OpenCores
URL https://opencores.org/ocsvn/scarts/scarts/trunk

Subversion Repositories scarts

[/] [scarts/] [trunk/] [toolchain/] [scarts-binutils/] [binutils-2.19.1/] [gas/] [doc/] [c-i386.texi] - Blame information for rev 6

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 6 jlechner
@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
2
@c 2001, 2003, 2004
3
@c Free Software Foundation, Inc.
4
@c This is part of the GAS manual.
5
@c For copying conditions, see the file as.texinfo.
6
@ifset GENERIC
7
@page
8
@node i386-Dependent
9
@chapter 80386 Dependent Features
10
@end ifset
11
@ifclear GENERIC
12
@node Machine Dependencies
13
@chapter 80386 Dependent Features
14
@end ifclear
15
 
16
@cindex i386 support
17
@cindex i80306 support
18
@cindex x86-64 support
19
 
20
The i386 version @code{@value{AS}} supports both the original Intel 386
21
architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22
extending the Intel architecture to 64-bits.
23
 
24
@menu
25
* i386-Options::                Options
26
* i386-Directives::             X86 specific directives
27
* i386-Syntax::                 AT&T Syntax versus Intel Syntax
28
* i386-Mnemonics::              Instruction Naming
29
* i386-Regs::                   Register Naming
30
* i386-Prefixes::               Instruction Prefixes
31
* i386-Memory::                 Memory References
32
* i386-Jumps::                  Handling of Jump Instructions
33
* i386-Float::                  Floating Point
34
* i386-SIMD::                   Intel's MMX and AMD's 3DNow! SIMD Operations
35
* i386-16bit::                  Writing 16-bit Code
36
* i386-Arch::                   Specifying an x86 CPU architecture
37
* i386-Bugs::                   AT&T Syntax bugs
38
* i386-Notes::                  Notes
39
@end menu
40
 
41
@node i386-Options
42
@section Options
43
 
44
@cindex options for i386
45
@cindex options for x86-64
46
@cindex i386 options
47
@cindex x86-64 options
48
 
49
The i386 version of @code{@value{AS}} has a few machine
50
dependent options:
51
 
52
@table @code
53
@cindex @samp{--32} option, i386
54
@cindex @samp{--32} option, x86-64
55
@cindex @samp{--64} option, i386
56
@cindex @samp{--64} option, x86-64
57
@item --32 | --64
58
Select the word size, either 32 bits or 64 bits. Selecting 32-bit
59
implies Intel i386 architecture, while 64-bit implies AMD x86-64
60
architecture.
61
 
62
These options are only available with the ELF object file format, and
63
require that the necessary BFD support has been included (on a 32-bit
64
platform you have to add --enable-64-bit-bfd to configure enable 64-bit
65
usage and use x86-64 as target platform).
66
 
67
@item -n
68
By default, x86 GAS replaces multiple nop instructions used for
69
alignment within code sections with multi-byte nop instructions such
70
as leal 0(%esi,1),%esi.  This switch disables the optimization.
71
 
72
@cindex @samp{--divide} option, i386
73
@item --divide
74
On SVR4-derived platforms, the character @samp{/} is treated as a comment
75
character, which means that it cannot be used in expressions.  The
76
@samp{--divide} option turns @samp{/} into a normal character.  This does
77
not disable @samp{/} at the beginning of a line starting a comment, or
78
affect using @samp{#} for starting a comment.
79
 
80
@cindex @samp{-march=} option, i386
81
@cindex @samp{-march=} option, x86-64
82
@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
83
This option specifies the target processor.  The assembler will
84
issue an error message if an attempt is made to assemble an instruction
85
which will not execute on the target processor.  The following
86
processor names are recognized:
87
@code{i8086},
88
@code{i186},
89
@code{i286},
90
@code{i386},
91
@code{i486},
92
@code{i586},
93
@code{i686},
94
@code{pentium},
95
@code{pentiumpro},
96
@code{pentiumii},
97
@code{pentiumiii},
98
@code{pentium4},
99
@code{prescott},
100
@code{nocona},
101
@code{core},
102
@code{core2},
103
@code{k6},
104
@code{k6_2},
105
@code{athlon},
106
@code{opteron},
107
@code{k8},
108
@code{amdfam10},
109
@code{generic32} and
110
@code{generic64}.
111
 
