OpenCores
URL https://opencores.org/ocsvn/scarts/scarts/trunk

Subversion Repositories scarts

[/] [scarts/] [trunk/] [toolchain/] [scarts-binutils/] [binutils-2.19.1/] [gold/] [layout.cc] - Blame information for rev 7

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 6 jlechner
// layout.cc -- lay out output file sections for gold
2
 
3
// Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4
// Written by Ian Lance Taylor <iant@google.com>.
5
 
6
// This file is part of gold.
7
 
8
// This program is free software; you can redistribute it and/or modify
9
// it under the terms of the GNU General Public License as published by
10
// the Free Software Foundation; either version 3 of the License, or
11
// (at your option) any later version.
12
 
13
// This program is distributed in the hope that it will be useful,
14
// but WITHOUT ANY WARRANTY; without even the implied warranty of
15
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
// GNU General Public License for more details.
17
 
18
// You should have received a copy of the GNU General Public License
19
// along with this program; if not, write to the Free Software
20
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21
// MA 02110-1301, USA.
22
 
23
#include "gold.h"
24
 
25
#include <cerrno>
26
#include <cstring>
27
#include <algorithm>
28
#include <iostream>
29
#include <utility>
30
#include <fcntl.h>
31
#include <unistd.h>
32
#include "libiberty.h"
33
#include "md5.h"
34
#include "sha1.h"
35
 
36
#include "parameters.h"
37
#include "options.h"
38
#include "mapfile.h"
39
#include "script.h"
40
#include "script-sections.h"
41
#include "output.h"
42
#include "symtab.h"
43
#include "dynobj.h"
44
#include "ehframe.h"
45
#include "compressed_output.h"
46
#include "reduced_debug_output.h"
47
#include "reloc.h"
48
#include "descriptors.h"
49
#include "layout.h"
50
 
51
namespace gold
52
{
53
 
54
// Layout_task_runner methods.
55
 
56
// Lay out the sections.  This is called after all the input objects
57
// have been read.
58
 
59
void
60
Layout_task_runner::run(Workqueue* workqueue, const Task* task)
61
{
62
  off_t file_size = this->layout_->finalize(this->input_objects_,
63
                                            this->symtab_,
64
                                            this->target_,
65
                                            task);
66
 
67
  // Now we know the final size of the output file and we know where
68
  // each piece of information goes.
69
 
70
  if (this->mapfile_ != NULL)
71
    {
72
      this->mapfile_->print_discarded_sections(this->input_objects_);
73
      this->layout_->print_to_mapfile(this->mapfile_);
74
    }
75
 
76
  Output_file* of = new Output_file(parameters->options().output_file_name());
77
  if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
78
    of->set_is_temporary();
79
  of->open(file_size);
80
 
81
  // Queue up the final set of tasks.
82
  gold::queue_final_tasks(this->options_, this->input_objects_,
83
                          this->symtab_, this->layout_, workqueue, of);
84
}
85
 
86
// Layout methods.
87
 
88
Layout::Layout(const General_options& options, Script_options* script_options)
89
  : options_(options),
90
    script_options_(script_options),
91
    namepool_(),
92
    sympool_(),
93
    dynpool_(),
94
    signatures_(),
95
    section_name_map_(),
96
    segment_list_(),
97
    section_list_(),
98
    unattached_section_list_(),
99
    sections_are_attached_(false),
100
    special_output_list_(),
101
    section_headers_(NULL),
102
    tls_segment_(NULL),
103
    relro_segment_(NULL),
104
    symtab_section_(NULL),
105
    symtab_xindex_(NULL),
106
    dynsym_section_(NULL),
107
    dynsym_xindex_(NULL),
108
    dynamic_section_(NULL),
109
    dynamic_data_(NULL),
110
    eh_frame_section_(NULL),
111
    eh_frame_data_(NULL),
112
    added_eh_frame_data_(false),
113
    eh_frame_hdr_section_(NULL),
114
    build_id_note_(NULL),
115
    debug_abbrev_(NULL),
116
    debug_info_(NULL),
117
    group_signatures_(),
118
    output_file_size_(-1),
119
    input_requires_executable_stack_(false),
120
    input_with_gnu_stack_note_(false),
121
    input_without_gnu_stack_note_(false),
122
    has_static_tls_(false),
123
    any_postprocessing_sections_(false)
124
{
125
  // Make space for more than enough segments for a typical file.
126
  // This is just for efficiency--it's OK if we wind up needing more.
127
  this->segment_list_.reserve(12);
128
 
129
  // We expect two unattached Output_data objects: the file header and
130
  // the segment headers.
131
  this->special_output_list_.reserve(2);
132
}
133
 
134
// Hash a key we use to look up an output section mapping.
135
 
136
size_t
137
Layout::Hash_key::operator()(const Layout::Key& k) const
138
{
139
 return k.first + k.second.first + k.second.second;
140
}
141
 
142
// Return whether PREFIX is a prefix of STR.
143
 
144
static inline bool
145
is_prefix_of(const char* prefix, const char* str)
146
{
147
  return strncmp(prefix, str, strlen(prefix)) == 0;
148
}
149
 
150
// Returns whether the given section is in the list of
151
// debug-sections-used-by-some-version-of-gdb.  Currently,
152
// we've checked versions of gdb up to and including 6.7.1.
153
 
154
static const char* gdb_sections[] =
155
{ ".debug_abbrev",
156
  // ".debug_aranges",   // not used by gdb as of 6.7.1
157
  ".debug_frame",
158
  ".debug_info",
159
  ".debug_line",
160
  ".debug_loc",
161
  ".debug_macinfo",
162
  // ".debug_pubnames",  // not used by gdb as of 6.7.1
163
  ".debug_ranges",
164
  ".debug_str",
165
};
166
 
167
static const char* lines_only_debug_sections[] =
168
{ ".debug_abbrev",
169
  // ".debug_aranges",   // not used by gdb as of 6.7.1
170
  // ".debug_frame",
171
  ".debug_info",
172
  ".debug_line",
173
  // ".debug_loc",
174
  // ".debug_macinfo",
175
  // ".debug_pubnames",  // not used by gdb as of 6.7.1
176
  // ".debug_ranges",
177
  ".debug_str",
178
};
179
 
180
static inline bool
181
is_gdb_debug_section(const char* str)
182
{
183
  // We can do this faster: binary search or a hashtable.  But why bother?
184
  for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
185
    if (strcmp(str, gdb_sections[i]) == 0)
186
      return true;
187
  return false;
188
}
189
 
190
static inline bool
191
is_lines_only_debug_section(const char* str)
192
{
193
  // We can do this faster: binary search or a hashtable.  But why bother?
194
  for (size_t i = 0;
195
       i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
196
       ++i)
197
    if (strcmp(str, lines_only_debug_sections[i]) == 0)
198
      return true;
199
  return false;
200
}
201
 
202
// Whether to include this section in the link.
203
 
204
template<int size, bool big_endian>
205
bool
206
Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
207
                        const elfcpp::Shdr<size, big_endian>& shdr)
208
{
209
  switch (shdr.get_sh_type())
210
    {
211
    case elfcpp::SHT_NULL:
212
    case elfcpp::SHT_SYMTAB:
213
    case elfcpp::SHT_DYNSYM:
214
    case elfcpp::SHT_HASH:
215
    case elfcpp::SHT_DYNAMIC:
216
    case elfcpp::SHT_SYMTAB_SHNDX:
217
      return false;
218
 
219
    case elfcpp::SHT_STRTAB:
220
      // Discard the sections which have special meanings in the ELF
221
      // ABI.  Keep others (e.g., .stabstr).  We could also do this by
222
      // checking the sh_link fields of the appropriate sections.
223
      return (strcmp(name, ".dynstr") != 0
224
              && strcmp(name, ".strtab") != 0
225
              && strcmp(name, ".shstrtab") != 0);
226
 
227
    case elfcpp::SHT_RELA:
228
    case elfcpp::SHT_REL:
229
    case elfcpp::SHT_GROUP:
230
      // If we are emitting relocations these should be handled
231
      // elsewhere.
232
      gold_assert(!parameters->options().relocatable()
233
                  && !parameters->options().emit_relocs());
234
      return false;
235
 
236
    case elfcpp::SHT_PROGBITS:
237
      if (parameters->options().strip_debug()
238
          && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
239
        {
240
          if (is_debug_info_section(name))
241
            return false;
242
        }
243
      if (parameters->options().strip_debug_non_line()
244
          && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
245
        {
246
          // Debugging sections can only be recognized by name.
247
          if (is_prefix_of(".debug", name)
248
              && !is_lines_only_debug_section(name))
249
            return false;
250
        }
251
      if (parameters->options().strip_debug_gdb()
252
          && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
253
        {
254
          // Debugging sections can only be recognized by name.
255
          if (is_prefix_of(".debug", name)
256
              && !is_gdb_debug_section(name))
257
            return false;
258
        }
259
      return true;
260
 
261
    default:
262
      return true;
263
    }
264
}
265
 
266
// Return an output section named NAME, or NULL if there is none.
267
 
268
Output_section*
269
Layout::find_output_section(const char* name) const
270
{
271
  for (Section_list::const_iterator p = this->section_list_.begin();
272
       p != this->section_list_.end();
273
       ++p)
274
    if (strcmp((*p)->name(), name) == 0)
275
      return *p;
276
  return NULL;
277
}
278
 
279
// Return an output segment of type TYPE, with segment flags SET set
280
// and segment flags CLEAR clear.  Return NULL if there is none.
281
 
282
Output_segment*
283
Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
284
                            elfcpp::Elf_Word clear) const
285
{
286
  for (Segment_list::const_iterator p = this->segment_list_.begin();
287
       p != this->segment_list_.end();
288
       ++p)
289
    if (static_cast<elfcpp::PT>((*p)->type()) == type
290
        && ((*p)->flags() & set) == set
291
        && ((*p)->flags() & clear) == 0)
292
      return *p;
293
  return NULL;
294
}
295
 
296
// Return the output section to use for section NAME with type TYPE
297
// and section flags FLAGS.  NAME must be canonicalized in the string
298
// pool, and NAME_KEY is the key.
299
 
300
Output_section*
301
Layout::get_output_section(const char* name, Stringpool::Key name_key,
302
                           elfcpp::Elf_Word type, elfcpp::Elf_Xword flags)
303
{
304
  elfcpp::Elf_Xword lookup_flags = flags;
305
 
306
  // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
307
  // read-write with read-only sections.  Some other ELF linkers do
308
  // not do this.  FIXME: Perhaps there should be an option
309
  // controlling this.
310
  lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
311
 
312
  const Key key(name_key, std::make_pair(type, lookup_flags));
313
  const std::pair<Key, Output_section*> v(key, NULL);
314
  std::pair<Section_name_map::iterator, bool> ins(
315
    this->section_name_map_.insert(v));
316
 
317
  if (!ins.second)
318
    return ins.first->second;
319
  else
320
    {
321
      // This is the first time we've seen this name/type/flags
322
      // combination.  For compatibility with the GNU linker, we
323
      // combine sections with contents and zero flags with sections
324
      // with non-zero flags.  This is a workaround for cases where
325
      // assembler code forgets to set section flags.  FIXME: Perhaps
326
      // there should be an option to control this.
327
      Output_section* os = NULL;
328
 
329
      if (type == elfcpp::SHT_PROGBITS)
330
        {
331
          if (flags == 0)
332
            {
333
              Output_section* same_name = this->find_output_section(name);
334
              if (same_name != NULL
335
                  && same_name->type() == elfcpp::SHT_PROGBITS
336
                  && (same_name->flags() & elfcpp::SHF_TLS) == 0)
337
                os = same_name;
338
            }
339
          else if ((flags & elfcpp::SHF_TLS) == 0)
340
            {
341
              elfcpp::Elf_Xword zero_flags = 0;
342
              const Key zero_key(name_key, std::make_pair(type, zero_flags));
343
              Section_name_map::iterator p =
344
                  this->section_name_map_.find(zero_key);
345
              if (p != this->section_name_map_.end())
346
                os = p->second;
347
            }
348
        }
349
 
350
      if (os == NULL)
351
        os = this->make_output_section(name, type, flags);
352
      ins.first->second = os;
353
      return os;
354
    }
355
}
356
 
357
// Pick the output section to use for section NAME, in input file
358
// RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
359
// linker created section.  IS_INPUT_SECTION is true if we are
360
// choosing an output section for an input section found in a input
361
// file.  This will return NULL if the input section should be
362
// discarded.
363
 
364
Output_section*
365
Layout::choose_output_section(const Relobj* relobj, const char* name,
366
                              elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
367
                              bool is_input_section)
368
{
369
  // We should not see any input sections after we have attached
370
  // sections to segments.
371
  gold_assert(!is_input_section || !this->sections_are_attached_);
372
 
373
  // Some flags in the input section should not be automatically
374
  // copied to the output section.
375
  flags &= ~ (elfcpp::SHF_INFO_LINK
376
              | elfcpp::SHF_LINK_ORDER
377
              | elfcpp::SHF_GROUP
378
              | elfcpp::SHF_MERGE
379
              | elfcpp::SHF_STRINGS);
380
 
381
  if (this->script_options_->saw_sections_clause())
382
    {
383
      // We are using a SECTIONS clause, so the output section is
384
      // chosen based only on the name.
385
 
386
      Script_sections* ss = this->script_options_->script_sections();
387
      const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
388
      Output_section** output_section_slot;
389
      name = ss->output_section_name(file_name, name, &output_section_slot);
390
      if (name == NULL)
391
        {
392
          // The SECTIONS clause says to discard this input section.
393
          return NULL;
394
        }
395
 
396
      // If this is an orphan section--one not mentioned in the linker
397
      // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
398
      // default processing below.
399
 
400
      if (output_section_slot != NULL)
401
        {
402
          if (*output_section_slot != NULL)
403
            return *output_section_slot;
404
 
405
          // We don't put sections found in the linker script into
406
          // SECTION_NAME_MAP_.  That keeps us from getting confused
407
          // if an orphan section is mapped to a section with the same
408
          // name as one in the linker script.
409
 
410
          name = this->namepool_.add(name, false, NULL);
411
 
412
          Output_section* os = this->make_output_section(name, type, flags);
413
          os->set_found_in_sections_clause();
414
          *output_section_slot = os;
415
          return os;
416
        }
417
    }
418
 
419
  // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
420
 
421
  // Turn NAME from the name of the input section into the name of the
422
  // output section.
423
 
424
  size_t len = strlen(name);
425
  if (is_input_section && !parameters->options().relocatable())
426
    name = Layout::output_section_name(name, &len);
427
 
428
  Stringpool::Key name_key;
429
  name = this->namepool_.add_with_length(name, len, true, &name_key);
430
 
431
  // Find or make the output section.  The output section is selected
432
  // based on the section name, type, and flags.
433
  return this->get_output_section(name, name_key, type, flags);
434
}
435
 
436
// Return the output section to use for input section SHNDX, with name
437
// NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
438
// index of a relocation section which applies to this section, or 0
439
// if none, or -1U if more than one.  RELOC_TYPE is the type of the
440
// relocation section if there is one.  Set *OFF to the offset of this
441
// input section without the output section.  Return NULL if the
442
// section should be discarded.  Set *OFF to -1 if the section
443
// contents should not be written directly to the output file, but
444
// will instead receive special handling.
445
 
446
template<int size, bool big_endian>
447
Output_section*
448
Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
449
               const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
450
               unsigned int reloc_shndx, unsigned int, off_t* off)
451
{
452
  *off = 0;
453
 
