symbols.  *}
308
.  struct bfd_section *section;
309
.
310
.  {* Back end special data.  *}
311
.  union
312
.    {
313
.      void *p;
314
.      bfd_vma i;
315
.    }
316
.  udata;
317
.}
318
.asymbol;
319
.
320
*/
321
 
322
#include "sysdep.h"
323
#include "bfd.h"
324
#include "libbfd.h"
325
#include "safe-ctype.h"
326
#include "bfdlink.h"
327
#include "aout/stab_gnu.h"
328
 
329
/*
330
DOCDD
331
INODE
332
symbol handling functions,  , typedef asymbol, Symbols
333
SUBSECTION
334
        Symbol handling functions
335
*/
336
 
337
/*
338
FUNCTION
339
        bfd_get_symtab_upper_bound
340
 
341
DESCRIPTION
342
        Return the number of bytes required to store a vector of pointers
343
        to <<asymbols>> for all the symbols in the BFD @var{abfd},
344
        including a terminal NULL pointer. If there are no symbols in
345
        the BFD, then return 0.  If an error occurs, return -1.
346
 
347
.#define bfd_get_symtab_upper_bound(abfd) \
348
.     BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
349
.
350
*/
351
 
352
/*
353
FUNCTION
354
        bfd_is_local_label
355
 
356
SYNOPSIS
357
        bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
358
 
359
DESCRIPTION
360
        Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is
361
        a compiler generated local label, else return FALSE.
362
*/
363
 
364
bfd_boolean
365
bfd_is_local_label (bfd *abfd, asymbol *sym)
366
{
367
  /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
368
     starts with '.' is local.  This would accidentally catch section names
369
     if we didn't reject them here.  */
370
  if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_FILE | BSF_SECTION_SYM)) != 0)
371
    return FALSE;
372
  if (sym->name == NULL)
373
    return FALSE;
374
  return bfd_is_local_label_name (abfd, sym->name);
375
}
376
 
377
/*
378
FUNCTION
379
        bfd_is_local_label_name
380
 
381
SYNOPSIS
382
        bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
383
 
384
DESCRIPTION
385
        Return TRUE if a symbol with the name @var{name} in the BFD
386
        @var{abfd} is a compiler generated local label, else return
387
        FALSE.  This just checks whether the name has the form of a
388
        local label.
389
 
390
.#define bfd_is_local_label_name(abfd, name) \
391
.  BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
392
.
393
*/
394
 
395
/*
396
FUNCTION
397
        bfd_is_target_special_symbol
398
 
399
SYNOPSIS
400
        bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);
401
 
402
DESCRIPTION
403
        Return TRUE iff a symbol @var{sym} in the BFD @var{abfd} is something
404
        special to the particular target represented by the BFD.  Such symbols
405
        should normally not be mentioned to the user.
406
 
407
.#define bfd_is_target_special_symbol(abfd, sym) \
408
.  BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))
409
.
410
*/
411
 
412
/*
413
FUNCTION
414
        bfd_canonicalize_symtab
415
 
416
DESCRIPTION
417
        Read the symbols from the BFD @var{abfd}, and fills in
418
        the vector @var{location} with pointers to the symbols and
419
        a trailing NULL.
420
        Return the actual number of symbol pointers, not
421
        including the NULL.
422
 
423
.#define bfd_canonicalize_symtab(abfd, location) \
424
.  BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))
425
.
426
*/
427
 
428
/*
429
FUNCTION
430
        bfd_set_symtab
431
 
432
SYNOPSIS
433
        bfd_boolean bfd_set_symtab
434
          (bfd *abfd, asymbol **location, unsigned int count);
435
 
436
DESCRIPTION
437
        Arrange that when the output BFD @var{abfd} is closed,
438
        the table @var{location} of @var{count} pointers to symbols
439
        will be written.
440
*/
441
 
442
bfd_boolean
443
bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int symcount)
444
{
445
  if (abfd->format != bfd_object || bfd_read_p (abfd))
446
    {
447
      bfd_set_error (bfd_error_invalid_operation);
448
      return FALSE;
449
    }
450
 
451
  bfd_get_outsymbols (abfd) = location;
452
  bfd_get_symcount (abfd) = symcount;
453
  return TRUE;
454
}
455
 
456
/*
457
FUNCTION
458
        bfd_print_symbol_vandf
459
 
460
SYNOPSIS
461
        void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);
462
 
463
DESCRIPTION
464
        Print the value and flags of the @var{symbol} supplied to the
465
        stream @var{file}.
466
*/
467
void
468
bfd_print_symbol_vandf (bfd *abfd, void *arg, asymbol *symbol)
469
{
470
  FILE *file = arg;
471
 