112
In addition to the basic instruction set, the assembler can be told to
113
accept various extension mnemonics.  For example,
114
@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
115
@var{vmx}.  The following extensions are currently supported:
116
@code{mmx},
117
@code{sse},
118
@code{sse2},
119
@code{sse3},
120
@code{ssse3},
121
@code{sse4.1},
122
@code{sse4.2},
123
@code{sse4},
124
@code{avx},
125
@code{vmx},
126
@code{smx},
127
@code{xsave},
128
@code{aes},
129
@code{pclmul},
130
@code{fma},
131
@code{movbe},
132
@code{ept},
133
@code{3dnow},
134
@code{3dnowa},
135
@code{sse4a},
136
@code{sse5},
137
@code{svme},
138
@code{abm} and
139
@code{padlock}.
140
 
141
When the @code{.arch} directive is used with @option{-march}, the
142
@code{.arch} directive will take precedent.
143
 
144
@cindex @samp{-mtune=} option, i386
145
@cindex @samp{-mtune=} option, x86-64
146
@item -mtune=@var{CPU}
147
This option specifies a processor to optimize for. When used in
148
conjunction with the @option{-march} option, only instructions
149
of the processor specified by the @option{-march} option will be
150
generated.
151
 
152
Valid @var{CPU} values are identical to the processor list of
153
@option{-march=@var{CPU}}.
154
 
155
@cindex @samp{-msse2avx} option, i386
156
@cindex @samp{-msse2avx} option, x86-64
157
@item -msse2avx
158
This option specifies that the assembler should encode SSE instructions
159
with VEX prefix.
160
 
161
@cindex @samp{-msse-check=} option, i386
162
@cindex @samp{-msse-check=} option, x86-64
163
@item -msse-check=@var{none}
164
@item -msse-check=@var{warning}
165
@item -msse-check=@var{error}
166
These options control if the assembler should check SSE intructions.
167
@option{-msse-check=@var{none}} will make the assembler not to check SSE
168
instructions,  which is the default.  @option{-msse-check=@var{warning}}
169
will make the assembler issue a warning for any SSE intruction.
170
@option{-msse-check=@var{error}} will make the assembler issue an error
171
for any SSE intruction.
172
 
173
@cindex @samp{-mmnemonic=} option, i386
174
@cindex @samp{-mmnemonic=} option, x86-64
175
@item -mmnemonic=@var{att}
176
@item -mmnemonic=@var{intel}
177
This option specifies instruction mnemonic for matching instructions.
178
The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
179
take precedent.
180
 
181
@cindex @samp{-msyntax=} option, i386
182
@cindex @samp{-msyntax=} option, x86-64
183
@item -msyntax=@var{att}
184
@item -msyntax=@var{intel}
185
This option specifies instruction syntax when processing instructions.
186
The @code{.att_syntax} and @code{.intel_syntax} directives will
187
take precedent.
188
 
189
@cindex @samp{-mnaked-reg} option, i386
190
@cindex @samp{-mnaked-reg} option, x86-64
191
@item -mnaked-reg
192
This opetion specifies that registers don't require a @samp{%} prefix.
193
The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
194
 
195
@end table
196
 
197
@node i386-Directives
198
@section x86 specific Directives
199
 
200
@cindex machine directives, x86
201
@cindex x86 machine directives
202
@table @code
203
 
204
@cindex @code{lcomm} directive, COFF
205
@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
206
Reserve @var{length} (an absolute expression) bytes for a local common
207
denoted by @var{symbol}.  The section and value of @var{symbol} are
208
those of the new local common.  The addresses are allocated in the bss
209
section, so that at run-time the bytes start off zeroed.  Since
210
@var{symbol} is not declared global, it is normally not visible to
211
@code{@value{LD}}.  The optional third parameter, @var{alignment},
212
specifies the desired alignment of the symbol in the bss section.
213
 
214
This directive is only available for COFF based x86 targets.
215
 
216
@c FIXME: Document other x86 specific directives ?  Eg: .code16gcc,
217
@c .largecomm
218
 
219
@end table
220
 
221
@node i386-Syntax
222
@section AT&T Syntax versus Intel Syntax
223
 
224
@cindex i386 intel_syntax pseudo op
225
@cindex intel_syntax pseudo op, i386
226
@cindex i386 att_syntax pseudo op
227
@cindex att_syntax pseudo op, i386
228
@cindex i386 syntax compatibility
229
@cindex syntax compatibility, i386
230
@cindex x86-64 intel_syntax pseudo op
231
@cindex intel_syntax pseudo op, x86-64
232
@cindex x86-64 att_syntax pseudo op
233
@cindex att_syntax pseudo op, x86-64
234
@cindex x86-64 syntax compatibility
235
@cindex syntax compatibility, x86-64
236
 