454
  if (!this->include_section(object, name, shdr))
455
    return NULL;
456
 
457
  Output_section* os;
458
 
459
  // In a relocatable link a grouped section must not be combined with
460
  // any other sections.
461
  if (parameters->options().relocatable()
462
      && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
463
    {
464
      name = this->namepool_.add(name, true, NULL);
465
      os = this->make_output_section(name, shdr.get_sh_type(),
466
                                     shdr.get_sh_flags());
467
    }
468
  else
469
    {
470
      os = this->choose_output_section(object, name, shdr.get_sh_type(),
471
                                       shdr.get_sh_flags(), true);
472
      if (os == NULL)
473
        return NULL;
474
    }
475
 
476
  // By default the GNU linker sorts input sections whose names match
477
  // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*.  The sections
478
  // are sorted by name.  This is used to implement constructor
479
  // priority ordering.  We are compatible.
480
  if (!this->script_options_->saw_sections_clause()
481
      && (is_prefix_of(".ctors.", name)
482
          || is_prefix_of(".dtors.", name)
483
          || is_prefix_of(".init_array.", name)
484
          || is_prefix_of(".fini_array.", name)))
485
    os->set_must_sort_attached_input_sections();
486
 
487
  // FIXME: Handle SHF_LINK_ORDER somewhere.
488
 
489
  *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
490
                               this->script_options_->saw_sections_clause());
491
 
492
  return os;
493
}
494
 
495
// Handle a relocation section when doing a relocatable link.
496
 
497
template<int size, bool big_endian>
498
Output_section*
499
Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
500
                     unsigned int,
501
                     const elfcpp::Shdr<size, big_endian>& shdr,
502
                     Output_section* data_section,
503
                     Relocatable_relocs* rr)
504
{
505
  gold_assert(parameters->options().relocatable()
506
              || parameters->options().emit_relocs());
507
 
508
  int sh_type = shdr.get_sh_type();
509
 
510
  std::string name;
511
  if (sh_type == elfcpp::SHT_REL)
512
    name = ".rel";
513
  else if (sh_type == elfcpp::SHT_RELA)
514
    name = ".rela";
515
  else
516
    gold_unreachable();
517
  name += data_section->name();
518
 
519
  Output_section* os = this->choose_output_section(object, name.c_str(),
520
                                                   sh_type,
521
                                                   shdr.get_sh_flags(),
522
                                                   false);
523
 
524
  os->set_should_link_to_symtab();
525
  os->set_info_section(data_section);
526
 
527
  Output_section_data* posd;
528
  if (sh_type == elfcpp::SHT_REL)
529
    {
530
      os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
531
      posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
532
                                           size,
533
                                           big_endian>(rr);
534
    }
535
  else if (sh_type == elfcpp::SHT_RELA)
536
    {
537
      os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
538
      posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
539
                                           size,
540
                                           big_endian>(rr);
541
    }
542
  else
543
    gold_unreachable();
544
 
545
  os->add_output_section_data(posd);
546
  rr->set_output_data(posd);
547
 
548
  return os;
549
}
550
 
551
// Handle a group section when doing a relocatable link.
552
 
553
template<int size, bool big_endian>
554
void
555
Layout::layout_group(Symbol_table* symtab,
556
                     Sized_relobj<size, big_endian>* object,
557
                     unsigned int,
558
                     const char* group_section_name,
559
                     const char* signature,
560
                     const elfcpp::Shdr<size, big_endian>& shdr,
561
                     elfcpp::Elf_Word flags,
562
                     std::vector<unsigned int>* shndxes)
563
{
564
  gold_assert(parameters->options().relocatable());
565
  gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
566
  group_section_name = this->namepool_.add(group_section_name, true, NULL);
567
  Output_section* os = this->make_output_section(group_section_name,
568
                                                 elfcpp::SHT_GROUP,
569
                                                 shdr.get_sh_flags());
570
 
571
  // We need to find a symbol with the signature in the symbol table.
572
  // If we don't find one now, we need to look again later.
573
  Symbol* sym = symtab->lookup(signature, NULL);
574
  if (sym != NULL)
575
    os->set_info_symndx(sym);
576
  else
577
    {
578
      // We will wind up using a symbol whose name is the signature.
579
      // So just put the signature in the symbol name pool to save it.
580
      signature = symtab->canonicalize_name(signature);
581
      this->group_signatures_.push_back(Group_signature(os, signature));
582
    }
583
 
584
  os->set_should_link_to_symtab();
585
  os->set_entsize(4);
586
 
587
  section_size_type entry_count =
588
    convert_to_section_size_type(shdr.get_sh_size() / 4);
589
  Output_section_data* posd =
590
    new Output_data_group<size, big_endian>(object, entry_count, flags,
591
                                            shndxes);
592
  os->add_output_section_data(posd);
593
}
594
 
595
// Special GNU handling of sections name .eh_frame.  They will
596
// normally hold exception frame data as defined by the C++ ABI
597
// (http://codesourcery.com/cxx-abi/).
598
 
599
template<int size, bool big_endian>
600
Output_section*
601
Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
602
                        const unsigned char* symbols,
603
                        off_t symbols_size,
604
                        const unsigned char* symbol_names,
605
                        off_t symbol_names_size,
606
                        unsigned int shndx,
607
                        const elfcpp::Shdr<size, big_endian>& shdr,
608
                        unsigned int reloc_shndx, unsigned int reloc_type,
609
                        off_t* off)
610
{
611
  gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
612
  gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
613
 
614
  const char* const name = ".eh_frame";
615
  Output_section* os = this->choose_output_section(object,
616
                                                   name,
617
                                                   elfcpp::SHT_PROGBITS,
618
                                                   elfcpp::SHF_ALLOC,
619
                                                   false);
620
  if (os == NULL)
621
    return NULL;
622
 
623
  if (this->eh_frame_section_ == NULL)
624
    {
625
      this->eh_frame_section_ = os;
626
      this->eh_frame_data_ = new Eh_frame();
627
 
628
      if (this->options_.eh_frame_hdr())
629
        {
630
          Output_section* hdr_os =
631
            this->choose_output_section(NULL,
632
                                        ".eh_frame_hdr",
633
                                        elfcpp::SHT_PROGBITS,
634
                                        elfcpp::SHF_ALLOC,
635
                                        false);
636
 
637
          if (hdr_os != NULL)
638
            {
639
              Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
640
                                                        this->eh_frame_data_);
641
              hdr_os->add_output_section_data(hdr_posd);
642
 
643
              hdr_os->set_after_input_sections();
644
 
645
              if (!this->script_options_->saw_phdrs_clause())
646
                {
647
                  Output_segment* hdr_oseg;
648
                  hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
649
                                                       elfcpp::PF_R);
650
                  hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R);
651
                }
652
 
653
              this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
654
            }
655
        }
656
    }
657
 
658
  gold_assert(this->eh_frame_section_ == os);
659
 
660
  if (this->eh_frame_data_->add_ehframe_input_section(object,
661
                                                      symbols,
662
                                                      symbols_size,
663
                                                      symbol_names,
664
                                                      symbol_names_size,
665
                                                      shndx,
666
                                                      reloc_shndx,
667
                                                      reloc_type))
668
    {
669
      os->update_flags_for_input_section(shdr.get_sh_flags());
670
 
671
      // We found a .eh_frame section we are going to optimize, so now
672
      // we can add the set of optimized sections to the output
673
      // section.  We need to postpone adding this until we've found a
674
      // section we can optimize so that the .eh_frame section in
675
      // crtbegin.o winds up at the start of the output section.
676
      if (!this->added_eh_frame_data_)
677
        {
678
          os->add_output_section_data(this->eh_frame_data_);
679
          this->added_eh_frame_data_ = true;
680
        }
681
      *off = -1;
682
    }
683
  else
684
    {
685
      // We couldn't handle this .eh_frame section for some reason.
686
      // Add it as a normal section.
687
      bool saw_sections_clause = this->script_options_->saw_sections_clause();
688
      *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
689
                                   saw_sections_clause);
690
    }
691
 
692
  return os;
693
}
694
 
695
// Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
696
// the output section.
697
 
698
Output_section*
699
Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
700
                                elfcpp::Elf_Xword flags,
701
                                Output_section_data* posd)
702
{
703
  Output_section* os = this->choose_output_section(NULL, name, type, flags,
704
                                                   false);
705
  if (os != NULL)
706
    os->add_output_section_data(posd);
707
  return os;
708
}
709
 
710
// Map section flags to segment flags.
711
 
712
elfcpp::Elf_Word
713
Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
714
{
715
  elfcpp::Elf_Word ret = elfcpp::PF_R;
716
  if ((flags & elfcpp::SHF_WRITE) != 0)
717
    ret |= elfcpp::PF_W;
718
  if ((flags & elfcpp::SHF_EXECINSTR) != 0)
719
    ret |= elfcpp::PF_X;
720
  return ret;
721
}
722
 
723
// Sometimes we compress sections.  This is typically done for
724
// sections that are not part of normal program execution (such as
725
// .debug_* sections), and where the readers of these sections know
726
// how to deal with compressed sections.  (To make it easier for them,
727
// we will rename the ouput section in such cases from .foo to
728
// .foo.zlib.nnnn, where nnnn is the uncompressed size.)  This routine
729
// doesn't say for certain whether we'll compress -- it depends on
730
// commandline options as well -- just whether this section is a
731
// candidate for compression.
732
 
733
static bool
734
is_compressible_debug_section(const char* secname)
735
{
736
  return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
737
}
738
 
739
// Make a new Output_section, and attach it to segments as
740
// appropriate.
741
 
742
Output_section*
743
Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
744
                            elfcpp::Elf_Xword flags)
745
{
746
  Output_section* os;
747
  if ((flags & elfcpp::SHF_ALLOC) == 0
748
      && strcmp(this->options_.compress_debug_sections(), "none") != 0
749
      && is_compressible_debug_section(name))
750
    os = new Output_compressed_section(&this->options_, name, type, flags);
751
 
752
  else if ((flags & elfcpp::SHF_ALLOC) == 0
753
           && this->options_.strip_debug_non_line()
754
           && strcmp(".debug_abbrev", name) == 0)
755
    {
756
      os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
757
          name, type, flags);
758
      if (this->debug_info_)
759
        this->debug_info_->set_abbreviations(this->debug_abbrev_);
760
    }
761
  else if ((flags & elfcpp::SHF_ALLOC) == 0
762
           && this->options_.strip_debug_non_line()
763
           && strcmp(".debug_info", name) == 0)
764
    {
765
      os = this->debug_info_ = new Output_reduced_debug_info_section(
766
          name, type, flags);
767
      if (this->debug_abbrev_)
768
        this->debug_info_->set_abbreviations(this->debug_abbrev_);
769
    }
770
 else
771
    os = new Output_section(name, type, flags);
772
 
773
  this->section_list_.push_back(os);
774
 
775
  // The GNU linker by default sorts some sections by priority, so we
776
  // do the same.  We need to know that this might happen before we
777
  // attach any input sections.
778
  if (!this->script_options_->saw_sections_clause()
779
      && (strcmp(name, ".ctors") == 0
780
          || strcmp(name, ".dtors") == 0
781
          || strcmp(name, ".init_array") == 0
782
          || strcmp(name, ".fini_array") == 0))
783
    os->set_may_sort_attached_input_sections();
784
 
785
  // With -z relro, we have to recognize the special sections by name.
786
  // There is no other way.
787
  if (!this->script_options_->saw_sections_clause()
788
      && parameters->options().relro()
789
      && type == elfcpp::SHT_PROGBITS
790
      && (flags & elfcpp::SHF_ALLOC) != 0
791
      && (flags & elfcpp::SHF_WRITE) != 0)
792
    {
793
      if (strcmp(name, ".data.rel.ro") == 0)
794
        os->set_is_relro();
795
      else if (strcmp(name, ".data.rel.ro.local") == 0)
796
        {
797
          os->set_is_relro();
798
          os->set_is_relro_local();
799
        }
800
    }
801
 
802
  // If we have already attached the sections to segments, then we
803
  // need to attach this one now.  This happens for sections created
804
  // directly by the linker.
805
  if (this->sections_are_attached_)
806
    this->attach_section_to_segment(os);
807
 
808
  return os;
809
}
810
 
811
// Attach output sections to segments.  This is called after we have
812
// seen all the input sections.
813
 
814
void
815
Layout::attach_sections_to_segments()
816
{
817
  for (Section_list::iterator p = this->section_list_.begin();
818
       p != this->section_list_.end();
819
       ++p)
820
    this->attach_section_to_segment(*p);
821
 
822
  this->sections_are_attached_ = true;
823
}
824
 
825
// Attach an output section to a segment.
826
 
827
void
828
Layout::attach_section_to_segment(Output_section* os)
829
{
830
  if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
831
    this->unattached_section_list_.push_back(os);
832
  else
833
    this->attach_allocated_section_to_segment(os);
834
}
835
 
836
// Attach an allocated output section to a segment.
837
 
838
void
839
Layout::attach_allocated_section_to_segment(Output_section* os)
840
{
841
  elfcpp::Elf_Xword flags = os->flags();
842
  gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
843
 
844
  if (parameters->options().relocatable())
845
    return;
846
 
847
  // If we have a SECTIONS clause, we can't handle the attachment to
848
  // segments until after we've seen all the sections.
849
  if (this->script_options_->saw_sections_clause())
850
    return;
851
 
852
  gold_assert(!this->script_options_->saw_phdrs_clause());
853
 
854
  // This output section goes into a PT_LOAD segment.
855
 
856
  elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
857
 
858
  // In general the only thing we really care about for PT_LOAD
859
  // segments is whether or not they are writable, so that is how we
860
  // search for them.  People who need segments sorted on some other
861
  // basis will have to use a linker script.
862
 
863
  Segment_list::const_iterator p;
864
  for (p = this->segment_list_.begin();
865
       p != this->segment_list_.end();
866
       ++p)
867
    {
868
      if ((*p)->type() == elfcpp::PT_LOAD
869
          && (parameters->options().omagic()
870
              || ((*p)->flags() & elfcpp::PF_W) == (seg_flags & elfcpp::PF_W)))
871
        {
872
          // If -Tbss was specified, we need to separate the data
873
          // and BSS segments.
874
          if (this->options_.user_set_Tbss())
875
            {
876
              if ((os->type() == elfcpp::SHT_NOBITS)
877
                  == (*p)->has_any_data_sections())
878
                continue;
879
            }
880
 
881
          (*p)->add_output_section(os, seg_flags);
882
          break;
883
        }
884
    }
885
 
886
  if (p == this->segment_list_.end())
887
    {
888
      Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
889
                                                       seg_flags);
890
      oseg->add_output_section(os, seg_flags);
891
    }
892
 
893
  // If we see a loadable SHT_NOTE section, we create a PT_NOTE
894
  // segment.
895
  if (os->type() == elfcpp::SHT_NOTE)
896
    {
897
      // See if we already have an equivalent PT_NOTE segment.
898
      for (p = this->segment_list_.begin();
899
           p != segment_list_.end();
900
           ++p)
901
        {
902
          if ((*p)->type() == elfcpp::PT_NOTE
903
              && (((*p)->flags() & elfcpp::PF_W)
904
                  == (seg_flags & elfcpp::PF_W)))
905
            {
906
              (*p)->add_output_section(os, seg_flags);
907
              break;
908
            }
909
        }
910
 
911
      if (p == this->segment_list_.end())
912
        {
913
          Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
914
                                                           seg_flags);
915
          oseg->add_output_section(os, seg_flags);
916
        }
917
    }
918
 
919
  // If we see a loadable SHF_TLS section, we create a PT_TLS
920
  // segment.  There can only be one such segment.
921
  if ((flags & elfcpp::SHF_TLS) != 0)
922
    {
923
      if (this->tls_segment_ == NULL)
924
        this->make_output_segment(elfcpp::PT_TLS, seg_flags);
925
      this->tls_segment_->add_output_section(os, seg_flags);
926
    }
927
 