472
  flagword type = symbol->flags;
473
 
474
  if (symbol->section != NULL)
475
    bfd_fprintf_vma (abfd, file, symbol->value + symbol->section->vma);
476
  else
477
    bfd_fprintf_vma (abfd, file, symbol->value);
478
 
479
  /* This presumes that a symbol can not be both BSF_DEBUGGING and
480
     BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
481
     BSF_OBJECT.  */
482
  fprintf (file, " %c%c%c%c%c%c%c",
483
           ((type & BSF_LOCAL)
484
            ? (type & BSF_GLOBAL) ? '!' : 'l'
485
            : (type & BSF_GLOBAL) ? 'g' : ' '),
486
           (type & BSF_WEAK) ? 'w' : ' ',
487
           (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
488
           (type & BSF_WARNING) ? 'W' : ' ',
489
           (type & BSF_INDIRECT) ? 'I' : ' ',
490
           (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
491
           ((type & BSF_FUNCTION)
492
            ? 'F'
493
            : ((type & BSF_FILE)
494
               ? 'f'
495
               : ((type & BSF_OBJECT) ? 'O' : ' '))));
496
}
497
 
498
/*
499
FUNCTION
500
        bfd_make_empty_symbol
501
 
502
DESCRIPTION
503
        Create a new <<asymbol>> structure for the BFD @var{abfd}
504
        and return a pointer to it.
505
 
506
        This routine is necessary because each back end has private
507
        information surrounding the <<asymbol>>. Building your own
508
        <<asymbol>> and pointing to it will not create the private
509
        information, and will cause problems later on.
510
 
511
.#define bfd_make_empty_symbol(abfd) \
512
.  BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
513
.
514
*/
515
 
516
/*
517
FUNCTION
518
        _bfd_generic_make_empty_symbol
519
 
520
SYNOPSIS
521
        asymbol *_bfd_generic_make_empty_symbol (bfd *);
522
 
523
DESCRIPTION
524
        Create a new <<asymbol>> structure for the BFD @var{abfd}
525
        and return a pointer to it.  Used by core file routines,
526
        binary back-end and anywhere else where no private info
527
        is needed.
528
*/
529
 
530
asymbol *
531
_bfd_generic_make_empty_symbol (bfd *abfd)
532
{
533
  bfd_size_type amt = sizeof (asymbol);
534
  asymbol *new = bfd_zalloc (abfd, amt);
535
  if (new)
536
    new->the_bfd = abfd;
537
  return new;
538
}
539
 
540
/*
541
FUNCTION
542
        bfd_make_debug_symbol
543
 
544
DESCRIPTION
545
        Create a new <<asymbol>> structure for the BFD @var{abfd},
546
        to be used as a debugging symbol.  Further details of its use have
547
        yet to be worked out.
548
 
549
.#define bfd_make_debug_symbol(abfd,ptr,size) \
550
.  BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
551
.
552
*/
553
 
554
struct section_to_type
555
{
556
  const char *section;
557
  char type;
558
};
559
 
560
/* Map section names to POSIX/BSD single-character symbol types.
561
   This table is probably incomplete.  It is sorted for convenience of
562
   adding entries.  Since it is so short, a linear search is used.  */
563
static const struct section_to_type stt[] =
564
{
565
  {".bss", 'b'},
566
  {"code", 't'},                /* MRI .text */
567
  {".data", 'd'},
568
  {"*DEBUG*", 'N'},
569
  {".debug", 'N'},              /* MSVC's .debug (non-standard debug syms) */
570
  {".drectve", 'i'},            /* MSVC's .drective section */
571
  {".edata", 'e'},              /* MSVC's .edata (export) section */
572
  {".fini", 't'},               /* ELF fini section */
573
  {".idata", 'i'},              /* MSVC's .idata (import) section */
574
  {".init", 't'},               /* ELF init section */
575
  {".pdata", 'p'},              /* MSVC's .pdata (stack unwind) section */
576
  {".rdata", 'r'},              /* Read only data.  */
577
  {".rodata", 'r'},             /* Read only data.  */
578
  {".sbss", 's'},               /* Small BSS (uninitialized data).  */
579
  {".scommon", 'c'},            /* Small common.  */
580
  {".sdata", 'g'},              /* Small initialized data.  */
581
  {".text", 't'},
582
  {"vars", 'd'},                /* MRI .data */
583
  {"zerovars", 'b'},            /* MRI .bss */
584
  {0, 0}
585
};
586
 