237
@code{@value{AS}} now supports assembly using Intel assembler syntax.
238
@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
239
back to the usual AT&T mode for compatibility with the output of
240
@code{@value{GCC}}.  Either of these directives may have an optional
241
argument, @code{prefix}, or @code{noprefix} specifying whether registers
242
require a @samp{%} prefix.  AT&T System V/386 assembler syntax is quite
243
different from Intel syntax.  We mention these differences because
244
almost all 80386 documents use Intel syntax.  Notable differences
245
between the two syntaxes are:
246
 
247
@cindex immediate operands, i386
248
@cindex i386 immediate operands
249
@cindex register operands, i386
250
@cindex i386 register operands
251
@cindex jump/call operands, i386
252
@cindex i386 jump/call operands
253
@cindex operand delimiters, i386
254
 
255
@cindex immediate operands, x86-64
256
@cindex x86-64 immediate operands
257
@cindex register operands, x86-64
258
@cindex x86-64 register operands
259
@cindex jump/call operands, x86-64
260
@cindex x86-64 jump/call operands
261
@cindex operand delimiters, x86-64
262
@itemize @bullet
263
@item
264
AT&T immediate operands are preceded by @samp{$}; Intel immediate
265
operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
266
AT&T register operands are preceded by @samp{%}; Intel register operands
267
are undelimited.  AT&T absolute (as opposed to PC relative) jump/call
268
operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
269
 
270
@cindex i386 source, destination operands
271
@cindex source, destination operands; i386
272
@cindex x86-64 source, destination operands
273
@cindex source, destination operands; x86-64
274
@item
275
AT&T and Intel syntax use the opposite order for source and destination
276
operands.  Intel @samp{add eax, 4} is @samp{addl $4, %eax}.  The
277
@samp{source, dest} convention is maintained for compatibility with
278
previous Unix assemblers.  Note that @samp{bound}, @samp{invlpga}, and
279
instructions with 2 immediate operands, such as the @samp{enter}
280
instruction, do @emph{not} have reversed order.  @ref{i386-Bugs}.
281
 
282
@cindex mnemonic suffixes, i386
283
@cindex sizes operands, i386
284
@cindex i386 size suffixes
285
@cindex mnemonic suffixes, x86-64
286
@cindex sizes operands, x86-64
287
@cindex x86-64 size suffixes
288
@item
289
In AT&T syntax the size of memory operands is determined from the last
290
character of the instruction mnemonic.  Mnemonic suffixes of @samp{b},
291
@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
292
(32-bit) and quadruple word (64-bit) memory references.  Intel syntax accomplishes
293
this by prefixing memory operands (@emph{not} the instruction mnemonics) with
294
@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}.  Thus,
295
Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
296
syntax.
297
 
298
@cindex return instructions, i386
299
@cindex i386 jump, call, return
300
@cindex return instructions, x86-64
301
@cindex x86-64 jump, call, return
302
@item
303
Immediate form long jumps and calls are
304
@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
305
Intel syntax is
306
@samp{call/jmp far @var{section}:@var{offset}}.  Also, the far return
307
instruction
308
is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
309
@samp{ret far @var{stack-adjust}}.
310
 
311
@cindex sections, i386
312
@cindex i386 sections
313
@cindex sections, x86-64
314
@cindex x86-64 sections
315
@item
316
The AT&T assembler does not provide support for multiple section
317
programs.  Unix style systems expect all programs to be single sections.
318
@end itemize
319
 
320
@node i386-Mnemonics
321
@section Instruction Naming
322
 
323
@cindex i386 instruction naming
324
@cindex instruction naming, i386
325
@cindex x86-64 instruction naming
326
@cindex instruction naming, x86-64
327
 