928
  // If -z relro is in effect, and we see a relro section, we create a
929
  // PT_GNU_RELRO segment.  There can only be one such segment.
930
  if (os->is_relro() && parameters->options().relro())
931
    {
932
      gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
933
      if (this->relro_segment_ == NULL)
934
        this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
935
      this->relro_segment_->add_output_section(os, seg_flags);
936
    }
937
}
938
 
939
// Make an output section for a script.
940
 
941
Output_section*
942
Layout::make_output_section_for_script(const char* name)
943
{
944
  name = this->namepool_.add(name, false, NULL);
945
  Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
946
                                                 elfcpp::SHF_ALLOC);
947
  os->set_found_in_sections_clause();
948
  return os;
949
}
950
 
951
// Return the number of segments we expect to see.
952
 
953
size_t
954
Layout::expected_segment_count() const
955
{
956
  size_t ret = this->segment_list_.size();
957
 
958
  // If we didn't see a SECTIONS clause in a linker script, we should
959
  // already have the complete list of segments.  Otherwise we ask the
960
  // SECTIONS clause how many segments it expects, and add in the ones
961
  // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
962
 
963
  if (!this->script_options_->saw_sections_clause())
964
    return ret;
965
  else
966
    {
967
      const Script_sections* ss = this->script_options_->script_sections();
968
      return ret + ss->expected_segment_count(this);
969
    }
970
}
971
 
972
// Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
973
// is whether we saw a .note.GNU-stack section in the object file.
974
// GNU_STACK_FLAGS is the section flags.  The flags give the
975
// protection required for stack memory.  We record this in an
976
// executable as a PT_GNU_STACK segment.  If an object file does not
977
// have a .note.GNU-stack segment, we must assume that it is an old
978
// object.  On some targets that will force an executable stack.
979
 
980
void
981
Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
982
{
983
  if (!seen_gnu_stack)
984
    this->input_without_gnu_stack_note_ = true;
985
  else
986
    {
987
      this->input_with_gnu_stack_note_ = true;
988
      if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
989
        this->input_requires_executable_stack_ = true;
990
    }
991
}
992
 
993
// Create the dynamic sections which are needed before we read the
994
// relocs.
995
 
996
void
997
Layout::create_initial_dynamic_sections(Symbol_table* symtab)
998
{
999
  if (parameters->doing_static_link())
1000
    return;
1001
 
1002
  this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1003
                                                       elfcpp::SHT_DYNAMIC,
1004
                                                       (elfcpp::SHF_ALLOC
1005
                                                        | elfcpp::SHF_WRITE),
1006
                                                       false);
1007
  this->dynamic_section_->set_is_relro();
1008
 
1009
  symtab->define_in_output_data("_DYNAMIC", NULL, this->dynamic_section_, 0, 0,
1010
                                elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1011
                                elfcpp::STV_HIDDEN, 0, false, false);
1012
 
1013
  this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
1014
 
1015
  this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1016
}
1017
 
1018
// For each output section whose name can be represented as C symbol,
1019
// define __start and __stop symbols for the section.  This is a GNU
1020
// extension.
1021
 
1022
void
1023
Layout::define_section_symbols(Symbol_table* symtab)
1024
{
1025
  for (Section_list::const_iterator p = this->section_list_.begin();
1026
       p != this->section_list_.end();
1027
       ++p)
1028
    {
1029
      const char* const name = (*p)->name();
1030
      if (name[strspn(name,
1031
                      ("0123456789"
1032
                       "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
1033
                       "abcdefghijklmnopqrstuvwxyz"
1034
                       "_"))]
1035
          == '\0')
1036
        {
1037
          const std::string name_string(name);
1038
          const std::string start_name("__start_" + name_string);
1039
          const std::string stop_name("__stop_" + name_string);
1040
 
1041
          symtab->define_in_output_data(start_name.c_str(),
1042
                                        NULL, // version
1043
                                        *p,
1044
                                        0, // value
1045
                                        0, // symsize
1046
                                        elfcpp::STT_NOTYPE,
1047
                                        elfcpp::STB_GLOBAL,
1048
                                        elfcpp::STV_DEFAULT,
1049
                                        0, // nonvis
1050
                                        false, // offset_is_from_end
1051
                                        true); // only_if_ref
1052
 
1053
          symtab->define_in_output_data(stop_name.c_str(),
1054
                                        NULL, // version
1055
                                        *p,
1056
                                        0, // value
1057
                                        0, // symsize
1058
                                        elfcpp::STT_NOTYPE,
1059
                                        elfcpp::STB_GLOBAL,
1060
                                        elfcpp::STV_DEFAULT,
1061
                                        0, // nonvis
1062
                                        true, // offset_is_from_end
1063
                                        true); // only_if_ref
1064
        }
1065
    }
1066
}
1067
 
1068
// Define symbols for group signatures.
1069
 
1070
void
1071
Layout::define_group_signatures(Symbol_table* symtab)
1072
{
1073
  for (Group_signatures::iterator p = this->group_signatures_.begin();
1074
       p != this->group_signatures_.end();
1075
       ++p)
1076
    {
1077
      Symbol* sym = symtab->lookup(p->signature, NULL);
1078
      if (sym != NULL)
1079
        p->section->set_info_symndx(sym);
1080
      else
1081
        {
1082
          // Force the name of the group section to the group
1083
          // signature, and use the group's section symbol as the
1084
          // signature symbol.
1085
          if (strcmp(p->section->name(), p->signature) != 0)
1086
            {
1087
              const char* name = this->namepool_.add(p->signature,
1088
                                                     true, NULL);
1089
              p->section->set_name(name);
1090
            }
1091
          p->section->set_needs_symtab_index();
1092
          p->section->set_info_section_symndx(p->section);
1093
        }
1094
    }
1095
 
1096
  this->group_signatures_.clear();
1097
}
1098
 
1099
// Find the first read-only PT_LOAD segment, creating one if
1100
// necessary.
1101
 
1102
Output_segment*
1103
Layout::find_first_load_seg()
1104
{
1105
  for (Segment_list::const_iterator p = this->segment_list_.begin();
1106
       p != this->segment_list_.end();
1107
       ++p)
1108
    {
1109
      if ((*p)->type() == elfcpp::PT_LOAD
1110
          && ((*p)->flags() & elfcpp::PF_R) != 0
1111
          && (parameters->options().omagic()
1112
              || ((*p)->flags() & elfcpp::PF_W) == 0))
1113
        return *p;
1114
    }
1115
 
1116
  gold_assert(!this->script_options_->saw_phdrs_clause());
1117
 
1118
  Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1119
                                                       elfcpp::PF_R);
1120
  return load_seg;
1121
}
1122
 
1123
// Finalize the layout.  When this is called, we have created all the
1124
// output sections and all the output segments which are based on
1125
// input sections.  We have several things to do, and we have to do
1126
// them in the right order, so that we get the right results correctly
1127
// and efficiently.
1128
 
1129
// 1) Finalize the list of output segments and create the segment
1130
// table header.
1131
 
1132
// 2) Finalize the dynamic symbol table and associated sections.
1133
 
1134
// 3) Determine the final file offset of all the output segments.
1135
 
1136
// 4) Determine the final file offset of all the SHF_ALLOC output
1137
// sections.
1138
 
1139
// 5) Create the symbol table sections and the section name table
1140
// section.
1141
 
1142
// 6) Finalize the symbol table: set symbol values to their final
1143
// value and make a final determination of which symbols are going
1144
// into the output symbol table.
1145
 
1146
// 7) Create the section table header.
1147
 
1148
// 8) Determine the final file offset of all the output sections which
1149
// are not SHF_ALLOC, including the section table header.
1150
 
1151
// 9) Finalize the ELF file header.
1152
 
1153
// This function returns the size of the output file.
1154
 
1155
off_t
1156
Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
1157
                 Target* target, const Task* task)
1158
{
1159
  target->finalize_sections(this);
1160
 
1161
  this->count_local_symbols(task, input_objects);
1162
 
1163
  this->create_gold_note();
1164
  this->create_executable_stack_info(target);
1165
  this->create_build_id();
1166
 
1167
  Output_segment* phdr_seg = NULL;
1168
  if (!parameters->options().relocatable() && !parameters->doing_static_link())
1169
    {
1170
      // There was a dynamic object in the link.  We need to create
1171
      // some information for the dynamic linker.
1172
 
1173
      // Create the PT_PHDR segment which will hold the program
1174
      // headers.
1175
      if (!this->script_options_->saw_phdrs_clause())
1176
        phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
1177
 
1178
      // Create the dynamic symbol table, including the hash table.
1179
      Output_section* dynstr;
1180
      std::vector<Symbol*> dynamic_symbols;
1181
      unsigned int local_dynamic_count;
1182
      Versions versions(*this->script_options()->version_script_info(),
1183
                        &this->dynpool_);
1184
      this->create_dynamic_symtab(input_objects, symtab, &dynstr,
1185
                                  &local_dynamic_count, &dynamic_symbols,
1186
                                  &versions);
1187
 
1188
      // Create the .interp section to hold the name of the
1189
      // interpreter, and put it in a PT_INTERP segment.
1190
      if (!parameters->options().shared())
1191
        this->create_interp(target);
1192
 
1193
      // Finish the .dynamic section to hold the dynamic data, and put
1194
      // it in a PT_DYNAMIC segment.
1195
      this->finish_dynamic_section(input_objects, symtab);
1196
 
1197
      // We should have added everything we need to the dynamic string
1198
      // table.
1199
      this->dynpool_.set_string_offsets();
1200
 
1201
      // Create the version sections.  We can't do this until the
1202
      // dynamic string table is complete.
1203
      this->create_version_sections(&versions, symtab, local_dynamic_count,
1204
                                    dynamic_symbols, dynstr);
1205
    }
1206
 
1207
  // If there is a SECTIONS clause, put all the input sections into
1208
  // the required order.
1209
  Output_segment* load_seg;
1210
  if (this->script_options_->saw_sections_clause())
1211
    load_seg = this->set_section_addresses_from_script(symtab);
1212
  else if (parameters->options().relocatable())
1213
    load_seg = NULL;
1214
  else
1215
    load_seg = this->find_first_load_seg();
1216
 
1217
  if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
1218
    load_seg = NULL;
1219
 
1220
  gold_assert(phdr_seg == NULL || load_seg != NULL);
1221
 
1222
  // Lay out the segment headers.
1223
  Output_segment_headers* segment_headers;
1224
  if (parameters->options().relocatable())
1225
    segment_headers = NULL;
1226
  else
1227
    {
1228
      segment_headers = new Output_segment_headers(this->segment_list_);
1229
      if (load_seg != NULL)
1230
        load_seg->add_initial_output_data(segment_headers);
1231
      if (phdr_seg != NULL)
1232
        phdr_seg->add_initial_output_data(segment_headers);
1233
    }
1234
 
1235
  // Lay out the file header.
1236
  Output_file_header* file_header;
1237
  file_header = new Output_file_header(target, symtab, segment_headers,
1238
                                       this->options_.entry());
1239
  if (load_seg != NULL)
1240
    load_seg->add_initial_output_data(file_header);
1241
 
1242
  this->special_output_list_.push_back(file_header);
1243
  if (segment_headers != NULL)
1244
    this->special_output_list_.push_back(segment_headers);
1245
 
1246
  if (this->script_options_->saw_phdrs_clause()
1247
      && !parameters->options().relocatable())
1248
    {
1249
      // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1250
      // clause in a linker script.
1251
      Script_sections* ss = this->script_options_->script_sections();
1252
      ss->put_headers_in_phdrs(file_header, segment_headers);
1253
    }
1254
 
1255
  // We set the output section indexes in set_segment_offsets and
1256
  // set_section_indexes.
1257
  unsigned int shndx = 1;
1258
 
1259
  // Set the file offsets of all the segments, and all the sections
1260
  // they contain.
1261
  off_t off;
1262
  if (!parameters->options().relocatable())
1263
    off = this->set_segment_offsets(target, load_seg, &shndx);
1264
  else
1265
    off = this->set_relocatable_section_offsets(file_header, &shndx);
1266
 
1267
  // Set the file offsets of all the non-data sections we've seen so
1268
  // far which don't have to wait for the input sections.  We need
1269
  // this in order to finalize local symbols in non-allocated
1270
  // sections.
1271
  off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1272
 
1273
  // Set the section indexes of all unallocated sections seen so far,
1274
  // in case any of them are somehow referenced by a symbol.
1275
  shndx = this->set_section_indexes(shndx);
1276
 
1277
  // Create the symbol table sections.
1278
  this->create_symtab_sections(input_objects, symtab, shndx, &off);
1279
  if (!parameters->doing_static_link())
1280
    this->assign_local_dynsym_offsets(input_objects);
1281
 
1282
  // Process any symbol assignments from a linker script.  This must
1283
  // be called after the symbol table has been finalized.
1284
  this->script_options_->finalize_symbols(symtab, this);
1285
 
1286
  // Create the .shstrtab section.
1287
  Output_section* shstrtab_section = this->create_shstrtab();
1288
 
1289
  // Set the file offsets of the rest of the non-data sections which
1290
  // don't have to wait for the input sections.
1291
  off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1292
 
1293
  // Now that all sections have been created, set the section indexes
1294
  // for any sections which haven't been done yet.
1295
  shndx = this->set_section_indexes(shndx);
1296
 
1297
  // Create the section table header.
1298
  this->create_shdrs(shstrtab_section, &off);
1299
 
1300
  // If there are no sections which require postprocessing, we can
1301
  // handle the section names now, and avoid a resize later.
1302
  if (!this->any_postprocessing_sections_)
1303
    off = this->set_section_offsets(off,
1304
                                    STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
1305
 
1306
  file_header->set_section_info(this->section_headers_, shstrtab_section);
1307
 
1308
  // Now we know exactly where everything goes in the output file
1309
  // (except for non-allocated sections which require postprocessing).
1310
  Output_data::layout_complete();
1311
 
1312
  this->output_file_size_ = off;
1313
 
1314
  return off;
1315
}
1316
 
1317
// Create a note header following the format defined in the ELF ABI.
1318
// NAME is the name, NOTE_TYPE is the type, DESCSZ is the size of the
1319
// descriptor.  ALLOCATE is true if the section should be allocated in
1320
// memory.  This returns the new note section.  It sets
1321
// *TRAILING_PADDING to the number of trailing zero bytes required.
1322
 
1323
Output_section*
1324
Layout::create_note(const char* name, int note_type, size_t descsz,
1325
                    bool allocate, size_t* trailing_padding)
1326
{
1327
  // Authorities all agree that the values in a .note field should
1328
  // be aligned on 4-byte boundaries for 32-bit binaries.  However,
1329
  // they differ on what the alignment is for 64-bit binaries.
1330
  // The GABI says unambiguously they take 8-byte alignment:
1331
  //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1332
  // Other documentation says alignment should always be 4 bytes:
1333
  //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1334
  // GNU ld and GNU readelf both support the latter (at least as of
1335
  // version 2.16.91), and glibc always generates the latter for
1336
  // .note.ABI-tag (as of version 1.6), so that's the one we go with
1337
  // here.
1338
#ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
1339
  const int size = parameters->target().get_size();
1340
#else
1341
  const int size = 32;
1342
#endif
1343
 
1344
  // The contents of the .note section.
1345
  size_t namesz = strlen(name) + 1;
1346
  size_t aligned_namesz = align_address(namesz, size / 8);
1347
  size_t aligned_descsz = align_address(descsz, size / 8);
1348
 
1349
  size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
1350
 
1351
  unsigned char* buffer = new unsigned char[notehdrsz];
1352
  memset(buffer, 0, notehdrsz);
1353
 