587
/* Return the single-character symbol type corresponding to
588
   section S, or '?' for an unknown COFF section.
589
 
590
   Check for any leading string which matches, so .text5 returns
591
   't' as well as .text */
592
 
593
static char
594
coff_section_type (const char *s)
595
{
596
  const struct section_to_type *t;
597
 
598
  for (t = &stt[0]; t->section; t++)
599
    if (!strncmp (s, t->section, strlen (t->section)))
600
      return t->type;
601
 
602
  return '?';
603
}
604
 
605
/* Return the single-character symbol type corresponding to section
606
   SECTION, or '?' for an unknown section.  This uses section flags to
607
   identify sections.
608
 
609
   FIXME These types are unhandled: c, i, e, p.  If we handled these also,
610
   we could perhaps obsolete coff_section_type.  */
611
 
612
static char
613
decode_section_type (const struct bfd_section *section)
614
{
615
  if (section->flags & SEC_CODE)
616
    return 't';
617
  if (section->flags & SEC_DATA)
618
    {
619
      if (section->flags & SEC_READONLY)
620
        return 'r';
621
      else if (section->flags & SEC_SMALL_DATA)
622
        return 'g';
623
      else
624
        return 'd';
625
    }
626
  if ((section->flags & SEC_HAS_CONTENTS) == 0)
627
    {
628
      if (section->flags & SEC_SMALL_DATA)
629
        return 's';
630
      else
631
        return 'b';
632
    }
633
  if (section->flags & SEC_DEBUGGING)
634
    return 'N';
635
  if ((section->flags & SEC_HAS_CONTENTS) && (section->flags & SEC_READONLY))
636
    return 'n';
637
 
638
  return '?';
639
}
640
 
641
/*
642
FUNCTION
643
        bfd_decode_symclass
644
 
645
DESCRIPTION
646
        Return a character corresponding to the symbol
647
        class of @var{symbol}, or '?' for an unknown class.
648
 
649
SYNOPSIS
650
        int bfd_decode_symclass (asymbol *symbol);
651
*/
652
int
653
bfd_decode_symclass (asymbol *symbol)
654
{
655
  char c;
656
 
657
  if (symbol->section && bfd_is_com_section (symbol->section))
658
    return 'C';
659
  if (bfd_is_und_section (symbol->section))
660
    {
661
      if (symbol->flags & BSF_WEAK)
662
        {
663
          /* If weak, determine if it's specifically an object
664
             or non-object weak.  */
665
          if (symbol->flags & BSF_OBJECT)
666
            return 'v';
667
          else
668
            return 'w';
669
        }
670
      else
671
        return 'U';
672
    }
673
  if (bfd_is_ind_section (symbol->section))
674
    return 'I';
675
  if (symbol->flags & BSF_WEAK)
676
    {
677
      /* If weak, determine if it's specifically an object
678
         or non-object weak.  */
679
      if (symbol->flags & BSF_OBJECT)
680
        return 'V';
681
      else
682
        return 'W';
683
    }
684
  if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
685
    return '?';
686
 
687
  if (bfd_is_abs_section (symbol->section))
688
    c = 'a';
689
  else if (symbol->section)
690
    {
691
      c = coff_section_type (symbol->section->name);
692
      if (c == '?')
693
        c = decode_section_type (symbol->section);
694
    }
695
  else
696
    return '?';
697
  if (symbol->flags & BSF_GLOBAL)
698
    c = TOUPPER (c);
699
  return c;
700
 
701
  /* We don't have to handle these cases just yet, but we will soon:
702
     N_SETV: 'v';
703
     N_SETA: 'l';
704
     N_SETT: 'x';
705
     N_SETD: 'z';
706
     N_SETB: 's';
707
     N_INDR: 'i';
708
     */
709
}
710
 
711
/*
712
FUNCTION
713
        bfd_is_undefined_symclass
714
 
715
DESCRIPTION
716
        Returns non-zero if the class symbol returned by
717
        bfd_decode_symclass represents an undefined symbol.
718
        Returns zero otherwise.
719
 
720
SYNOPSIS
721
        bfd_boolean bfd_is_undefined_symclass (int symclass);
722
*/
723
 
724
bfd_boolean
725
bfd_is_undefined_symclass (int symclass)
726
{
727
  return symclass == 'U' || symclass == 'w' || symclass == 'v';
728
}
729
 
730
/*
731
FUNCTION
732
        bfd_symbol_info
733
 
734
DESCRIPTION
735
        Fill in the basic info about symbol that nm needs.
736
        Additional info may be added by the back-ends after
737
        calling this function.
738
 