328
Instruction mnemonics are suffixed with one character modifiers which
329
specify the size of operands.  The letters @samp{b}, @samp{w}, @samp{l}
330
and @samp{q} specify byte, word, long and quadruple word operands.  If
331
no suffix is specified by an instruction then @code{@value{AS}} tries to
332
fill in the missing suffix based on the destination register operand
333
(the last one by convention).  Thus, @samp{mov %ax, %bx} is equivalent
334
to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
335
@samp{movw $1, bx}.  Note that this is incompatible with the AT&T Unix
336
assembler which assumes that a missing mnemonic suffix implies long
337
operand size.  (This incompatibility does not affect compiler output
338
since compilers always explicitly specify the mnemonic suffix.)
339
 
340
Almost all instructions have the same names in AT&T and Intel format.
341
There are a few exceptions.  The sign extend and zero extend
342
instructions need two sizes to specify them.  They need a size to
343
sign/zero extend @emph{from} and a size to zero extend @emph{to}.  This
344
is accomplished by using two instruction mnemonic suffixes in AT&T
345
syntax.  Base names for sign extend and zero extend are
346
@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
347
and @samp{movzx} in Intel syntax).  The instruction mnemonic suffixes
348
are tacked on to this base name, the @emph{from} suffix before the
349
@emph{to} suffix.  Thus, @samp{movsbl %al, %edx} is AT&T syntax for
350
``move sign extend @emph{from} %al @emph{to} %edx.''  Possible suffixes,
351
thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
352
@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
353
@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
354
quadruple word).
355
 
356
@cindex conversion instructions, i386
357
@cindex i386 conversion instructions
358
@cindex conversion instructions, x86-64
359
@cindex x86-64 conversion instructions
360
The Intel-syntax conversion instructions
361
 
362
@itemize @bullet
363
@item
364
@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
365
 
366
@item
367
@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
368
 
369
@item
370
@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
371
 
372
@item
373
@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
374
 
375
@item
376
@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
377
(x86-64 only),
378
 
379
@item
380
@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
381
@samp{%rdx:%rax} (x86-64 only),
382
@end itemize
383
 
384
@noindent
385
are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
386
@samp{cqto} in AT&T naming.  @code{@value{AS}} accepts either naming for these
387
instructions.
388
 
389
@cindex jump instructions, i386
390
@cindex call instructions, i386
391
@cindex jump instructions, x86-64
392
@cindex call instructions, x86-64
393
Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
394
AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
395
convention.
396
 
397
@section AT&T Mnemonic versus Intel Mnemonic
398
 
399
@cindex i386 mnemonic compatibility
400
@cindex mnemonic compatibility, i386
401
 
402
@code{@value{AS}} supports assembly using Intel mnemonic.
403
@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
404
@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
405
syntax for compatibility with the output of @code{@value{GCC}}.
406
Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
407
@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
408
@samp{fsubr} and @samp{fsubrp},  are implemented in AT&T System V/386
409
assembler with different mnemonics from those in Intel IA32 specification.
410
@code{@value{GCC}} generates those instructions with AT&T mnemonic.
411
 
412
@node i386-Regs
413
@section Register Naming
414
 
415
@cindex i386 registers
416
@cindex registers, i386
417
@cindex x86-64 registers
418
@cindex registers, x86-64
419
Register operands are always prefixed with @samp{%}.  The 80386 registers
420
consist of
421
 
422
@itemize @bullet
423
@item
424
the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
425
@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
426
frame pointer), and @samp{%esp} (the stack pointer).
427
 
428
@item
429
the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
430
@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
431
 
432
@item
433
the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
434
@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
435
are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
436
@samp{%cx}, and @samp{%dx})
437
 
438
@item
439
the 6 section registers @samp{%cs} (code section), @samp{%ds}
440
(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
441
and @samp{%gs}.
442
 
443
@item
444
the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
445
@samp{%cr3}.
446
 
447
@item
448
the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
449
@samp{%db3}, @samp{%db6}, and @samp{%db7}.
450
 
451
@item
452
the 2 test registers @samp{%tr6} and @samp{%tr7}.
453
 
454
@item
455
the 8 floating point register stack @samp{%st} or equivalently
456
@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
457
@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
458
These registers are overloaded by 8 MMX registers @samp{%mm0},
459
@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
460
@samp{%mm6} and @samp{%mm7}.
461
 
462
@item
463
the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
464
@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
465
@end itemize
466
 
467
The AMD x86-64 architecture extends the register set by:
468
 
469
@itemize @bullet
470
@item
471
enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
472
accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
473
@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
474
pointer)
475
 