1354
  bool is_big_endian = parameters->target().is_big_endian();
1355
 
1356
  if (size == 32)
1357
    {
1358
      if (!is_big_endian)
1359
        {
1360
          elfcpp::Swap<32, false>::writeval(buffer, namesz);
1361
          elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
1362
          elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
1363
        }
1364
      else
1365
        {
1366
          elfcpp::Swap<32, true>::writeval(buffer, namesz);
1367
          elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
1368
          elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
1369
        }
1370
    }
1371
  else if (size == 64)
1372
    {
1373
      if (!is_big_endian)
1374
        {
1375
          elfcpp::Swap<64, false>::writeval(buffer, namesz);
1376
          elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
1377
          elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
1378
        }
1379
      else
1380
        {
1381
          elfcpp::Swap<64, true>::writeval(buffer, namesz);
1382
          elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
1383
          elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
1384
        }
1385
    }
1386
  else
1387
    gold_unreachable();
1388
 
1389
  memcpy(buffer + 3 * (size / 8), name, namesz);
1390
 
1391
  const char* note_name = this->namepool_.add(".note", false, NULL);
1392
  elfcpp::Elf_Xword flags = 0;
1393
  if (allocate)
1394
    flags = elfcpp::SHF_ALLOC;
1395
  Output_section* os = this->make_output_section(note_name,
1396
                                                 elfcpp::SHT_NOTE,
1397
                                                 flags);
1398
  Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
1399
                                                           size / 8,
1400
                                                           "** note header");
1401
  os->add_output_section_data(posd);
1402
 
1403
  *trailing_padding = aligned_descsz - descsz;
1404
 
1405
  return os;
1406
}
1407
 
1408
// For an executable or shared library, create a note to record the
1409
// version of gold used to create the binary.
1410
 
1411
void
1412
Layout::create_gold_note()
1413
{
1414
  if (parameters->options().relocatable())
1415
    return;
1416
 
1417
  std::string desc = std::string("gold ") + gold::get_version_string();
1418
 
1419
  size_t trailing_padding;
1420
  Output_section *os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
1421
                                         desc.size(), false, &trailing_padding);
1422
 
1423
  Output_section_data* posd = new Output_data_const(desc, 4);
1424
  os->add_output_section_data(posd);
1425
 
1426
  if (trailing_padding > 0)
1427
    {
1428
      posd = new Output_data_zero_fill(trailing_padding, 0);
1429
      os->add_output_section_data(posd);
1430
    }
1431
}
1432
 
1433
// Record whether the stack should be executable.  This can be set
1434
// from the command line using the -z execstack or -z noexecstack
1435
// options.  Otherwise, if any input file has a .note.GNU-stack
1436
// section with the SHF_EXECINSTR flag set, the stack should be
1437
// executable.  Otherwise, if at least one input file a
1438
// .note.GNU-stack section, and some input file has no .note.GNU-stack
1439
// section, we use the target default for whether the stack should be
1440
// executable.  Otherwise, we don't generate a stack note.  When
1441
// generating a object file, we create a .note.GNU-stack section with
1442
// the appropriate marking.  When generating an executable or shared
1443
// library, we create a PT_GNU_STACK segment.
1444
 
1445
void
1446
Layout::create_executable_stack_info(const Target* target)
1447
{
1448
  bool is_stack_executable;
1449
  if (this->options_.is_execstack_set())
1450
    is_stack_executable = this->options_.is_stack_executable();
1451
  else if (!this->input_with_gnu_stack_note_)
1452
    return;
1453
  else
1454
    {
1455
      if (this->input_requires_executable_stack_)
1456
        is_stack_executable = true;
1457
      else if (this->input_without_gnu_stack_note_)
1458
        is_stack_executable = target->is_default_stack_executable();
1459
      else
1460
        is_stack_executable = false;
1461
    }
1462
 
1463
  if (parameters->options().relocatable())
1464
    {
1465
      const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
1466
      elfcpp::Elf_Xword flags = 0;
1467
      if (is_stack_executable)
1468
        flags |= elfcpp::SHF_EXECINSTR;
1469
      this->make_output_section(name, elfcpp::SHT_PROGBITS, flags);
1470
    }
1471
  else
1472
    {
1473
      if (this->script_options_->saw_phdrs_clause())
1474
        return;
1475
      int flags = elfcpp::PF_R | elfcpp::PF_W;
1476
      if (is_stack_executable)
1477
        flags |= elfcpp::PF_X;
1478
      this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
1479
    }
1480
}
1481
 
1482
// If --build-id was used, set up the build ID note.
1483
 
1484
void
1485
Layout::create_build_id()
1486
{
1487
  if (!parameters->options().user_set_build_id())
1488
    return;
1489
 
1490
  const char* style = parameters->options().build_id();
1491
  if (strcmp(style, "none") == 0)
1492
    return;
1493
 
1494
  // Set DESCSZ to the size of the note descriptor.  When possible,
1495
  // set DESC to the note descriptor contents.
1496
  size_t descsz;
1497
  std::string desc;
1498
  if (strcmp(style, "md5") == 0)
1499
    descsz = 128 / 8;
1500
  else if (strcmp(style, "sha1") == 0)
1501
    descsz = 160 / 8;
1502
  else if (strcmp(style, "uuid") == 0)
1503
    {
1504
      const size_t uuidsz = 128 / 8;
1505
 
1506
      char buffer[uuidsz];
1507
      memset(buffer, 0, uuidsz);
1508
 
1509
      int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
1510
      if (descriptor < 0)
1511
        gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
1512
                   strerror(errno));
1513
      else
1514
        {
1515
          ssize_t got = ::read(descriptor, buffer, uuidsz);
1516
          release_descriptor(descriptor, true);
1517
          if (got < 0)
1518
            gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
1519
          else if (static_cast<size_t>(got) != uuidsz)
1520
            gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
1521
                       uuidsz, got);
1522
        }
1523
 
1524
      desc.assign(buffer, uuidsz);
1525
      descsz = uuidsz;
1526
    }
1527
  else if (strncmp(style, "0x", 2) == 0)
1528
    {
1529
      hex_init();
1530
      const char* p = style + 2;
1531
      while (*p != '\0')
1532
        {
1533
          if (hex_p(p[0]) && hex_p(p[1]))
1534
            {
1535
              char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
1536
              desc += c;
1537
              p += 2;
1538
            }
1539
          else if (*p == '-' || *p == ':')
1540
            ++p;
1541
          else
1542
            gold_fatal(_("--build-id argument '%s' not a valid hex number"),
1543
                       style);
1544
        }
1545
      descsz = desc.size();
1546
    }
1547
  else
1548
    gold_fatal(_("unrecognized --build-id argument '%s'"), style);
1549
 
1550
  // Create the note.
1551
  size_t trailing_padding;
1552
  Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
1553
                                         descsz, true, &trailing_padding);
1554
 
1555
  if (!desc.empty())
1556
    {
1557
      // We know the value already, so we fill it in now.
1558
      gold_assert(desc.size() == descsz);
1559
 
1560
      Output_section_data* posd = new Output_data_const(desc, 4);
1561
      os->add_output_section_data(posd);
1562
 
1563
      if (trailing_padding != 0)
1564
        {
1565
          posd = new Output_data_zero_fill(trailing_padding, 0);
1566
          os->add_output_section_data(posd);
1567
        }
1568
    }
1569
  else
1570
    {
1571
      // We need to compute a checksum after we have completed the
1572
      // link.
1573
      gold_assert(trailing_padding == 0);
1574
      this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
1575
      os->add_output_section_data(this->build_id_note_);
1576
      os->set_after_input_sections();
1577
    }
1578
}
1579
 
1580
// Return whether SEG1 should be before SEG2 in the output file.  This
1581
// is based entirely on the segment type and flags.  When this is
1582
// called the segment addresses has normally not yet been set.
1583
 
1584
bool
1585
Layout::segment_precedes(const Output_segment* seg1,
1586
                         const Output_segment* seg2)
1587
{
1588
  elfcpp::Elf_Word type1 = seg1->type();
1589
  elfcpp::Elf_Word type2 = seg2->type();
1590
 
1591
  // The single PT_PHDR segment is required to precede any loadable
1592
  // segment.  We simply make it always first.
1593
  if (type1 == elfcpp::PT_PHDR)
1594
    {
1595
      gold_assert(type2 != elfcpp::PT_PHDR);
1596
      return true;
1597
    }
1598
  if (type2 == elfcpp::PT_PHDR)
1599
    return false;
1600
 
1601
  // The single PT_INTERP segment is required to precede any loadable
1602
  // segment.  We simply make it always second.
1603
  if (type1 == elfcpp::PT_INTERP)
1604
    {
1605
      gold_assert(type2 != elfcpp::PT_INTERP);
1606
      return true;
1607
    }
1608
  if (type2 == elfcpp::PT_INTERP)
1609
    return false;
1610
 
1611
  // We then put PT_LOAD segments before any other segments.
1612
  if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
1613
    return true;
1614
  if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
1615
    return false;
1616
 
1617
  // We put the PT_TLS segment last except for the PT_GNU_RELRO
1618
  // segment, because that is where the dynamic linker expects to find
1619
  // it (this is just for efficiency; other positions would also work
1620
  // correctly).
1621
  if (type1 == elfcpp::PT_TLS
1622
      && type2 != elfcpp::PT_TLS
1623
      && type2 != elfcpp::PT_GNU_RELRO)
1624
    return false;
1625
  if (type2 == elfcpp::PT_TLS
1626
      && type1 != elfcpp::PT_TLS
1627
      && type1 != elfcpp::PT_GNU_RELRO)
1628
    return true;
1629
 
1630
  // We put the PT_GNU_RELRO segment last, because that is where the
1631
  // dynamic linker expects to find it (as with PT_TLS, this is just
1632
  // for efficiency).
1633
  if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
1634
    return false;
1635
  if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
1636
    return true;
1637
 
1638
  const elfcpp::Elf_Word flags1 = seg1->flags();
1639
  const elfcpp::Elf_Word flags2 = seg2->flags();
1640
 
1641
  // The order of non-PT_LOAD segments is unimportant.  We simply sort
1642
  // by the numeric segment type and flags values.  There should not
1643
  // be more than one segment with the same type and flags.
1644
  if (type1 != elfcpp::PT_LOAD)
1645
    {
1646
      if (type1 != type2)
1647
        return type1 < type2;
1648
      gold_assert(flags1 != flags2);
1649
      return flags1 < flags2;
1650
    }
1651
 
1652
  // If the addresses are set already, sort by load address.
1653
  if (seg1->are_addresses_set())
1654
    {
1655
      if (!seg2->are_addresses_set())
1656
        return true;
1657
 
1658
      unsigned int section_count1 = seg1->output_section_count();
1659
      unsigned int section_count2 = seg2->output_section_count();
1660
      if (section_count1 == 0 && section_count2 > 0)
1661
        return true;
1662
      if (section_count1 > 0 && section_count2 == 0)
1663
        return false;
1664
 
1665
      uint64_t paddr1 = seg1->first_section_load_address();
1666
      uint64_t paddr2 = seg2->first_section_load_address();
1667
      if (paddr1 != paddr2)
1668
        return paddr1 < paddr2;
1669
    }
1670
  else if (seg2->are_addresses_set())
1671
    return false;
1672
 
1673
  // We sort PT_LOAD segments based on the flags.  Readonly segments
1674
  // come before writable segments.  Then writable segments with data
1675
  // come before writable segments without data.  Then executable
1676
  // segments come before non-executable segments.  Then the unlikely
1677
  // case of a non-readable segment comes before the normal case of a
1678
  // readable segment.  If there are multiple segments with the same
1679
  // type and flags, we require that the address be set, and we sort
1680
  // by virtual address and then physical address.
1681
  if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
1682
    return (flags1 & elfcpp::PF_W) == 0;
1683
  if ((flags1 & elfcpp::PF_W) != 0
1684
      && seg1->has_any_data_sections() != seg2->has_any_data_sections())
1685
    return seg1->has_any_data_sections();
1686
  if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
1687
    return (flags1 & elfcpp::PF_X) != 0;
1688
  if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
1689
    return (flags1 & elfcpp::PF_R) == 0;
1690
 
1691
  // We shouldn't get here--we shouldn't create segments which we
1692
  // can't distinguish.
1693
  gold_unreachable();
1694
}
1695
 
1696
// Set the file offsets of all the segments, and all the sections they
1697
// contain.  They have all been created.  LOAD_SEG must be be laid out
1698
// first.  Return the offset of the data to follow.
1699
 
1700
off_t
1701
Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
1702
                            unsigned int *pshndx)
1703
{
1704
  // Sort them into the final order.
1705
  std::sort(this->segment_list_.begin(), this->segment_list_.end(),
1706
            Layout::Compare_segments());
1707
 
1708
  // Find the PT_LOAD segments, and set their addresses and offsets
1709
  // and their section's addresses and offsets.
1710
  uint64_t addr;
1711
  if (this->options_.user_set_Ttext())
1712
    addr = this->options_.Ttext();
1713
  else if (parameters->options().shared())
1714
    addr = 0;
1715
  else
1716
    addr = target->default_text_segment_address();
1717
  off_t off = 0;
1718
 
1719
  // If LOAD_SEG is NULL, then the file header and segment headers
1720
  // will not be loadable.  But they still need to be at offset 0 in
1721
  // the file.  Set their offsets now.
1722
  if (load_seg == NULL)
1723
    {
1724
      for (Data_list::iterator p = this->special_output_list_.begin();
1725
           p != this->special_output_list_.end();
1726
           ++p)
1727
        {
1728
          off = align_address(off, (*p)->addralign());
1729
          (*p)->set_address_and_file_offset(0, off);
1730
          off += (*p)->data_size();
1731
        }
1732
    }
1733
 
1734
  const bool check_sections = parameters->options().check_sections();
1735
  Output_segment* last_load_segment = NULL;
1736
 
1737
  bool was_readonly = false;
1738
  for (Segment_list::iterator p = this->segment_list_.begin();
1739
       p != this->segment_list_.end();
1740
       ++p)
1741
    {
1742
      if ((*p)->type() == elfcpp::PT_LOAD)
1743
        {
1744
          if (load_seg != NULL && load_seg != *p)
1745
            gold_unreachable();
1746
          load_seg = NULL;
1747
 
1748
          bool are_addresses_set = (*p)->are_addresses_set();
1749
          if (are_addresses_set)
1750
            {
1751
              // When it comes to setting file offsets, we care about
1752
              // the physical address.
1753
              addr = (*p)->paddr();
1754
            }
1755
          else if (this->options_.user_set_Tdata()
1756
                   && ((*p)->flags() & elfcpp::PF_W) != 0
1757
                   && (!this->options_.user_set_Tbss()
1758
                       || (*p)->has_any_data_sections()))
1759
            {
1760
              addr = this->options_.Tdata();
1761
              are_addresses_set = true;
1762
            }
1763
          else if (this->options_.user_set_Tbss()
1764
                   && ((*p)->flags() & elfcpp::PF_W) != 0
1765
                   && !(*p)->has_any_data_sections())
1766
            {
1767
              addr = this->options_.Tbss();
1768
              are_addresses_set = true;
1769
            }
1770
 
1771
          uint64_t orig_addr = addr;
1772
          uint64_t orig_off = off;
1773
 
1774
          uint64_t aligned_addr = 0;
1775
          uint64_t abi_pagesize = target->abi_pagesize();
1776
          uint64_t common_pagesize = target->common_pagesize();
1777
 
1778
          if (!parameters->options().nmagic()
1779
              && !parameters->options().omagic())
1780
            (*p)->set_minimum_p_align(common_pagesize);
1781
 