739
SYNOPSIS
740
        void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
741
*/
742
 
743
void
744
bfd_symbol_info (asymbol *symbol, symbol_info *ret)
745
{
746
  ret->type = bfd_decode_symclass (symbol);
747
 
748
  if (bfd_is_undefined_symclass (ret->type))
749
    ret->value = 0;
750
  else
751
    ret->value = symbol->value + symbol->section->vma;
752
 
753
  ret->name = symbol->name;
754
}
755
 
756
/*
757
FUNCTION
758
        bfd_copy_private_symbol_data
759
 
760
SYNOPSIS
761
        bfd_boolean bfd_copy_private_symbol_data
762
          (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
763
 
764
DESCRIPTION
765
        Copy private symbol information from @var{isym} in the BFD
766
        @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
767
        Return <<TRUE>> on success, <<FALSE>> on error.  Possible error
768
        returns are:
769
 
770
        o <<bfd_error_no_memory>> -
771
        Not enough memory exists to create private data for @var{osec}.
772
 
773
.#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
774
.  BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
775
.            (ibfd, isymbol, obfd, osymbol))
776
.
777
*/
778
 
779
/* The generic version of the function which returns mini symbols.
780
   This is used when the backend does not provide a more efficient
781
   version.  It just uses BFD asymbol structures as mini symbols.  */
782
 
783
long
784
_bfd_generic_read_minisymbols (bfd *abfd,
785
                               bfd_boolean dynamic,
786
                               void **minisymsp,
787
                               unsigned int *sizep)
788
{
789
  long storage;
790
  asymbol **syms = NULL;
791
  long symcount;
792
 
793
  if (dynamic)
794
    storage = bfd_get_dynamic_symtab_upper_bound (abfd);
795
  else
796
    storage = bfd_get_symtab_upper_bound (abfd);
797
  if (storage < 0)
798
    goto error_return;
799
  if (storage == 0)
800
    return 0;
801
 
802
  syms = bfd_malloc (storage);
803
  if (syms == NULL)
804
    goto error_return;
805
 
806
  if (dynamic)
807
    symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
808
  else
809
    symcount = bfd_canonicalize_symtab (abfd, syms);
810
  if (symcount < 0)
811
    goto error_return;
812
 
813
  *minisymsp = syms;
814
  *sizep = sizeof (asymbol *);
815
  return symcount;
816
 
817
 error_return:
818
  bfd_set_error (bfd_error_no_symbols);
819
  if (syms != NULL)
820
    free (syms);
821
  return -1;
822
}
823
 
824
/* The generic version of the function which converts a minisymbol to
825
   an asymbol.  We don't worry about the sym argument we are passed;
826
   we just return the asymbol the minisymbol points to.  */
827
 
828
asymbol *
829
_bfd_generic_minisymbol_to_symbol (bfd *abfd ATTRIBUTE_UNUSED,
830
                                   bfd_boolean dynamic ATTRIBUTE_UNUSED,
831
                                   const void *minisym,
832
                                   asymbol *sym ATTRIBUTE_UNUSED)
833
{
834
  return *(asymbol **) minisym;
835
}
836
 
837
/* Look through stabs debugging information in .stab and .stabstr
838
   sections to find the source file and line closest to a desired
839
   location.  This is used by COFF and ELF targets.  It sets *pfound
840
   to TRUE if it finds some information.  The *pinfo field is used to
841
   pass cached information in and out of this routine; this first time
842
   the routine is called for a BFD, *pinfo should be NULL.  The value
843
   placed in *pinfo should be saved with the BFD, and passed back each
844
   time this function is called.  */
845
 
846
/* We use a cache by default.  */
847
 
848
#define ENABLE_CACHING
849
 
850
/* We keep an array of indexentry structures to record where in the
851
   stabs section we should look to find line number information for a
852
   particular address.  */
853
 
854
struct indexentry
855
{
856
  bfd_vma val;
857
  bfd_byte *stab;
858
  bfd_byte *str;
859
  char *directory_name;
860
  char *file_name;
861
  char *function_name;
862
};
863
 
864
/* Compare two indexentry structures.  This is called via qsort.  */
865
 
866
static int
867
cmpindexentry (const void *a, const void *b)
868
{
869
  const struct indexentry *contestantA = a;
870
  const struct indexentry *contestantB = b;
871
 
872
  if (contestantA->val < contestantB->val)
873
    return -1;
874
  else if (contestantA->val > contestantB->val)
875
    return 1;
876
  else
877
    return 0;
878
}
879
 