476
@item
477
the 8 extended registers @samp{%r8}--@samp{%r15}.
478
 
479
@item
480
the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
481
 
482
@item
483
the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
484
 
485
@item
486
the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
487
 
488
@item
489
the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
490
 
491
@item
492
the 8 debug registers: @samp{%db8}--@samp{%db15}.
493
 
494
@item
495
the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
496
@end itemize
497
 
498
@node i386-Prefixes
499
@section Instruction Prefixes
500
 
501
@cindex i386 instruction prefixes
502
@cindex instruction prefixes, i386
503
@cindex prefixes, i386
504
Instruction prefixes are used to modify the following instruction.  They
505
are used to repeat string instructions, to provide section overrides, to
506
perform bus lock operations, and to change operand and address sizes.
507
(Most instructions that normally operate on 32-bit operands will use
508
16-bit operands if the instruction has an ``operand size'' prefix.)
509
Instruction prefixes are best written on the same line as the instruction
510
they act upon. For example, the @samp{scas} (scan string) instruction is
511
repeated with:
512
 
513
@smallexample
514
        repne scas %es:(%edi),%al
515
@end smallexample
516
 
517
You may also place prefixes on the lines immediately preceding the
518
instruction, but this circumvents checks that @code{@value{AS}} does
519
with prefixes, and will not work with all prefixes.
520
 
521
Here is a list of instruction prefixes:
522
 
523
@cindex section override prefixes, i386
524
@itemize @bullet
525
@item
526
Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
527
@samp{fs}, @samp{gs}.  These are automatically added by specifying
528
using the @var{section}:@var{memory-operand} form for memory references.
529
 
530
@cindex size prefixes, i386
531
@item
532
Operand/Address size prefixes @samp{data16} and @samp{addr16}
533
change 32-bit operands/addresses into 16-bit operands/addresses,
534
while @samp{data32} and @samp{addr32} change 16-bit ones (in a
535
@code{.code16} section) into 32-bit operands/addresses.  These prefixes
536
@emph{must} appear on the same line of code as the instruction they
537
modify. For example, in a 16-bit @code{.code16} section, you might
538
write:
539
 
540
@smallexample
541
        addr32 jmpl *(%ebx)
542
@end smallexample
543
 
544
@cindex bus lock prefixes, i386
545
@cindex inhibiting interrupts, i386
546
@item
547
The bus lock prefix @samp{lock} inhibits interrupts during execution of
548
the instruction it precedes.  (This is only valid with certain
549
instructions; see a 80386 manual for details).
550
 
551
@cindex coprocessor wait, i386
552
@item
553
The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
554
complete the current instruction.  This should never be needed for the
555
80386/80387 combination.
556
 
557
@cindex repeat prefixes, i386
558
@item
559
The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
560
to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
561
times if the current address size is 16-bits).
562
@cindex REX prefixes, i386
563
@item
564
The @samp{rex} family of prefixes is used by x86-64 to encode
565
extensions to i386 instruction set.  The @samp{rex} prefix has four
566
bits --- an operand size overwrite (@code{64}) used to change operand size
567
from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
568
register set.
569
 
570
You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
571
instruction emits @samp{rex} prefix with all the bits set.  By omitting
572
the @code{64}, @code{x}, @code{y} or @code{z} you may write other
573
prefixes as well.  Normally, there is no need to write the prefixes
574
explicitly, since gas will automatically generate them based on the
575
instruction operands.
576
@end itemize
577
 
578
@node i386-Memory
579
@section Memory References
580
 
581
@cindex i386 memory references
582
@cindex memory references, i386
583
@cindex x86-64 memory references
584
@cindex memory references, x86-64
585
An Intel syntax indirect memory reference of the form
586
 
587
@smallexample
588
@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
589
@end smallexample
590
 
591
@noindent
592
is translated into the AT&T syntax
593
 
594
@smallexample
595
@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
596
@end smallexample
597
 
598
@noindent
599
where @var{base} and @var{index} are the optional 32-bit base and
600
index registers, @var{disp} is the optional displacement, and
601
@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
602
to calculate the address of the operand.  If no @var{scale} is
603
specified, @var{scale} is taken to be 1.  @var{section} specifies the
604
optional section register for the memory operand, and may override the
605
default section register (see a 80386 manual for section register
606
defaults). Note that section overrides in AT&T syntax @emph{must}
607
be preceded by a @samp{%}.  If you specify a section override which
608
coincides with the default section register, @code{@value{AS}} does @emph{not}
609
output any section register override prefixes to assemble the given
610
instruction.  Thus, section overrides can be specified to emphasize which
611
section register is used for a given memory operand.
612
 