1782
          if (are_addresses_set)
1783
            {
1784
              if (!parameters->options().nmagic()
1785
                  && !parameters->options().omagic())
1786
                {
1787
                  // Adjust the file offset to the same address modulo
1788
                  // the page size.
1789
                  uint64_t unsigned_off = off;
1790
                  uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
1791
                                          | (addr & (abi_pagesize - 1)));
1792
                  if (aligned_off < unsigned_off)
1793
                    aligned_off += abi_pagesize;
1794
                  off = aligned_off;
1795
                }
1796
            }
1797
          else
1798
            {
1799
              // If the last segment was readonly, and this one is
1800
              // not, then skip the address forward one page,
1801
              // maintaining the same position within the page.  This
1802
              // lets us store both segments overlapping on a single
1803
              // page in the file, but the loader will put them on
1804
              // different pages in memory.
1805
 
1806
              addr = align_address(addr, (*p)->maximum_alignment());
1807
              aligned_addr = addr;
1808
 
1809
              if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
1810
                {
1811
                  if ((addr & (abi_pagesize - 1)) != 0)
1812
                    addr = addr + abi_pagesize;
1813
                }
1814
 
1815
              off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1816
            }
1817
 
1818
          unsigned int shndx_hold = *pshndx;
1819
          uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
1820
                                                          &off, pshndx);
1821
 
1822
          // Now that we know the size of this segment, we may be able
1823
          // to save a page in memory, at the cost of wasting some
1824
          // file space, by instead aligning to the start of a new
1825
          // page.  Here we use the real machine page size rather than
1826
          // the ABI mandated page size.
1827
 
1828
          if (!are_addresses_set && aligned_addr != addr)
1829
            {
1830
              uint64_t first_off = (common_pagesize
1831
                                    - (aligned_addr
1832
                                       & (common_pagesize - 1)));
1833
              uint64_t last_off = new_addr & (common_pagesize - 1);
1834
              if (first_off > 0
1835
                  && last_off > 0
1836
                  && ((aligned_addr & ~ (common_pagesize - 1))
1837
                      != (new_addr & ~ (common_pagesize - 1)))
1838
                  && first_off + last_off <= common_pagesize)
1839
                {
1840
                  *pshndx = shndx_hold;
1841
                  addr = align_address(aligned_addr, common_pagesize);
1842
                  addr = align_address(addr, (*p)->maximum_alignment());
1843
                  off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
1844
                  new_addr = (*p)->set_section_addresses(this, true, addr,
1845
                                                         &off, pshndx);
1846
                }
1847
            }
1848
 
1849
          addr = new_addr;
1850
 
1851
          if (((*p)->flags() & elfcpp::PF_W) == 0)
1852
            was_readonly = true;
1853
 
1854
          // Implement --check-sections.  We know that the segments
1855
          // are sorted by LMA.
1856
          if (check_sections && last_load_segment != NULL)
1857
            {
1858
              gold_assert(last_load_segment->paddr() <= (*p)->paddr());
1859
              if (last_load_segment->paddr() + last_load_segment->memsz()
1860
                  > (*p)->paddr())
1861
                {
1862
                  unsigned long long lb1 = last_load_segment->paddr();
1863
                  unsigned long long le1 = lb1 + last_load_segment->memsz();
1864
                  unsigned long long lb2 = (*p)->paddr();
1865
                  unsigned long long le2 = lb2 + (*p)->memsz();
1866
                  gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
1867
                               "[0x%llx -> 0x%llx]"),
1868
                             lb1, le1, lb2, le2);
1869
                }
1870
            }
1871
          last_load_segment = *p;
1872
        }
1873
    }
1874
 
1875
  // Handle the non-PT_LOAD segments, setting their offsets from their
1876
  // section's offsets.
1877
  for (Segment_list::iterator p = this->segment_list_.begin();
1878
       p != this->segment_list_.end();
1879
       ++p)
1880
    {
1881
      if ((*p)->type() != elfcpp::PT_LOAD)
1882
        (*p)->set_offset();
1883
    }
1884
 
1885
  // Set the TLS offsets for each section in the PT_TLS segment.
1886
  if (this->tls_segment_ != NULL)
1887
    this->tls_segment_->set_tls_offsets();
1888
 
1889
  return off;
1890
}
1891
 
1892
// Set the offsets of all the allocated sections when doing a
1893
// relocatable link.  This does the same jobs as set_segment_offsets,
1894
// only for a relocatable link.
1895
 
1896
off_t
1897
Layout::set_relocatable_section_offsets(Output_data* file_header,
1898
                                        unsigned int *pshndx)
1899
{
1900
  off_t off = 0;
1901
 
1902
  file_header->set_address_and_file_offset(0, 0);
1903
  off += file_header->data_size();
1904
 
1905
  for (Section_list::iterator p = this->section_list_.begin();
1906
       p != this->section_list_.end();
1907
       ++p)
1908
    {
1909
      // We skip unallocated sections here, except that group sections
1910
      // have to come first.
1911
      if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
1912
          && (*p)->type() != elfcpp::SHT_GROUP)
1913
        continue;
1914
 
1915
      off = align_address(off, (*p)->addralign());
1916
 
1917
      // The linker script might have set the address.
1918
      if (!(*p)->is_address_valid())
1919
        (*p)->set_address(0);
1920
      (*p)->set_file_offset(off);
1921
      (*p)->finalize_data_size();
1922
      off += (*p)->data_size();
1923
 
1924
      (*p)->set_out_shndx(*pshndx);
1925
      ++*pshndx;
1926
    }
1927
 
1928
  return off;
1929
}
1930
 
1931
// Set the file offset of all the sections not associated with a
1932
// segment.
1933
 
1934
off_t
1935
Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
1936
{
1937
  for (Section_list::iterator p = this->unattached_section_list_.begin();
1938
       p != this->unattached_section_list_.end();
1939
       ++p)
1940
    {
1941
      // The symtab section is handled in create_symtab_sections.
1942
      if (*p == this->symtab_section_)
1943
        continue;
1944
 
1945
      // If we've already set the data size, don't set it again.
1946
      if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
1947
        continue;
1948
 
1949
      if (pass == BEFORE_INPUT_SECTIONS_PASS
1950
          && (*p)->requires_postprocessing())
1951
        {
1952
          (*p)->create_postprocessing_buffer();
1953
          this->any_postprocessing_sections_ = true;
1954
        }
1955
 
1956
      if (pass == BEFORE_INPUT_SECTIONS_PASS
1957
          && (*p)->after_input_sections())
1958
        continue;
1959
      else if (pass == POSTPROCESSING_SECTIONS_PASS
1960
               && (!(*p)->after_input_sections()
1961
                   || (*p)->type() == elfcpp::SHT_STRTAB))
1962
        continue;
1963
      else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
1964
               && (!(*p)->after_input_sections()
1965
                   || (*p)->type() != elfcpp::SHT_STRTAB))
1966
        continue;
1967
 
1968
      off = align_address(off, (*p)->addralign());
1969
      (*p)->set_file_offset(off);
1970
      (*p)->finalize_data_size();
1971
      off += (*p)->data_size();
1972
 
1973
      // At this point the name must be set.
1974
      if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
1975
        this->namepool_.add((*p)->name(), false, NULL);
1976
    }
1977
  return off;
1978
}
1979
 
1980
// Set the section indexes of all the sections not associated with a
1981
// segment.
1982
 
1983
unsigned int
1984
Layout::set_section_indexes(unsigned int shndx)
1985
{
1986
  for (Section_list::iterator p = this->unattached_section_list_.begin();
1987
       p != this->unattached_section_list_.end();
1988
       ++p)
1989
    {
1990
      if (!(*p)->has_out_shndx())
1991
        {
1992
          (*p)->set_out_shndx(shndx);
1993
          ++shndx;
1994
        }
1995
    }
1996
  return shndx;
1997
}
1998
 
1999
// Set the section addresses according to the linker script.  This is
2000
// only called when we see a SECTIONS clause.  This returns the
2001
// program segment which should hold the file header and segment
2002
// headers, if any.  It will return NULL if they should not be in a
2003
// segment.
2004
 
2005
Output_segment*
2006
Layout::set_section_addresses_from_script(Symbol_table* symtab)
2007
{
2008
  Script_sections* ss = this->script_options_->script_sections();
2009
  gold_assert(ss->saw_sections_clause());
2010
 
2011
  // Place each orphaned output section in the script.
2012
  for (Section_list::iterator p = this->section_list_.begin();
2013
       p != this->section_list_.end();
2014
       ++p)
2015
    {
2016
      if (!(*p)->found_in_sections_clause())
2017
        ss->place_orphan(*p);
2018
    }
2019
 
2020
  return this->script_options_->set_section_addresses(symtab, this);
2021
}
2022
 
2023
// Count the local symbols in the regular symbol table and the dynamic
2024
// symbol table, and build the respective string pools.
2025
 
2026
void
2027
Layout::count_local_symbols(const Task* task,
2028
                            const Input_objects* input_objects)
2029
{
2030
  // First, figure out an upper bound on the number of symbols we'll
2031
  // be inserting into each pool.  This helps us create the pools with
2032
  // the right size, to avoid unnecessary hashtable resizing.
2033
  unsigned int symbol_count = 0;
2034
  for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2035
       p != input_objects->relobj_end();
2036
       ++p)
2037
    symbol_count += (*p)->local_symbol_count();
2038
 
2039
  // Go from "upper bound" to "estimate."  We overcount for two
2040
  // reasons: we double-count symbols that occur in more than one
2041
  // object file, and we count symbols that are dropped from the
2042
  // output.  Add it all together and assume we overcount by 100%.
2043
  symbol_count /= 2;
2044
 
2045
  // We assume all symbols will go into both the sympool and dynpool.
2046
  this->sympool_.reserve(symbol_count);
2047
  this->dynpool_.reserve(symbol_count);
2048
 
2049
  for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2050
       p != input_objects->relobj_end();
2051
       ++p)
2052
    {
2053
      Task_lock_obj<Object> tlo(task, *p);
2054
      (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
2055
    }
2056
}
2057
 
2058
// Create the symbol table sections.  Here we also set the final
2059
// values of the symbols.  At this point all the loadable sections are
2060
// fully laid out.  SHNUM is the number of sections so far.
2061
 
2062
void
2063
Layout::create_symtab_sections(const Input_objects* input_objects,
2064
                               Symbol_table* symtab,
2065
                               unsigned int shnum,
2066
                               off_t* poff)
2067
{
2068
  int symsize;
2069
  unsigned int align;
2070
  if (parameters->target().get_size() == 32)
2071
    {
2072
      symsize = elfcpp::Elf_sizes<32>::sym_size;
2073
      align = 4;
2074
    }
2075
  else if (parameters->target().get_size() == 64)
2076
    {
2077
      symsize = elfcpp::Elf_sizes<64>::sym_size;
2078
      align = 8;
2079
    }
2080
  else
2081
    gold_unreachable();
2082
 
2083
  off_t off = *poff;
2084
  off = align_address(off, align);
2085
  off_t startoff = off;
2086
 
2087
  // Save space for the dummy symbol at the start of the section.  We
2088
  // never bother to write this out--it will just be left as zero.
2089
  off += symsize;
2090
  unsigned int local_symbol_index = 1;
2091
 
2092
  // Add STT_SECTION symbols for each Output section which needs one.
2093
  for (Section_list::iterator p = this->section_list_.begin();
2094
       p != this->section_list_.end();
2095
       ++p)
2096
    {
2097
      if (!(*p)->needs_symtab_index())
2098
        (*p)->set_symtab_index(-1U);
2099
      else
2100
        {
2101
          (*p)->set_symtab_index(local_symbol_index);
2102
          ++local_symbol_index;
2103
          off += symsize;
2104
        }
2105
    }
2106
 
2107
  for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2108
       p != input_objects->relobj_end();
2109
       ++p)
2110
    {
2111
      unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
2112
                                                        off);
2113
      off += (index - local_symbol_index) * symsize;
2114
      local_symbol_index = index;
2115
    }
2116
 
2117
  unsigned int local_symcount = local_symbol_index;
2118
  gold_assert(local_symcount * symsize == off - startoff);
2119
 
2120
  off_t dynoff;
2121
  size_t dyn_global_index;
2122
  size_t dyncount;
2123
  if (this->dynsym_section_ == NULL)
2124
    {
2125
      dynoff = 0;
2126
      dyn_global_index = 0;
2127
      dyncount = 0;
2128
    }
2129
  else
2130
    {
2131
      dyn_global_index = this->dynsym_section_->info();
2132
      off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
2133
      dynoff = this->dynsym_section_->offset() + locsize;
2134
      dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
2135
      gold_assert(static_cast<off_t>(dyncount * symsize)
2136
                  == this->dynsym_section_->data_size() - locsize);
2137
    }
2138
 
2139
  off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
2140
                         &this->sympool_, &local_symcount);
2141
 
2142
  if (!parameters->options().strip_all())
2143
    {
2144
      this->sympool_.set_string_offsets();
2145
 
2146
      const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
2147
      Output_section* osymtab = this->make_output_section(symtab_name,
2148
                                                          elfcpp::SHT_SYMTAB,
2149
                                                          0);
2150
      this->symtab_section_ = osymtab;
2151
 
2152
      Output_section_data* pos = new Output_data_fixed_space(off - startoff,
2153
                                                             align,
2154
                                                             "** symtab");
2155
      osymtab->add_output_section_data(pos);
2156
 
2157
      // We generate a .symtab_shndx section if we have more than
2158
      // SHN_LORESERVE sections.  Technically it is possible that we
2159
      // don't need one, because it is possible that there are no
2160
      // symbols in any of sections with indexes larger than
2161
      // SHN_LORESERVE.  That is probably unusual, though, and it is
2162
      // easier to always create one than to compute section indexes
2163
      // twice (once here, once when writing out the symbols).
2164
      if (shnum >= elfcpp::SHN_LORESERVE)
2165
        {
2166
          const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
2167
                                                               false, NULL);
2168
          Output_section* osymtab_xindex =
2169
            this->make_output_section(symtab_xindex_name,
2170
                                      elfcpp::SHT_SYMTAB_SHNDX, 0);
2171
 
2172
          size_t symcount = (off - startoff) / symsize;
2173
          this->symtab_xindex_ = new Output_symtab_xindex(symcount);
2174
 
2175
          osymtab_xindex->add_output_section_data(this->symtab_xindex_);
2176
 
2177
          osymtab_xindex->set_link_section(osymtab);
2178
          osymtab_xindex->set_addralign(4);
2179
          osymtab_xindex->set_entsize(4);
2180
 
2181
          osymtab_xindex->set_after_input_sections();
2182
 
2183
          // This tells the driver code to wait until the symbol table
2184
          // has written out before writing out the postprocessing
2185
          // sections, including the .symtab_shndx section.
2186
          this->any_postprocessing_sections_ = true;
2187
        }
2188
 
2189
      const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
2190
      Output_section* ostrtab = this->make_output_section(strtab_name,
2191
                                                          elfcpp::SHT_STRTAB,
2192
                                                          0);
2193
 
2194
      Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
2195
      ostrtab->add_output_section_data(pstr);
2196
 
2197
      osymtab->set_file_offset(startoff);
2198
      osymtab->finalize_data_size();
2199
      osymtab->set_link_section(ostrtab);
2200
      osymtab->set_info(local_symcount);
2201
      osymtab->set_entsize(symsize);
2202
 
2203
      *poff = off;
2204
    }
2205
}
2206
 
2207
// Create the .shstrtab section, which holds the names of the
2208
// sections.  At the time this is called, we have created all the
2209
// output sections except .shstrtab itself.
2210
 