880
/* A pointer to this structure is stored in *pinfo.  */
881
 
882
struct stab_find_info
883
{
884
  /* The .stab section.  */
885
  asection *stabsec;
886
  /* The .stabstr section.  */
887
  asection *strsec;
888
  /* The contents of the .stab section.  */
889
  bfd_byte *stabs;
890
  /* The contents of the .stabstr section.  */
891
  bfd_byte *strs;
892
 
893
  /* A table that indexes stabs by memory address.  */
894
  struct indexentry *indextable;
895
  /* The number of entries in indextable.  */
896
  int indextablesize;
897
 
898
#ifdef ENABLE_CACHING
899
  /* Cached values to restart quickly.  */
900
  struct indexentry *cached_indexentry;
901
  bfd_vma cached_offset;
902
  bfd_byte *cached_stab;
903
  char *cached_file_name;
904
#endif
905
 
906
  /* Saved ptr to malloc'ed filename.  */
907
  char *filename;
908
};
909
 
910
bfd_boolean
911
_bfd_stab_section_find_nearest_line (bfd *abfd,
912
                                     asymbol **symbols,
913
                                     asection *section,
914
                                     bfd_vma offset,
915
                                     bfd_boolean *pfound,
916
                                     const char **pfilename,
917
                                     const char **pfnname,
918
                                     unsigned int *pline,
919
                                     void **pinfo)
920
{
921
  struct stab_find_info *info;
922
  bfd_size_type stabsize, strsize;
923
  bfd_byte *stab, *str;
924
  bfd_byte *last_stab = NULL;
925
  bfd_size_type stroff;
926
  struct indexentry *indexentry;
927
  char *file_name;
928
  char *directory_name;
929
  int saw_fun;
930
  bfd_boolean saw_line, saw_func;
931
 
932
  *pfound = FALSE;
933
  *pfilename = bfd_get_filename (abfd);
934
  *pfnname = NULL;
935
  *pline = 0;
936
 
937
  /* Stabs entries use a 12 byte format:
938
       4 byte string table index
939
       1 byte stab type
940
       1 byte stab other field
941
       2 byte stab desc field
942
       4 byte stab value
943
     FIXME: This will have to change for a 64 bit object format.
944
 
945
     The stabs symbols are divided into compilation units.  For the
946
     first entry in each unit, the type of 0, the value is the length
947
     of the string table for this unit, and the desc field is the
948
     number of stabs symbols for this unit.  */
949
 
950
#define STRDXOFF (0)
951
#define TYPEOFF (4)
952
#define OTHEROFF (5)
953
#define DESCOFF (6)
954
#define VALOFF (8)
955
#define STABSIZE (12)
956
 
957
  info = *pinfo;
958
  if (info != NULL)
959
    {
960
      if (info->stabsec == NULL || info->strsec == NULL)
961
        {
962
          /* No stabs debugging information.  */
963
          return TRUE;
964
        }
965
 
966
      stabsize = (info->stabsec->rawsize
967
                  ? info->stabsec->rawsize
968
                  : info->stabsec->size);
969
      strsize = (info->strsec->rawsize
970
                 ? info->strsec->rawsize
971
                 : info->strsec->size);
972
    }
973
  else
974
    {
975
      long reloc_size, reloc_count;
976
      arelent **reloc_vector;
977
      int i;
978
      char *name;
979
      char *function_name;
980
      bfd_size_type amt = sizeof *info;
981
 
982
      info = bfd_zalloc (abfd, amt);
983
      if (info == NULL)
984
        return FALSE;
985
 
986
      /* FIXME: When using the linker --split-by-file or
987
         --split-by-reloc options, it is possible for the .stab and
988
         .stabstr sections to be split.  We should handle that.  */
989
 
990
      info->stabsec = bfd_get_section_by_name (abfd, ".stab");
991
      info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
992
 
993
      if (info->stabsec == NULL || info->strsec == NULL)
994
        {
995
          /* Try SOM section names.  */
996
          info->stabsec = bfd_get_section_by_name (abfd, "$GDB_SYMBOLS$");
997
          info->strsec  = bfd_get_section_by_name (abfd, "$GDB_STRINGS$");
998
 
999
          if (info->stabsec == NULL || info->strsec == NULL)
1000
            {
1001
              /* No stabs debugging information.  Set *pinfo so that we
1002
                 can return quickly in the info != NULL case above.  */
1003
              *pinfo = info;
1004
              return TRUE;
1005
            }
1006
        }
1007
 
1008
      stabsize = (info->stabsec->rawsize
1009
                  ? info->stabsec->rawsize
1010
                  : info->stabsec->size);
1011
      strsize = (info->strsec->rawsize
1012
                 ? info->strsec->rawsize
1013
                 : info->strsec->size);
1014
 