613
Here are some examples of Intel and AT&T style memory references:
614
 
615
@table @asis
616
@item AT&T: @samp{-4(%ebp)}, Intel:  @samp{[ebp - 4]}
617
@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
618
missing, and the default section is used (@samp{%ss} for addressing with
619
@samp{%ebp} as the base register).  @var{index}, @var{scale} are both missing.
620
 
621
@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
622
@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
623
@samp{foo}.  All other fields are missing.  The section register here
624
defaults to @samp{%ds}.
625
 
626
@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
627
This uses the value pointed to by @samp{foo} as a memory operand.
628
Note that @var{base} and @var{index} are both missing, but there is only
629
@emph{one} @samp{,}.  This is a syntactic exception.
630
 
631
@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
632
This selects the contents of the variable @samp{foo} with section
633
register @var{section} being @samp{%gs}.
634
@end table
635
 
636
Absolute (as opposed to PC relative) call and jump operands must be
637
prefixed with @samp{*}.  If no @samp{*} is specified, @code{@value{AS}}
638
always chooses PC relative addressing for jump/call labels.
639
 
640
Any instruction that has a memory operand, but no register operand,
641
@emph{must} specify its size (byte, word, long, or quadruple) with an
642
instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
643
respectively).
644
 
645
The x86-64 architecture adds an RIP (instruction pointer relative)
646
addressing.  This addressing mode is specified by using @samp{rip} as a
647
base register.  Only constant offsets are valid. For example:
648
 
649
@table @asis
650
@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
651
Points to the address 1234 bytes past the end of the current
652
instruction.
653
 
654
@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
655
Points to the @code{symbol} in RIP relative way, this is shorter than
656
the default absolute addressing.
657
@end table
658
 
659
Other addressing modes remain unchanged in x86-64 architecture, except
660
registers used are 64-bit instead of 32-bit.
661
 
662
@node i386-Jumps
663
@section Handling of Jump Instructions
664
 
665
@cindex jump optimization, i386
666
@cindex i386 jump optimization
667
@cindex jump optimization, x86-64
668
@cindex x86-64 jump optimization
669
Jump instructions are always optimized to use the smallest possible
670
displacements.  This is accomplished by using byte (8-bit) displacement
671
jumps whenever the target is sufficiently close.  If a byte displacement
672
is insufficient a long displacement is used.  We do not support
673
word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
674
instruction with the @samp{data16} instruction prefix), since the 80386
675
insists upon masking @samp{%eip} to 16 bits after the word displacement
676
is added. (See also @pxref{i386-Arch})
677
 
678
Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
679
@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
680
displacements, so that if you use these instructions (@code{@value{GCC}} does
681
not use them) you may get an error message (and incorrect code).  The AT&T
682
80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
683
to
684
 
685
@smallexample
686
         jcxz cx_zero
687
         jmp cx_nonzero
688
cx_zero: jmp foo
689
cx_nonzero:
690
@end smallexample
691
 
692
@node i386-Float
693
@section Floating Point
694
 
695
@cindex i386 floating point
696
@cindex floating point, i386
697
@cindex x86-64 floating point
698
@cindex floating point, x86-64
699
All 80387 floating point types except packed BCD are supported.
700
(BCD support may be added without much difficulty).  These data
701
types are 16-, 32-, and 64- bit integers, and single (32-bit),
702
double (64-bit), and extended (80-bit) precision floating point.
703
Each supported type has an instruction mnemonic suffix and a constructor
704
associated with it.  Instruction mnemonic suffixes specify the operand's
705
data type.  Constructors build these data types into memory.
706
 
707
@cindex @code{float} directive, i386
708
@cindex @code{single} directive, i386
709
@cindex @code{double} directive, i386
710
@cindex @code{tfloat} directive, i386
711
@cindex @code{float} directive, x86-64
712
@cindex @code{single} directive, x86-64
713
@cindex @code{double} directive, x86-64
714
@cindex @code{tfloat} directive, x86-64
715
@itemize @bullet
716
@item
717
Floating point constructors are @samp{.float} or @samp{.single},
718
@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
719
These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
720
and @samp{t}. @samp{t} stands for 80-bit (ten byte) real.  The 80387
721
only supports this format via the @samp{fldt} (load 80-bit real to stack
722
top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
723
 