2211
Output_section*
2212
Layout::create_shstrtab()
2213
{
2214
  // FIXME: We don't need to create a .shstrtab section if we are
2215
  // stripping everything.
2216
 
2217
  const char* name = this->namepool_.add(".shstrtab", false, NULL);
2218
 
2219
  Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0);
2220
 
2221
  // We can't write out this section until we've set all the section
2222
  // names, and we don't set the names of compressed output sections
2223
  // until relocations are complete.
2224
  os->set_after_input_sections();
2225
 
2226
  Output_section_data* posd = new Output_data_strtab(&this->namepool_);
2227
  os->add_output_section_data(posd);
2228
 
2229
  return os;
2230
}
2231
 
2232
// Create the section headers.  SIZE is 32 or 64.  OFF is the file
2233
// offset.
2234
 
2235
void
2236
Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
2237
{
2238
  Output_section_headers* oshdrs;
2239
  oshdrs = new Output_section_headers(this,
2240
                                      &this->segment_list_,
2241
                                      &this->section_list_,
2242
                                      &this->unattached_section_list_,
2243
                                      &this->namepool_,
2244
                                      shstrtab_section);
2245
  off_t off = align_address(*poff, oshdrs->addralign());
2246
  oshdrs->set_address_and_file_offset(0, off);
2247
  off += oshdrs->data_size();
2248
  *poff = off;
2249
  this->section_headers_ = oshdrs;
2250
}
2251
 
2252
// Count the allocated sections.
2253
 
2254
size_t
2255
Layout::allocated_output_section_count() const
2256
{
2257
  size_t section_count = 0;
2258
  for (Segment_list::const_iterator p = this->segment_list_.begin();
2259
       p != this->segment_list_.end();
2260
       ++p)
2261
    section_count += (*p)->output_section_count();
2262
  return section_count;
2263
}
2264
 
2265
// Create the dynamic symbol table.
2266
 
2267
void
2268
Layout::create_dynamic_symtab(const Input_objects* input_objects,
2269
                              Symbol_table* symtab,
2270
                              Output_section **pdynstr,
2271
                              unsigned int* plocal_dynamic_count,
2272
                              std::vector<Symbol*>* pdynamic_symbols,
2273
                              Versions* pversions)
2274
{
2275
  // Count all the symbols in the dynamic symbol table, and set the
2276
  // dynamic symbol indexes.
2277
 
2278
  // Skip symbol 0, which is always all zeroes.
2279
  unsigned int index = 1;
2280
 
2281
  // Add STT_SECTION symbols for each Output section which needs one.
2282
  for (Section_list::iterator p = this->section_list_.begin();
2283
       p != this->section_list_.end();
2284
       ++p)
2285
    {
2286
      if (!(*p)->needs_dynsym_index())
2287
        (*p)->set_dynsym_index(-1U);
2288
      else
2289
        {
2290
          (*p)->set_dynsym_index(index);
2291
          ++index;
2292
        }
2293
    }
2294
 
2295
  // Count the local symbols that need to go in the dynamic symbol table,
2296
  // and set the dynamic symbol indexes.
2297
  for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2298
       p != input_objects->relobj_end();
2299
       ++p)
2300
    {
2301
      unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
2302
      index = new_index;
2303
    }
2304
 
2305
  unsigned int local_symcount = index;
2306
  *plocal_dynamic_count = local_symcount;
2307
 
2308
  index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
2309
                                     &this->dynpool_, pversions);
2310
 
2311
  int symsize;
2312
  unsigned int align;
2313
  const int size = parameters->target().get_size();
2314
  if (size == 32)
2315
    {
2316
      symsize = elfcpp::Elf_sizes<32>::sym_size;
2317
      align = 4;
2318
    }
2319
  else if (size == 64)
2320
    {
2321
      symsize = elfcpp::Elf_sizes<64>::sym_size;
2322
      align = 8;
2323
    }
2324
  else
2325
    gold_unreachable();
2326
 
2327
  // Create the dynamic symbol table section.
2328
 
2329
  Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
2330
                                                       elfcpp::SHT_DYNSYM,
2331
                                                       elfcpp::SHF_ALLOC,
2332
                                                       false);
2333
 
2334
  Output_section_data* odata = new Output_data_fixed_space(index * symsize,
2335
                                                           align,
2336
                                                           "** dynsym");
2337
  dynsym->add_output_section_data(odata);
2338
 
2339
  dynsym->set_info(local_symcount);
2340
  dynsym->set_entsize(symsize);
2341
  dynsym->set_addralign(align);
2342
 
2343
  this->dynsym_section_ = dynsym;
2344
 
2345
  Output_data_dynamic* const odyn = this->dynamic_data_;
2346
  odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
2347
  odyn->add_constant(elfcpp::DT_SYMENT, symsize);
2348
 
2349
  // If there are more than SHN_LORESERVE allocated sections, we
2350
  // create a .dynsym_shndx section.  It is possible that we don't
2351
  // need one, because it is possible that there are no dynamic
2352
  // symbols in any of the sections with indexes larger than
2353
  // SHN_LORESERVE.  This is probably unusual, though, and at this
2354
  // time we don't know the actual section indexes so it is
2355
  // inconvenient to check.
2356
  if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
2357
    {
2358
      Output_section* dynsym_xindex =
2359
        this->choose_output_section(NULL, ".dynsym_shndx",
2360
                                    elfcpp::SHT_SYMTAB_SHNDX,
2361
                                    elfcpp::SHF_ALLOC,
2362
                                    false);
2363
 
2364
      this->dynsym_xindex_ = new Output_symtab_xindex(index);
2365
 
2366
      dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
2367
 
2368
      dynsym_xindex->set_link_section(dynsym);
2369
      dynsym_xindex->set_addralign(4);
2370
      dynsym_xindex->set_entsize(4);
2371
 
2372
      dynsym_xindex->set_after_input_sections();
2373
 
2374
      // This tells the driver code to wait until the symbol table has
2375
      // written out before writing out the postprocessing sections,
2376
      // including the .dynsym_shndx section.
2377
      this->any_postprocessing_sections_ = true;
2378
    }
2379
 
2380
  // Create the dynamic string table section.
2381
 
2382
  Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
2383
                                                       elfcpp::SHT_STRTAB,
2384
                                                       elfcpp::SHF_ALLOC,
2385
                                                       false);
2386
 
2387
  Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
2388
  dynstr->add_output_section_data(strdata);
2389
 
2390
  dynsym->set_link_section(dynstr);
2391
  this->dynamic_section_->set_link_section(dynstr);
2392
 
2393
  odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
2394
  odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
2395
 
2396
  *pdynstr = dynstr;
2397
 
2398
  // Create the hash tables.
2399
 
2400
  if (strcmp(parameters->options().hash_style(), "sysv") == 0
2401
      || strcmp(parameters->options().hash_style(), "both") == 0)
2402
    {
2403
      unsigned char* phash;
2404
      unsigned int hashlen;
2405
      Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
2406
                                    &phash, &hashlen);
2407
 
2408
      Output_section* hashsec = this->choose_output_section(NULL, ".hash",
2409
                                                            elfcpp::SHT_HASH,
2410
                                                            elfcpp::SHF_ALLOC,
2411
                                                            false);
2412
 
2413
      Output_section_data* hashdata = new Output_data_const_buffer(phash,
2414
                                                                   hashlen,
2415
                                                                   align,
2416
                                                                   "** hash");
2417
      hashsec->add_output_section_data(hashdata);
2418
 
2419
      hashsec->set_link_section(dynsym);
2420
      hashsec->set_entsize(4);
2421
 
2422
      odyn->add_section_address(elfcpp::DT_HASH, hashsec);
2423
    }
2424
 
2425
  if (strcmp(parameters->options().hash_style(), "gnu") == 0
2426
      || strcmp(parameters->options().hash_style(), "both") == 0)
2427
    {
2428
      unsigned char* phash;
2429
      unsigned int hashlen;
2430
      Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
2431
                                    &phash, &hashlen);
2432
 
2433
      Output_section* hashsec = this->choose_output_section(NULL, ".gnu.hash",
2434
                                                            elfcpp::SHT_GNU_HASH,
2435
                                                            elfcpp::SHF_ALLOC,
2436
                                                            false);
2437
 
2438
      Output_section_data* hashdata = new Output_data_const_buffer(phash,
2439
                                                                   hashlen,
2440
                                                                   align,
2441
                                                                   "** hash");
2442
      hashsec->add_output_section_data(hashdata);
2443
 
2444
      hashsec->set_link_section(dynsym);
2445
      hashsec->set_entsize(4);
2446
 
2447
      odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
2448
    }
2449
}
2450
 
2451
// Assign offsets to each local portion of the dynamic symbol table.
2452
 
2453
void
2454
Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
2455
{
2456
  Output_section* dynsym = this->dynsym_section_;
2457
  gold_assert(dynsym != NULL);
2458
 
2459
  off_t off = dynsym->offset();
2460
 
2461
  // Skip the dummy symbol at the start of the section.
2462
  off += dynsym->entsize();
2463
 
2464
  for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2465
       p != input_objects->relobj_end();
2466
       ++p)
2467
    {
2468
      unsigned int count = (*p)->set_local_dynsym_offset(off);
2469
      off += count * dynsym->entsize();
2470
    }
2471
}
2472
 
2473
// Create the version sections.
2474
 
2475
void
2476
Layout::create_version_sections(const Versions* versions,
2477
                                const Symbol_table* symtab,
2478
                                unsigned int local_symcount,
2479
                                const std::vector<Symbol*>& dynamic_symbols,
2480
                                const Output_section* dynstr)
2481
{
2482
  if (!versions->any_defs() && !versions->any_needs())
2483
    return;
2484
 
2485
  switch (parameters->size_and_endianness())
2486
    {
2487
#ifdef HAVE_TARGET_32_LITTLE
2488
    case Parameters::TARGET_32_LITTLE:
2489
      this->sized_create_version_sections<32, false>(versions, symtab,
2490
                                                     local_symcount,
2491
                                                     dynamic_symbols, dynstr);
2492
      break;
2493
#endif
2494
#ifdef HAVE_TARGET_32_BIG
2495
    case Parameters::TARGET_32_BIG:
2496
      this->sized_create_version_sections<32, true>(versions, symtab,
2497
                                                    local_symcount,
2498
                                                    dynamic_symbols, dynstr);
2499
      break;
2500
#endif
2501
#ifdef HAVE_TARGET_64_LITTLE
2502
    case Parameters::TARGET_64_LITTLE:
2503
      this->sized_create_version_sections<64, false>(versions, symtab,
2504
                                                     local_symcount,
2505
                                                     dynamic_symbols, dynstr);
2506
      break;
2507
#endif
2508
#ifdef HAVE_TARGET_64_BIG
2509
    case Parameters::TARGET_64_BIG:
2510
      this->sized_create_version_sections<64, true>(versions, symtab,
2511
                                                    local_symcount,
2512
                                                    dynamic_symbols, dynstr);
2513
      break;
2514
#endif
2515
    default:
2516
      gold_unreachable();
2517
    }
2518
}
2519
 
2520
// Create the version sections, sized version.
2521
 
2522
template<int size, bool big_endian>
2523
void
2524
Layout::sized_create_version_sections(
2525
    const Versions* versions,
2526
    const Symbol_table* symtab,
2527
    unsigned int local_symcount,
2528
    const std::vector<Symbol*>& dynamic_symbols,
2529
    const Output_section* dynstr)
2530
{
2531
  Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
2532
                                                     elfcpp::SHT_GNU_versym,
2533
                                                     elfcpp::SHF_ALLOC,
2534
                                                     false);
2535
 
2536
  unsigned char* vbuf;
2537
  unsigned int vsize;
2538
  versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
2539
                                                      local_symcount,
2540
                                                      dynamic_symbols,
2541
                                                      &vbuf, &vsize);
2542
 
2543
  Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
2544
                                                            "** versions");
2545
 
2546
  vsec->add_output_section_data(vdata);
2547
  vsec->set_entsize(2);
2548
  vsec->set_link_section(this->dynsym_section_);
2549
 
2550
  Output_data_dynamic* const odyn = this->dynamic_data_;
2551
  odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
2552
 
2553
  if (versions->any_defs())
2554
    {
2555
      Output_section* vdsec;
2556
      vdsec= this->choose_output_section(NULL, ".gnu.version_d",
2557
                                         elfcpp::SHT_GNU_verdef,
2558
                                         elfcpp::SHF_ALLOC,
2559
                                         false);
2560
 
2561
      unsigned char* vdbuf;
2562
      unsigned int vdsize;
2563
      unsigned int vdentries;
2564
      versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
2565
                                                       &vdsize, &vdentries);
2566
 
2567
      Output_section_data* vddata =
2568
        new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
2569
 
2570
      vdsec->add_output_section_data(vddata);
2571
      vdsec->set_link_section(dynstr);
2572
      vdsec->set_info(vdentries);
2573
 
2574
      odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
2575
      odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
2576
    }
2577
 
2578
  if (versions->any_needs())
2579
    {
2580
      Output_section* vnsec;
2581
      vnsec = this->choose_output_section(NULL, ".gnu.version_r",
2582
                                          elfcpp::SHT_GNU_verneed,
2583
                                          elfcpp::SHF_ALLOC,
2584
                                          false);
2585
 
2586
      unsigned char* vnbuf;
2587
      unsigned int vnsize;
2588
      unsigned int vnentries;
2589
      versions->need_section_contents<size, big_endian>(&this->dynpool_,
2590
                                                        &vnbuf, &vnsize,
2591
                                                        &vnentries);
2592
 
2593
      Output_section_data* vndata =
2594
        new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
2595
 
2596
      vnsec->add_output_section_data(vndata);
2597
      vnsec->set_link_section(dynstr);
2598
      vnsec->set_info(vnentries);
2599
 
2600
      odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
2601
      odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
2602
    }
2603
}
2604
 
2605
// Create the .interp section and PT_INTERP segment.
2606
 
2607
void
2608
Layout::create_interp(const Target* target)
2609
{
2610
  const char* interp = this->options_.dynamic_linker();
2611
  if (interp == NULL)
2612
    {
2613
      interp = target->dynamic_linker();
2614
      gold_assert(interp != NULL);
2615
    }
2616
 
2617
  size_t len = strlen(interp) + 1;
2618
 
2619
  Output_section_data* odata = new Output_data_const(interp, len, 1);
2620
 
2621
  Output_section* osec = this->choose_output_section(NULL, ".interp",
2622
                                                     elfcpp::SHT_PROGBITS,
2623
                                                     elfcpp::SHF_ALLOC,
2624
                                                     false);
2625
  osec->add_output_section_data(odata);
2626
 
2627
  if (!this->script_options_->saw_phdrs_clause())
2628
    {
2629
      Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
2630
                                                       elfcpp::PF_R);
2631
      oseg->add_output_section(osec, elfcpp::PF_R);
2632
    }
2633
}
2634
 
2635
// Finish the .dynamic section and PT_DYNAMIC segment.
2636
 
2637
void
2638
Layout::finish_dynamic_section(const Input_objects* input_objects,
2639
                               const Symbol_table* symtab)
2640
{
2641
  if (!this->script_options_->saw_phdrs_clause())
2642
    {
2643
      Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
2644
                                                       (elfcpp::PF_R
2645
                                                        | elfcpp::PF_W));
2646
      oseg->add_output_section(this->dynamic_section_,
2647
                               elfcpp::PF_R | elfcpp::PF_W);
2648
    }
2649
 
2650
  Output_data_dynamic* const odyn = this->dynamic_data_;
2651
 
2652
  for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
2653
       p != input_objects->dynobj_end();
2654
       ++p)
2655
    {
2656
      // FIXME: Handle --as-needed.
2657
      odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
2658
    }
2659
 