1015
      info->stabs = bfd_alloc (abfd, stabsize);
1016
      info->strs = bfd_alloc (abfd, strsize);
1017
      if (info->stabs == NULL || info->strs == NULL)
1018
        return FALSE;
1019
 
1020
      if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs,
1021
                                      0, stabsize)
1022
          || ! bfd_get_section_contents (abfd, info->strsec, info->strs,
1023
                                         0, strsize))
1024
        return FALSE;
1025
 
1026
      /* If this is a relocatable object file, we have to relocate
1027
         the entries in .stab.  This should always be simple 32 bit
1028
         relocations against symbols defined in this object file, so
1029
         this should be no big deal.  */
1030
      reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
1031
      if (reloc_size < 0)
1032
        return FALSE;
1033
      reloc_vector = bfd_malloc (reloc_size);
1034
      if (reloc_vector == NULL && reloc_size != 0)
1035
        return FALSE;
1036
      reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
1037
                                            symbols);
1038
      if (reloc_count < 0)
1039
        {
1040
          if (reloc_vector != NULL)
1041
            free (reloc_vector);
1042
          return FALSE;
1043
        }
1044
      if (reloc_count > 0)
1045
        {
1046
          arelent **pr;
1047
 
1048
          for (pr = reloc_vector; *pr != NULL; pr++)
1049
            {
1050
              arelent *r;
1051
              unsigned long val;
1052
              asymbol *sym;
1053
 
1054
              r = *pr;
1055
              /* Ignore R_*_NONE relocs.  */
1056
              if (r->howto->dst_mask == 0)
1057
                continue;
1058
 
1059
              if (r->howto->rightshift != 0
1060
                  || r->howto->size != 2
1061
                  || r->howto->bitsize != 32
1062
                  || r->howto->pc_relative
1063
                  || r->howto->bitpos != 0
1064
                  || r->howto->dst_mask != 0xffffffff)
1065
                {
1066
                  (*_bfd_error_handler)
1067
                    (_("Unsupported .stab relocation"));
1068
                  bfd_set_error (bfd_error_invalid_operation);
1069
                  if (reloc_vector != NULL)
1070
                    free (reloc_vector);
1071
                  return FALSE;
1072
                }
1073
 
1074
              val = bfd_get_32 (abfd, info->stabs + r->address);
1075
              val &= r->howto->src_mask;
1076
              sym = *r->sym_ptr_ptr;
1077
              val += sym->value + sym->section->vma + r->addend;
1078
              bfd_put_32 (abfd, (bfd_vma) val, info->stabs + r->address);
1079
            }
1080
        }
1081
 
1082
      if (reloc_vector != NULL)
1083
        free (reloc_vector);
1084
 
1085
      /* First time through this function, build a table matching
1086
         function VM addresses to stabs, then sort based on starting
1087
         VM address.  Do this in two passes: once to count how many
1088
         table entries we'll need, and a second to actually build the
1089
         table.  */
1090
 
1091
      info->indextablesize = 0;
1092
      saw_fun = 1;
1093
      for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
1094
        {
1095
          if (stab[TYPEOFF] == (bfd_byte) N_SO)
1096
            {
1097
              /* N_SO with null name indicates EOF */
1098
              if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1099
                continue;
1100
 
1101
              /* if we did not see a function def, leave space for one.  */
1102
              if (saw_fun == 0)
1103
                ++info->indextablesize;
1104
 
1105
              saw_fun = 0;
1106
 
1107
              /* two N_SO's in a row is a filename and directory. Skip */
1108
              if (stab + STABSIZE < info->stabs + stabsize
1109
                  && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1110
                {
1111
                  stab += STABSIZE;
1112
                }
1113
            }
1114
          else if (stab[TYPEOFF] == (bfd_byte) N_FUN)
1115
            {
1116
              saw_fun = 1;
1117
              ++info->indextablesize;
1118
            }
1119
        }
1120
 
1121
      if (saw_fun == 0)
1122
        ++info->indextablesize;
1123
 
1124
      if (info->indextablesize == 0)
1125
        return TRUE;
1126
      ++info->indextablesize;
1127
 
1128
      amt = info->indextablesize;
1129
      amt *= sizeof (struct indexentry);
1130
      info->indextable = bfd_alloc (abfd, amt);
1131
      if (info->indextable == NULL)
1132
        return FALSE;
1133
 
1134
      file_name = NULL;
1135
      directory_name = NULL;
1136
      saw_fun = 1;
1137
 