724
@cindex @code{word} directive, i386
725
@cindex @code{long} directive, i386
726
@cindex @code{int} directive, i386
727
@cindex @code{quad} directive, i386
728
@cindex @code{word} directive, x86-64
729
@cindex @code{long} directive, x86-64
730
@cindex @code{int} directive, x86-64
731
@cindex @code{quad} directive, x86-64
732
@item
733
Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
734
@samp{.quad} for the 16-, 32-, and 64-bit integer formats.  The
735
corresponding instruction mnemonic suffixes are @samp{s} (single),
736
@samp{l} (long), and @samp{q} (quad).  As with the 80-bit real format,
737
the 64-bit @samp{q} format is only present in the @samp{fildq} (load
738
quad integer to stack top) and @samp{fistpq} (store quad integer and pop
739
stack) instructions.
740
@end itemize
741
 
742
Register to register operations should not use instruction mnemonic suffixes.
743
@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
744
wrote @samp{fst %st, %st(1)}, since all register to register operations
745
use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
746
which converts @samp{%st} from 80-bit to 64-bit floating point format,
747
then stores the result in the 4 byte location @samp{mem})
748
 
749
@node i386-SIMD
750
@section Intel's MMX and AMD's 3DNow! SIMD Operations
751
 
752
@cindex MMX, i386
753
@cindex 3DNow!, i386
754
@cindex SIMD, i386
755
@cindex MMX, x86-64
756
@cindex 3DNow!, x86-64
757
@cindex SIMD, x86-64
758
 
759
@code{@value{AS}} supports Intel's MMX instruction set (SIMD
760
instructions for integer data), available on Intel's Pentium MMX
761
processors and Pentium II processors, AMD's K6 and K6-2 processors,
762
Cyrix' M2 processor, and probably others.  It also supports AMD's 3DNow!@:
763
instruction set (SIMD instructions for 32-bit floating point data)
764
available on AMD's K6-2 processor and possibly others in the future.
765
 
766
Currently, @code{@value{AS}} does not support Intel's floating point
767
SIMD, Katmai (KNI).
768
 
769
The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
770
@samp{%mm1}, ... @samp{%mm7}.  They contain eight 8-bit integers, four
771
16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
772
floating point values.  The MMX registers cannot be used at the same time
773
as the floating point stack.
774
 
775
See Intel and AMD documentation, keeping in mind that the operand order in
776
instructions is reversed from the Intel syntax.
777
 
778
@node i386-16bit
779
@section Writing 16-bit Code
780
 
781
@cindex i386 16-bit code
782
@cindex 16-bit code, i386
783
@cindex real-mode code, i386
784
@cindex @code{code16gcc} directive, i386
785
@cindex @code{code16} directive, i386
786
@cindex @code{code32} directive, i386
787
@cindex @code{code64} directive, i386
788
@cindex @code{code64} directive, x86-64
789
While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
790
or 64-bit x86-64 code depending on the default configuration,
791
it also supports writing code to run in real mode or in 16-bit protected
792
mode code segments.  To do this, put a @samp{.code16} or
793
@samp{.code16gcc} directive before the assembly language instructions to
794
be run in 16-bit mode.  You can switch @code{@value{AS}} back to writing
795
normal 32-bit code with the @samp{.code32} directive.
796
 
797
@samp{.code16gcc} provides experimental support for generating 16-bit
798
code from gcc, and differs from @samp{.code16} in that @samp{call},
799
@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
800
@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
801
default to 32-bit size.  This is so that the stack pointer is
802
manipulated in the same way over function calls, allowing access to
803
function parameters at the same stack offsets as in 32-bit mode.
804
@samp{.code16gcc} also automatically adds address size prefixes where
805
necessary to use the 32-bit addressing modes that gcc generates.
806
 
807
The code which @code{@value{AS}} generates in 16-bit mode will not
808
necessarily run on a 16-bit pre-80386 processor.  To write code that
809
runs on such a processor, you must refrain from using @emph{any} 32-bit
810
constructs which require @code{@value{AS}} to output address or operand
811
size prefixes.
812
 
813
Note that writing 16-bit code instructions by explicitly specifying a
814
prefix or an instruction mnemonic suffix within a 32-bit code section
815
generates different machine instructions than those generated for a
816
16-bit code segment.  In a 32-bit code section, the following code
817
generates the machine opcode bytes @samp{66 6a 04}, which pushes the
818
value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
819
 