2660
  if (parameters->options().shared())
2661
    {
2662
      const char* soname = this->options_.soname();
2663
      if (soname != NULL)
2664
        odyn->add_string(elfcpp::DT_SONAME, soname);
2665
    }
2666
 
2667
  // FIXME: Support --init and --fini.
2668
  Symbol* sym = symtab->lookup("_init");
2669
  if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2670
    odyn->add_symbol(elfcpp::DT_INIT, sym);
2671
 
2672
  sym = symtab->lookup("_fini");
2673
  if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
2674
    odyn->add_symbol(elfcpp::DT_FINI, sym);
2675
 
2676
  // FIXME: Support DT_INIT_ARRAY and DT_FINI_ARRAY.
2677
 
2678
  // Add a DT_RPATH entry if needed.
2679
  const General_options::Dir_list& rpath(this->options_.rpath());
2680
  if (!rpath.empty())
2681
    {
2682
      std::string rpath_val;
2683
      for (General_options::Dir_list::const_iterator p = rpath.begin();
2684
           p != rpath.end();
2685
           ++p)
2686
        {
2687
          if (rpath_val.empty())
2688
            rpath_val = p->name();
2689
          else
2690
            {
2691
              // Eliminate duplicates.
2692
              General_options::Dir_list::const_iterator q;
2693
              for (q = rpath.begin(); q != p; ++q)
2694
                if (q->name() == p->name())
2695
                  break;
2696
              if (q == p)
2697
                {
2698
                  rpath_val += ':';
2699
                  rpath_val += p->name();
2700
                }
2701
            }
2702
        }
2703
 
2704
      odyn->add_string(elfcpp::DT_RPATH, rpath_val);
2705
      if (parameters->options().enable_new_dtags())
2706
        odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
2707
    }
2708
 
2709
  // Look for text segments that have dynamic relocations.
2710
  bool have_textrel = false;
2711
  if (!this->script_options_->saw_sections_clause())
2712
    {
2713
      for (Segment_list::const_iterator p = this->segment_list_.begin();
2714
           p != this->segment_list_.end();
2715
           ++p)
2716
        {
2717
          if (((*p)->flags() & elfcpp::PF_W) == 0
2718
              && (*p)->dynamic_reloc_count() > 0)
2719
            {
2720
              have_textrel = true;
2721
              break;
2722
            }
2723
        }
2724
    }
2725
  else
2726
    {
2727
      // We don't know the section -> segment mapping, so we are
2728
      // conservative and just look for readonly sections with
2729
      // relocations.  If those sections wind up in writable segments,
2730
      // then we have created an unnecessary DT_TEXTREL entry.
2731
      for (Section_list::const_iterator p = this->section_list_.begin();
2732
           p != this->section_list_.end();
2733
           ++p)
2734
        {
2735
          if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
2736
              && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
2737
              && ((*p)->dynamic_reloc_count() > 0))
2738
            {
2739
              have_textrel = true;
2740
              break;
2741
            }
2742
        }
2743
    }
2744
 
2745
  // Add a DT_FLAGS entry. We add it even if no flags are set so that
2746
  // post-link tools can easily modify these flags if desired.
2747
  unsigned int flags = 0;
2748
  if (have_textrel)
2749
    {
2750
      // Add a DT_TEXTREL for compatibility with older loaders.
2751
      odyn->add_constant(elfcpp::DT_TEXTREL, 0);
2752
      flags |= elfcpp::DF_TEXTREL;
2753
    }
2754
  if (parameters->options().shared() && this->has_static_tls())
2755
    flags |= elfcpp::DF_STATIC_TLS;
2756
  odyn->add_constant(elfcpp::DT_FLAGS, flags);
2757
 
2758
  flags = 0;
2759
  if (parameters->options().initfirst())
2760
    flags |= elfcpp::DF_1_INITFIRST;
2761
  if (parameters->options().interpose())
2762
    flags |= elfcpp::DF_1_INTERPOSE;
2763
  if (parameters->options().loadfltr())
2764
    flags |= elfcpp::DF_1_LOADFLTR;
2765
  if (parameters->options().nodefaultlib())
2766
    flags |= elfcpp::DF_1_NODEFLIB;
2767
  if (parameters->options().nodelete())
2768
    flags |= elfcpp::DF_1_NODELETE;
2769
  if (parameters->options().nodlopen())
2770
    flags |= elfcpp::DF_1_NOOPEN;
2771
  if (parameters->options().nodump())
2772
    flags |= elfcpp::DF_1_NODUMP;
2773
  if (!parameters->options().shared())
2774
    flags &= ~(elfcpp::DF_1_INITFIRST
2775
               | elfcpp::DF_1_NODELETE
2776
               | elfcpp::DF_1_NOOPEN);
2777
  if (flags)
2778
    odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
2779
}
2780
 
2781
// The mapping of .gnu.linkonce section names to real section names.
2782
 
2783
#define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
2784
const Layout::Linkonce_mapping Layout::linkonce_mapping[] =
2785
{
2786
  MAPPING_INIT("d.rel.ro.local", ".data.rel.ro.local"), // Before "d.rel.ro".
2787
  MAPPING_INIT("d.rel.ro", ".data.rel.ro"),             // Before "d".
2788
  MAPPING_INIT("t", ".text"),
2789
  MAPPING_INIT("r", ".rodata"),
2790
  MAPPING_INIT("d", ".data"),
2791
  MAPPING_INIT("b", ".bss"),
2792
  MAPPING_INIT("s", ".sdata"),
2793
  MAPPING_INIT("sb", ".sbss"),
2794
  MAPPING_INIT("s2", ".sdata2"),
2795
  MAPPING_INIT("sb2", ".sbss2"),
2796
  MAPPING_INIT("wi", ".debug_info"),
2797
  MAPPING_INIT("td", ".tdata"),
2798
  MAPPING_INIT("tb", ".tbss"),
2799
  MAPPING_INIT("lr", ".lrodata"),
2800
  MAPPING_INIT("l", ".ldata"),
2801
  MAPPING_INIT("lb", ".lbss"),
2802
};
2803
#undef MAPPING_INIT
2804
 
2805
const int Layout::linkonce_mapping_count =
2806
  sizeof(Layout::linkonce_mapping) / sizeof(Layout::linkonce_mapping[0]);
2807
 
2808
// Return the name of the output section to use for a .gnu.linkonce
2809
// section.  This is based on the default ELF linker script of the old
2810
// GNU linker.  For example, we map a name like ".gnu.linkonce.t.foo"
2811
// to ".text".  Set *PLEN to the length of the name.  *PLEN is
2812
// initialized to the length of NAME.
2813
 
2814
const char*
2815
Layout::linkonce_output_name(const char* name, size_t *plen)
2816
{
2817
  const char* s = name + sizeof(".gnu.linkonce") - 1;
2818
  if (*s != '.')
2819
    return name;
2820
  ++s;
2821
  const Linkonce_mapping* plm = linkonce_mapping;
2822
  for (int i = 0; i < linkonce_mapping_count; ++i, ++plm)
2823
    {
2824
      if (strncmp(s, plm->from, plm->fromlen) == 0 && s[plm->fromlen] == '.')
2825
        {
2826
          *plen = plm->tolen;
2827
          return plm->to;
2828
        }
2829
    }
2830
  return name;
2831
}
2832
 
2833
// Choose the output section name to use given an input section name.
2834
// Set *PLEN to the length of the name.  *PLEN is initialized to the
2835
// length of NAME.
2836
 
2837
const char*
2838
Layout::output_section_name(const char* name, size_t* plen)
2839
{
2840
  if (Layout::is_linkonce(name))
2841
    {
2842
      // .gnu.linkonce sections are laid out as though they were named
2843
      // for the sections are placed into.
2844
      return Layout::linkonce_output_name(name, plen);
2845
    }
2846
 
2847
  // gcc 4.3 generates the following sorts of section names when it
2848
  // needs a section name specific to a function:
2849
  //   .text.FN
2850
  //   .rodata.FN
2851
  //   .sdata2.FN
2852
  //   .data.FN
2853
  //   .data.rel.FN
2854
  //   .data.rel.local.FN
2855
  //   .data.rel.ro.FN
2856
  //   .data.rel.ro.local.FN
2857
  //   .sdata.FN
2858
  //   .bss.FN
2859
  //   .sbss.FN
2860
  //   .tdata.FN
2861
  //   .tbss.FN
2862
 
2863
  // The GNU linker maps all of those to the part before the .FN,
2864
  // except that .data.rel.local.FN is mapped to .data, and
2865
  // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
2866
  // beginning with .data.rel.ro.local are grouped together.
2867
 
2868
  // For an anonymous namespace, the string FN can contain a '.'.
2869
 
2870
  // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
2871
  // GNU linker maps to .rodata.
2872
 
2873
  // The .data.rel.ro sections enable a security feature triggered by
2874
  // the -z relro option.  Section which need to be relocated at
2875
  // program startup time but which may be readonly after startup are
2876
  // grouped into .data.rel.ro.  They are then put into a PT_GNU_RELRO
2877
  // segment.  The dynamic linker will make that segment writable,
2878
  // perform relocations, and then make it read-only.  FIXME: We do
2879
  // not yet implement this optimization.
2880
 
2881
  // It is hard to handle this in a principled way.
2882
 
2883
  // These are the rules we follow:
2884
 
2885
  // If the section name has no initial '.', or no dot other than an
2886
  // initial '.', we use the name unchanged (i.e., "mysection" and
2887
  // ".text" are unchanged).
2888
 
2889
  // If the name starts with ".data.rel.ro.local" we use
2890
  // ".data.rel.ro.local".
2891
 
2892
  // If the name starts with ".data.rel.ro" we use ".data.rel.ro".
2893
 
2894
  // Otherwise, we drop the second '.' and everything that comes after
2895
  // it (i.e., ".text.XXX" becomes ".text").
2896
 
2897
  const char* s = name;
2898
  if (*s != '.')
2899
    return name;
2900
  ++s;
2901
  const char* sdot = strchr(s, '.');
2902
  if (sdot == NULL)
2903
    return name;
2904
 
2905
  const char* const data_rel_ro_local = ".data.rel.ro.local";
2906
  if (strncmp(name, data_rel_ro_local, strlen(data_rel_ro_local)) == 0)
2907
    {
2908
      *plen = strlen(data_rel_ro_local);
2909
      return data_rel_ro_local;
2910
    }
2911
 
2912
  const char* const data_rel_ro = ".data.rel.ro";
2913
  if (strncmp(name, data_rel_ro, strlen(data_rel_ro)) == 0)
2914
    {
2915
      *plen = strlen(data_rel_ro);
2916
      return data_rel_ro;
2917
    }
2918
 
2919
  *plen = sdot - name;
2920
  return name;
2921
}
2922
 
2923
// Record the signature of a comdat section, and return whether to
2924
// include it in the link.  If GROUP is true, this is a regular
2925
// section group.  If GROUP is false, this is a group signature
2926
// derived from the name of a linkonce section.  We want linkonce
2927
// signatures and group signatures to block each other, but we don't
2928
// want a linkonce signature to block another linkonce signature.
2929
 
2930
bool
2931
Layout::add_comdat(Relobj* object, unsigned int shndx,
2932
                   const std::string& signature, bool group)
2933
{
2934
  Kept_section kept(object, shndx, group);
2935
  std::pair<Signatures::iterator, bool> ins(
2936
    this->signatures_.insert(std::make_pair(signature, kept)));
2937
 
2938
  if (ins.second)
2939
    {
2940
      // This is the first time we've seen this signature.
2941
      return true;
2942
    }
2943
 
2944
  if (ins.first->second.group_)
2945
    {
2946
      // We've already seen a real section group with this signature.
2947
      return false;
2948
    }
2949
  else if (group)
2950
    {
2951
      // This is a real section group, and we've already seen a
2952
      // linkonce section with this signature.  Record that we've seen
2953
      // a section group, and don't include this section group.
2954
      ins.first->second.group_ = true;
2955
      return false;
2956
    }
2957
  else
2958
    {
2959
      // We've already seen a linkonce section and this is a linkonce
2960
      // section.  These don't block each other--this may be the same
2961
      // symbol name with different section types.
2962
      return true;
2963
    }
2964
}
2965
 
2966
// Find the given comdat signature, and return the object and section
2967
// index of the kept group.
2968
Relobj*
2969
Layout::find_kept_object(const std::string& signature,
2970
                         unsigned int* pshndx) const
2971
{
2972
  Signatures::const_iterator p = this->signatures_.find(signature);
2973
  if (p == this->signatures_.end())
2974
    return NULL;
2975
  if (pshndx != NULL)
2976
    *pshndx = p->second.shndx_;
2977
  return p->second.object_;
2978
}
2979
 
2980
// Store the allocated sections into the section list.
2981
 
2982
void
2983
Layout::get_allocated_sections(Section_list* section_list) const
2984
{
2985
  for (Section_list::const_iterator p = this->section_list_.begin();
2986
       p != this->section_list_.end();
2987
       ++p)
2988
    if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
2989
      section_list->push_back(*p);
2990
}
2991
 
2992
// Create an output segment.
2993
 
2994
Output_segment*
2995
Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
2996
{
2997
  gold_assert(!parameters->options().relocatable());
2998
  Output_segment* oseg = new Output_segment(type, flags);
2999
  this->segment_list_.push_back(oseg);
3000
 
3001
  if (type == elfcpp::PT_TLS)
3002
    this->tls_segment_ = oseg;
3003
  else if (type == elfcpp::PT_GNU_RELRO)
3004
    this->relro_segment_ = oseg;
3005
 
3006
  return oseg;
3007
}
3008
 
3009
// Write out the Output_sections.  Most won't have anything to write,
3010
// since most of the data will come from input sections which are
3011
// handled elsewhere.  But some Output_sections do have Output_data.
3012
 
3013
void
3014
Layout::write_output_sections(Output_file* of) const
3015
{
3016
  for (Section_list::const_iterator p = this->section_list_.begin();
3017
       p != this->section_list_.end();
3018
       ++p)
3019
    {
3020
      if (!(*p)->after_input_sections())
3021
        (*p)->write(of);
3022
    }
3023
}
3024
 
3025
// Write out data not associated with a section or the symbol table.
3026
 
3027
void
3028
Layout::write_data(const Symbol_table* symtab, Output_file* of) const
3029
{
3030
  if (!parameters->options().strip_all())
3031
    {
3032
      const Output_section* symtab_section = this->symtab_section_;
3033
      for (Section_list::const_iterator p = this->section_list_.begin();
3034
           p != this->section_list_.end();
3035
           ++p)
3036
        {
3037
          if ((*p)->needs_symtab_index())
3038
            {
3039
              gold_assert(symtab_section != NULL);
3040
              unsigned int index = (*p)->symtab_index();
3041
              gold_assert(index > 0 && index != -1U);
3042
              off_t off = (symtab_section->offset()
3043
                           + index * symtab_section->entsize());
3044
              symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
3045
            }
3046
        }
3047
    }
3048
 
3049
  const Output_section* dynsym_section = this->dynsym_section_;
3050
  for (Section_list::const_iterator p = this->section_list_.begin();
3051
       p != this->section_list_.end();
3052
       ++p)
3053
    {
3054
      if ((*p)->needs_dynsym_index())
3055
        {
3056
          gold_assert(dynsym_section != NULL);
3057
          unsigned int index = (*p)->dynsym_index();
3058
          gold_assert(index > 0 && index != -1U);
3059
          off_t off = (dynsym_section->offset()
3060
                       + index * dynsym_section->entsize());
3061
          symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
3062
        }
3063
    }
3064
 