1138
      for (i = 0, stroff = 0, stab = info->stabs, str = info->strs;
1139
           i < info->indextablesize && stab < info->stabs + stabsize;
1140
           stab += STABSIZE)
1141
        {
1142
          switch (stab[TYPEOFF])
1143
            {
1144
            case 0:
1145
              /* This is the first entry in a compilation unit.  */
1146
              if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1147
                break;
1148
              str += stroff;
1149
              stroff = bfd_get_32 (abfd, stab + VALOFF);
1150
              break;
1151
 
1152
            case N_SO:
1153
              /* The main file name.  */
1154
 
1155
              /* The following code creates a new indextable entry with
1156
                 a NULL function name if there were no N_FUNs in a file.
1157
                 Note that a N_SO without a file name is an EOF and
1158
                 there could be 2 N_SO following it with the new filename
1159
                 and directory.  */
1160
              if (saw_fun == 0)
1161
                {
1162
                  info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1163
                  info->indextable[i].stab = last_stab;
1164
                  info->indextable[i].str = str;
1165
                  info->indextable[i].directory_name = directory_name;
1166
                  info->indextable[i].file_name = file_name;
1167
                  info->indextable[i].function_name = NULL;
1168
                  ++i;
1169
                }
1170
              saw_fun = 0;
1171
 
1172
              file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1173
              if (*file_name == '\0')
1174
                {
1175
                  directory_name = NULL;
1176
                  file_name = NULL;
1177
                  saw_fun = 1;
1178
                }
1179
              else
1180
                {
1181
                  last_stab = stab;
1182
                  if (stab + STABSIZE >= info->stabs + stabsize
1183
                      || *(stab + STABSIZE + TYPEOFF) != (bfd_byte) N_SO)
1184
                    {
1185
                      directory_name = NULL;
1186
                    }
1187
                  else
1188
                    {
1189
                      /* Two consecutive N_SOs are a directory and a
1190
                         file name.  */
1191
                      stab += STABSIZE;
1192
                      directory_name = file_name;
1193
                      file_name = ((char *) str
1194
                                   + bfd_get_32 (abfd, stab + STRDXOFF));
1195
                    }
1196
                }
1197
              break;
1198
 
1199
            case N_SOL:
1200
              /* The name of an include file.  */
1201
              file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1202
              break;
1203
 
1204
            case N_FUN:
1205
              /* A function name.  */
1206
              saw_fun = 1;
1207
              name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1208
 
1209
              if (*name == '\0')
1210
                name = NULL;
1211
 
1212
              function_name = name;
1213
 
1214
              if (name == NULL)
1215
                continue;
1216
 
1217
              info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1218
              info->indextable[i].stab = stab;
1219
              info->indextable[i].str = str;
1220
              info->indextable[i].directory_name = directory_name;
1221
              info->indextable[i].file_name = file_name;
1222
              info->indextable[i].function_name = function_name;
1223
              ++i;
1224
              break;
1225
            }
1226
        }
1227
 
1228
      if (saw_fun == 0)
1229
        {
1230
          info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1231
          info->indextable[i].stab = last_stab;
1232
          info->indextable[i].str = str;
1233
          info->indextable[i].directory_name = directory_name;
1234
          info->indextable[i].file_name = file_name;
1235
          info->indextable[i].function_name = NULL;
1236
          ++i;
1237
        }
1238
 
1239
      info->indextable[i].val = (bfd_vma) -1;
1240
      info->indextable[i].stab = info->stabs + stabsize;
1241
      info->indextable[i].str = str;
1242
      info->indextable[i].directory_name = NULL;
1243
      info->indextable[i].file_name = NULL;
1244
      info->indextable[i].function_name = NULL;
1245
      ++i;
1246
 
1247
      info->indextablesize = i;
1248
      qsort (info->indextable, (size_t) i, sizeof (struct indexentry),
1249
             cmpindexentry);
1250
 
1251
      *pinfo = info;
1252
    }
1253
 
1254
  /* We are passed a section relative offset.  The offsets in the
1255
     stabs information are absolute.  */
1256
  offset += bfd_get_section_vma (abfd, section);
1257
 
1258
#ifdef ENABLE_CACHING
1259
  if (info->cached_indexentry != NULL
1260
      && offset >= info->cached_offset
1261
      && offset < (info->cached_indexentry + 1)->val)
1262
    {
1263
      stab = info->cached_stab;
1264
      indexentry = info->cached_indexentry;
1265
      file_name = info->cached_file_name;
1266
    }
1267
  else
1268
#endif
1269
    {
1270
      long low, high;
1271
      long mid = -1;
1272
 