820
@smallexample
821
        pushw $4
822
@end smallexample
823
 
824
The same code in a 16-bit code section would generate the machine
825
opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
826
is correct since the processor default operand size is assumed to be 16
827
bits in a 16-bit code section.
828
 
829
@node i386-Bugs
830
@section AT&T Syntax bugs
831
 
832
The UnixWare assembler, and probably other AT&T derived ix86 Unix
833
assemblers, generate floating point instructions with reversed source
834
and destination registers in certain cases.  Unfortunately, gcc and
835
possibly many other programs use this reversed syntax, so we're stuck
836
with it.
837
 
838
For example
839
 
840
@smallexample
841
        fsub %st,%st(3)
842
@end smallexample
843
@noindent
844
results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
845
than the expected @samp{%st(3) - %st}.  This happens with all the
846
non-commutative arithmetic floating point operations with two register
847
operands where the source register is @samp{%st} and the destination
848
register is @samp{%st(i)}.
849
 
850
@node i386-Arch
851
@section Specifying CPU Architecture
852
 
853
@cindex arch directive, i386
854
@cindex i386 arch directive
855
@cindex arch directive, x86-64
856
@cindex x86-64 arch directive
857
 
858
@code{@value{AS}} may be told to assemble for a particular CPU
859
(sub-)architecture with the @code{.arch @var{cpu_type}} directive.  This
860
directive enables a warning when gas detects an instruction that is not
861
supported on the CPU specified.  The choices for @var{cpu_type} are:
862
 
863
@multitable @columnfractions .20 .20 .20 .20
864
@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
865
@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
866
@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
867
@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
868
@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
869
@item @samp{amdfam10}
870
@item @samp{generic32} @tab @samp{generic64}
871
@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
872
@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
873
@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.xsave}
874
@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.movbe}
875
@item @samp{.ept}
876
@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
877
@item @samp{.svme} @tab @samp{.abm}
878
@item @samp{.padlock}
879
@end multitable
880
 
881
Apart from the warning, there are only two other effects on
882
@code{@value{AS}} operation;  Firstly, if you specify a CPU other than
883
@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
884
will automatically use a two byte opcode sequence.  The larger three
885
byte opcode sequence is used on the 486 (and when no architecture is
886
specified) because it executes faster on the 486.  Note that you can
887
explicitly request the two byte opcode by writing @samp{sarl %eax}.
888
Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
889
@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
890
conditional jumps will be promoted when necessary to a two instruction
891
sequence consisting of a conditional jump of the opposite sense around
892
an unconditional jump to the target.
893
 
894
Following the CPU architecture (but not a sub-architecture, which are those
895
starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
896
control automatic promotion of conditional jumps. @samp{jumps} is the
897
default, and enables jump promotion;  All external jumps will be of the long
898
variety, and file-local jumps will be promoted as necessary.
899
(@pxref{i386-Jumps})  @samp{nojumps} leaves external conditional jumps as
900
byte offset jumps, and warns about file-local conditional jumps that
901
@code{@value{AS}} promotes.
902
Unconditional jumps are treated as for @samp{jumps}.
903
 
904
For example
905
 
906
@smallexample
907
 .arch i8086,nojumps
908
@end smallexample
909
 
910
@node i386-Notes
911
@section Notes
912
 
913
@cindex i386 @code{mul}, @code{imul} instructions
914
@cindex @code{mul} instruction, i386
915
@cindex @code{imul} instruction, i386
916
@cindex @code{mul} instruction, x86-64
917
@cindex @code{imul} instruction, x86-64
918
There is some trickery concerning the @samp{mul} and @samp{imul}
919
instructions that deserves mention.  The 16-, 32-, 64- and 128-bit expanding
920
multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
921
for @samp{imul}) can be output only in the one operand form.  Thus,
922
@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
923
the expanding multiply would clobber the @samp{%edx} register, and this
924
would confuse @code{@value{GCC}} output.  Use @samp{imul %ebx} to get the
925
64-bit product in @samp{%edx:%eax}.
926
 
927
We have added a two operand form of @samp{imul} when the first operand
928
is an immediate mode expression and the second operand is a register.
929
This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
930
example, can be done with @samp{imul $69, %eax} rather than @samp{imul
931
$69, %eax, %eax}.
932
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.