3065
  // Write out the Output_data which are not in an Output_section.
3066
  for (Data_list::const_iterator p = this->special_output_list_.begin();
3067
       p != this->special_output_list_.end();
3068
       ++p)
3069
    (*p)->write(of);
3070
}
3071
 
3072
// Write out the Output_sections which can only be written after the
3073
// input sections are complete.
3074
 
3075
void
3076
Layout::write_sections_after_input_sections(Output_file* of)
3077
{
3078
  // Determine the final section offsets, and thus the final output
3079
  // file size.  Note we finalize the .shstrab last, to allow the
3080
  // after_input_section sections to modify their section-names before
3081
  // writing.
3082
  if (this->any_postprocessing_sections_)
3083
    {
3084
      off_t off = this->output_file_size_;
3085
      off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
3086
 
3087
      // Now that we've finalized the names, we can finalize the shstrab.
3088
      off =
3089
        this->set_section_offsets(off,
3090
                                  STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
3091
 
3092
      if (off > this->output_file_size_)
3093
        {
3094
          of->resize(off);
3095
          this->output_file_size_ = off;
3096
        }
3097
    }
3098
 
3099
  for (Section_list::const_iterator p = this->section_list_.begin();
3100
       p != this->section_list_.end();
3101
       ++p)
3102
    {
3103
      if ((*p)->after_input_sections())
3104
        (*p)->write(of);
3105
    }
3106
 
3107
  this->section_headers_->write(of);
3108
}
3109
 
3110
// If the build ID requires computing a checksum, do so here, and
3111
// write it out.  We compute a checksum over the entire file because
3112
// that is simplest.
3113
 
3114
void
3115
Layout::write_build_id(Output_file* of) const
3116
{
3117
  if (this->build_id_note_ == NULL)
3118
    return;
3119
 
3120
  const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
3121
 
3122
  unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
3123
                                          this->build_id_note_->data_size());
3124
 
3125
  const char* style = parameters->options().build_id();
3126
  if (strcmp(style, "sha1") == 0)
3127
    {
3128
      sha1_ctx ctx;
3129
      sha1_init_ctx(&ctx);
3130
      sha1_process_bytes(iv, this->output_file_size_, &ctx);
3131
      sha1_finish_ctx(&ctx, ov);
3132
    }
3133
  else if (strcmp(style, "md5") == 0)
3134
    {
3135
      md5_ctx ctx;
3136
      md5_init_ctx(&ctx);
3137
      md5_process_bytes(iv, this->output_file_size_, &ctx);
3138
      md5_finish_ctx(&ctx, ov);
3139
    }
3140
  else
3141
    gold_unreachable();
3142
 
3143
  of->write_output_view(this->build_id_note_->offset(),
3144
                        this->build_id_note_->data_size(),
3145
                        ov);
3146
 
3147
  of->free_input_view(0, this->output_file_size_, iv);
3148
}
3149
 
3150
// Write out a binary file.  This is called after the link is
3151
// complete.  IN is the temporary output file we used to generate the
3152
// ELF code.  We simply walk through the segments, read them from
3153
// their file offset in IN, and write them to their load address in
3154
// the output file.  FIXME: with a bit more work, we could support
3155
// S-records and/or Intel hex format here.
3156
 
3157
void
3158
Layout::write_binary(Output_file* in) const
3159
{
3160
  gold_assert(this->options_.oformat_enum()
3161
              == General_options::OBJECT_FORMAT_BINARY);
3162
 
3163
  // Get the size of the binary file.
3164
  uint64_t max_load_address = 0;
3165
  for (Segment_list::const_iterator p = this->segment_list_.begin();
3166
       p != this->segment_list_.end();
3167
       ++p)
3168
    {
3169
      if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3170
        {
3171
          uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
3172
          if (max_paddr > max_load_address)
3173
            max_load_address = max_paddr;
3174
        }
3175
    }
3176
 
3177
  Output_file out(parameters->options().output_file_name());
3178
  out.open(max_load_address);
3179
 
3180
  for (Segment_list::const_iterator p = this->segment_list_.begin();
3181
       p != this->segment_list_.end();
3182
       ++p)
3183
    {
3184
      if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3185
        {
3186
          const unsigned char* vin = in->get_input_view((*p)->offset(),
3187
                                                        (*p)->filesz());
3188
          unsigned char* vout = out.get_output_view((*p)->paddr(),
3189
                                                    (*p)->filesz());
3190
          memcpy(vout, vin, (*p)->filesz());
3191
          out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
3192
          in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
3193
        }
3194
    }
3195
 
3196
  out.close();
3197
}
3198
 
3199
// Print the output sections to the map file.
3200
 
3201
void
3202
Layout::print_to_mapfile(Mapfile* mapfile) const
3203
{
3204
  for (Segment_list::const_iterator p = this->segment_list_.begin();
3205
       p != this->segment_list_.end();
3206
       ++p)
3207
    (*p)->print_sections_to_mapfile(mapfile);
3208
}
3209
 
3210
// Print statistical information to stderr.  This is used for --stats.
3211
 
3212
void
3213
Layout::print_stats() const
3214
{
3215
  this->namepool_.print_stats("section name pool");
3216
  this->sympool_.print_stats("output symbol name pool");
3217
  this->dynpool_.print_stats("dynamic name pool");
3218
 
3219
  for (Section_list::const_iterator p = this->section_list_.begin();
3220
       p != this->section_list_.end();
3221
       ++p)
3222
    (*p)->print_merge_stats();
3223
}
3224
 
3225
// Write_sections_task methods.
3226
 
3227
// We can always run this task.
3228
 
3229
Task_token*
3230
Write_sections_task::is_runnable()
3231
{
3232
  return NULL;
3233
}
3234
 
3235
// We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
3236
// when finished.
3237
 
3238
void
3239
Write_sections_task::locks(Task_locker* tl)
3240
{
3241
  tl->add(this, this->output_sections_blocker_);
3242
  tl->add(this, this->final_blocker_);
3243
}
3244
 
3245
// Run the task--write out the data.
3246
 
3247
void
3248
Write_sections_task::run(Workqueue*)
3249
{
3250
  this->layout_->write_output_sections(this->of_);
3251
}
3252
 
3253
// Write_data_task methods.
3254
 
3255
// We can always run this task.
3256
 
3257
Task_token*
3258
Write_data_task::is_runnable()
3259
{
3260
  return NULL;
3261
}
3262
 
3263
// We need to unlock FINAL_BLOCKER when finished.
3264
 
3265
void
3266
Write_data_task::locks(Task_locker* tl)
3267
{
3268
  tl->add(this, this->final_blocker_);
3269
}
3270
 
3271
// Run the task--write out the data.
3272
 
3273
void
3274
Write_data_task::run(Workqueue*)
3275
{
3276
  this->layout_->write_data(this->symtab_, this->of_);
3277
}
3278
 
3279
// Write_symbols_task methods.
3280
 
3281
// We can always run this task.
3282
 
3283
Task_token*
3284
Write_symbols_task::is_runnable()
3285
{
3286
  return NULL;
3287
}
3288
 
3289
// We need to unlock FINAL_BLOCKER when finished.
3290
 
3291
void
3292
Write_symbols_task::locks(Task_locker* tl)
3293
{
3294
  tl->add(this, this->final_blocker_);
3295
}
3296
 
3297
// Run the task--write out the symbols.
3298
 
3299
void
3300
Write_symbols_task::run(Workqueue*)
3301
{
3302
  this->symtab_->write_globals(this->input_objects_, this->sympool_,
3303
                               this->dynpool_, this->layout_->symtab_xindex(),
3304
                               this->layout_->dynsym_xindex(), this->of_);
3305
}
3306
 
3307
// Write_after_input_sections_task methods.
3308
 
3309
// We can only run this task after the input sections have completed.
3310
 
3311
Task_token*
3312
Write_after_input_sections_task::is_runnable()
3313
{
3314
  if (this->input_sections_blocker_->is_blocked())
3315
    return this->input_sections_blocker_;
3316
  return NULL;
3317
}
3318
 
3319
// We need to unlock FINAL_BLOCKER when finished.
3320
 
3321
void
3322
Write_after_input_sections_task::locks(Task_locker* tl)
3323
{
3324
  tl->add(this, this->final_blocker_);
3325
}
3326
 
3327
// Run the task.
3328
 
3329
void
3330
Write_after_input_sections_task::run(Workqueue*)
3331
{
3332
  this->layout_->write_sections_after_input_sections(this->of_);
3333
}
3334
 
3335
// Close_task_runner methods.
3336
 
3337
// Run the task--close the file.
3338
 
3339
void
3340
Close_task_runner::run(Workqueue*, const Task*)
3341
{
3342
  // If we need to compute a checksum for the BUILD if, we do so here.
3343
  this->layout_->write_build_id(this->of_);
3344
 
3345
  // If we've been asked to create a binary file, we do so here.
3346
  if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
3347
    this->layout_->write_binary(this->of_);
3348
 
3349
  this->of_->close();
3350
}
3351
 
3352
// Instantiate the templates we need.  We could use the configure
3353
// script to restrict this to only the ones for implemented targets.
3354
 
3355
#ifdef HAVE_TARGET_32_LITTLE
3356
template
3357
Output_section*
3358
Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
3359
                          const char* name,
3360
                          const elfcpp::Shdr<32, false>& shdr,
3361
                          unsigned int, unsigned int, off_t*);
3362
#endif
3363
 
3364
#ifdef HAVE_TARGET_32_BIG
3365
template
3366
Output_section*
3367
Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
3368
                         const char* name,
3369
                         const elfcpp::Shdr<32, true>& shdr,
3370
                         unsigned int, unsigned int, off_t*);
3371
#endif
3372
 
3373
#ifdef HAVE_TARGET_64_LITTLE
3374
template
3375
Output_section*
3376
Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
3377
                          const char* name,
3378
                          const elfcpp::Shdr<64, false>& shdr,
3379
                          unsigned int, unsigned int, off_t*);
3380
#endif
3381
 
3382
#ifdef HAVE_TARGET_64_BIG
3383
template
3384
Output_section*
3385
Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
3386
                         const char* name,
3387
                         const elfcpp::Shdr<64, true>& shdr,
3388
                         unsigned int, unsigned int, off_t*);
3389
#endif
3390
 
3391
#ifdef HAVE_TARGET_32_LITTLE
3392
template
3393
Output_section*
3394
Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
3395
                                unsigned int reloc_shndx,
3396
                                const elfcpp::Shdr<32, false>& shdr,
3397
                                Output_section* data_section,
3398
                                Relocatable_relocs* rr);
3399
#endif
3400
 
3401
#ifdef HAVE_TARGET_32_BIG
3402
template
3403
Output_section*
3404
Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
3405
                               unsigned int reloc_shndx,
3406
                               const elfcpp::Shdr<32, true>& shdr,
3407
                               Output_section* data_section,
3408
                               Relocatable_relocs* rr);
3409
#endif
3410
 
3411
#ifdef HAVE_TARGET_64_LITTLE
3412
template
3413
Output_section*
3414
Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
3415
                                unsigned int reloc_shndx,
3416
                                const elfcpp::Shdr<64, false>& shdr,
3417
                                Output_section* data_section,
3418
                                Relocatable_relocs* rr);
3419
#endif
3420
 
3421
#ifdef HAVE_TARGET_64_BIG
3422
template
3423
Output_section*
3424
Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
3425
                               unsigned int reloc_shndx,
3426
                               const elfcpp::Shdr<64, true>& shdr,
3427
                               Output_section* data_section,
3428
                               Relocatable_relocs* rr);
3429
#endif
3430
 
3431
#ifdef HAVE_TARGET_32_LITTLE
3432
template
3433
void
3434
Layout::layout_group<32, false>(Symbol_table* symtab,
3435
                                Sized_relobj<32, false>* object,
3436
                                unsigned int,
3437
                                const char* group_section_name,
3438
                                const char* signature,
3439
                                const elfcpp::Shdr<32, false>& shdr,
3440
                                elfcpp::Elf_Word flags,
3441
                                std::vector<unsigned int>* shndxes);
3442
#endif
3443
 
3444
#ifdef HAVE_TARGET_32_BIG
3445
template
3446
void
3447
Layout::layout_group<32, true>(Symbol_table* symtab,
3448
                               Sized_relobj<32, true>* object,
3449
                               unsigned int,
3450
                               const char* group_section_name,
3451
                               const char* signature,
3452
                               const elfcpp::Shdr<32, true>& shdr,
3453
                               elfcpp::Elf_Word flags,
3454
                               std::vector<unsigned int>* shndxes);
3455
#endif
3456
 
3457
#ifdef HAVE_TARGET_64_LITTLE
3458
template
3459
void
3460
Layout::layout_group<64, false>(Symbol_table* symtab,
3461
                                Sized_relobj<64, false>* object,
3462
                                unsigned int,
3463
                                const char* group_section_name,
3464
                                const char* signature,
3465
                                const elfcpp::Shdr<64, false>& shdr,
3466
                                elfcpp::Elf_Word flags,
3467
                                std::vector<unsigned int>* shndxes);
3468
#endif
3469
 
3470
#ifdef HAVE_TARGET_64_BIG
3471
template
3472
void
3473
Layout::layout_group<64, true>(Symbol_table* symtab,
3474
                               Sized_relobj<64, true>* object,
3475
                               unsigned int,
3476
                               const char* group_section_name,
3477
                               const char* signature,
3478
                               const elfcpp::Shdr<64, true>& shdr,
3479
                               elfcpp::Elf_Word flags,
3480
                               std::vector<unsigned int>* shndxes);
3481
#endif
3482
 
3483
#ifdef HAVE_TARGET_32_LITTLE
3484
template
3485
Output_section*
3486
Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
3487
                                   const unsigned char* symbols,
3488
                                   off_t symbols_size,
3489
                                   const unsigned char* symbol_names,
3490
                                   off_t symbol_names_size,
3491
                                   unsigned int shndx,
3492
                                   const elfcpp::Shdr<32, false>& shdr,
3493
                                   unsigned int reloc_shndx,
3494
                                   unsigned int reloc_type,
3495
                                   off_t* off);
3496
#endif
3497
 
3498
#ifdef HAVE_TARGET_32_BIG
3499
template
3500
Output_section*
3501
Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
3502
                                   const unsigned char* symbols,
3503
                                   off_t symbols_size,
3504
                                  const unsigned char* symbol_names,
3505
                                  off_t symbol_names_size,
3506
                                  unsigned int shndx,
3507
                                  const elfcpp::Shdr<32, true>& shdr,
3508
                                  unsigned int reloc_shndx,
3509
                                  unsigned int reloc_type,
3510
                                  off_t* off);
3511
#endif
3512
 
3513
#ifdef HAVE_TARGET_64_LITTLE
3514
template
3515
Output_section*
3516
Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
3517
                                   const unsigned char* symbols,
3518
                                   off_t symbols_size,
3519
                                   const unsigned char* symbol_names,
3520
                                   off_t symbol_names_size,
3521
                                   unsigned int shndx,
3522
                                   const elfcpp::Shdr<64, false>& shdr,
3523
                                   unsigned int reloc_shndx,
3524
                                   unsigned int reloc_type,
3525
                                   off_t* off);
3526
#endif
3527
 
3528
#ifdef HAVE_TARGET_64_BIG
3529
template
3530
Output_section*
3531
Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
3532
                                   const unsigned char* symbols,
3533
                                   off_t symbols_size,
3534
                                  const unsigned char* symbol_names,
3535
                                  off_t symbol_names_size,
3536
                                  unsigned int shndx,
3537
                                  const elfcpp::Shdr<64, true>& shdr,
3538
                                  unsigned int reloc_shndx,
3539
                                  unsigned int reloc_type,
3540
                                  off_t* off);
3541
#endif
3542
 
3543
} // End namespace gold.

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.