1273
      /* Cache non-existent or invalid.  Do binary search on
1274
         indextable.  */
1275
      indexentry = NULL;
1276
 
1277
      low = 0;
1278
      high = info->indextablesize - 1;
1279
      while (low != high)
1280
        {
1281
          mid = (high + low) / 2;
1282
          if (offset >= info->indextable[mid].val
1283
              && offset < info->indextable[mid + 1].val)
1284
            {
1285
              indexentry = &info->indextable[mid];
1286
              break;
1287
            }
1288
 
1289
          if (info->indextable[mid].val > offset)
1290
            high = mid;
1291
          else
1292
            low = mid + 1;
1293
        }
1294
 
1295
      if (indexentry == NULL)
1296
        return TRUE;
1297
 
1298
      stab = indexentry->stab + STABSIZE;
1299
      file_name = indexentry->file_name;
1300
    }
1301
 
1302
  directory_name = indexentry->directory_name;
1303
  str = indexentry->str;
1304
 
1305
  saw_line = FALSE;
1306
  saw_func = FALSE;
1307
  for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1308
    {
1309
      bfd_boolean done;
1310
      bfd_vma val;
1311
 
1312
      done = FALSE;
1313
 
1314
      switch (stab[TYPEOFF])
1315
        {
1316
        case N_SOL:
1317
          /* The name of an include file.  */
1318
          val = bfd_get_32 (abfd, stab + VALOFF);
1319
          if (val <= offset)
1320
            {
1321
              file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1322
              *pline = 0;
1323
            }
1324
          break;
1325
 
1326
        case N_SLINE:
1327
        case N_DSLINE:
1328
        case N_BSLINE:
1329
          /* A line number.  If the function was specified, then the value
1330
             is relative to the start of the function.  Otherwise, the
1331
             value is an absolute address.  */
1332
          val = ((indexentry->function_name ? indexentry->val : 0)
1333
                 + bfd_get_32 (abfd, stab + VALOFF));
1334
          /* If this line starts before our desired offset, or if it's
1335
             the first line we've been able to find, use it.  The
1336
             !saw_line check works around a bug in GCC 2.95.3, which emits
1337
             the first N_SLINE late.  */
1338
          if (!saw_line || val <= offset)
1339
            {
1340
              *pline = bfd_get_16 (abfd, stab + DESCOFF);
1341
 
1342
#ifdef ENABLE_CACHING
1343
              info->cached_stab = stab;
1344
              info->cached_offset = val;
1345
              info->cached_file_name = file_name;
1346
              info->cached_indexentry = indexentry;
1347
#endif
1348
            }
1349
          if (val > offset)
1350
            done = TRUE;
1351
          saw_line = TRUE;
1352
          break;
1353
 
1354
        case N_FUN:
1355
        case N_SO:
1356
          if (saw_func || saw_line)
1357
            done = TRUE;
1358
          saw_func = TRUE;
1359
          break;
1360
        }
1361
 
1362
      if (done)
1363
        break;
1364
    }
1365
 
1366
  *pfound = TRUE;
1367
 
1368
  if (file_name == NULL || IS_ABSOLUTE_PATH (file_name)
1369
      || directory_name == NULL)
1370
    *pfilename = file_name;
1371
  else
1372
    {
1373
      size_t dirlen;
1374
 
1375
      dirlen = strlen (directory_name);
1376
      if (info->filename == NULL
1377
          || strncmp (info->filename, directory_name, dirlen) != 0
1378
          || strcmp (info->filename + dirlen, file_name) != 0)
1379
        {
1380
          size_t len;
1381
 
1382
          if (info->filename != NULL)
1383
            free (info->filename);
1384
          len = strlen (file_name) + 1;
1385
          info->filename = bfd_malloc (dirlen + len);
1386
          if (info->filename == NULL)
1387
            return FALSE;
1388
          memcpy (info->filename, directory_name, dirlen);
1389
          memcpy (info->filename + dirlen, file_name, len);
1390
        }
1391
 
1392
      *pfilename = info->filename;
1393
    }
1394
 
1395
  if (indexentry->function_name != NULL)
1396
    {
1397
      char *s;
1398
 
1399
      /* This will typically be something like main:F(0,1), so we want
1400
         to clobber the colon.  It's OK to change the name, since the
1401
         string is in our own local storage anyhow.  */
1402
      s = strchr (indexentry->function_name, ':');
1403
      if (s != NULL)
1404
        *s = '\0';
1405
 
1406
      *pfnname = indexentry->function_name;
1407
    }
1408
 
1409
  return TRUE;
1410
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.