1 |
6 |
jlechner |
/* IEEE floating point support routines, for GDB, the GNU Debugger.
|
2 |
|
|
Copyright 1991, 1994, 1999, 2000, 2003, 2005, 2006
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of GDB.
|
6 |
|
|
|
7 |
|
|
This program is free software; you can redistribute it and/or modify
|
8 |
|
|
it under the terms of the GNU General Public License as published by
|
9 |
|
|
the Free Software Foundation; either version 2 of the License, or
|
10 |
|
|
(at your option) any later version.
|
11 |
|
|
|
12 |
|
|
This program is distributed in the hope that it will be useful,
|
13 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
15 |
|
|
GNU General Public License for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with this program; if not, write to the Free Software
|
19 |
|
|
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
|
20 |
|
|
|
21 |
|
|
/* This is needed to pick up the NAN macro on some systems. */
|
22 |
|
|
#define _GNU_SOURCE
|
23 |
|
|
|
24 |
|
|
#ifdef HAVE_CONFIG_H
|
25 |
|
|
#include "config.h"
|
26 |
|
|
#endif
|
27 |
|
|
|
28 |
|
|
#include <math.h>
|
29 |
|
|
|
30 |
|
|
#ifdef HAVE_STRING_H
|
31 |
|
|
#include <string.h>
|
32 |
|
|
#endif
|
33 |
|
|
|
34 |
|
|
/* On some platforms, <float.h> provides DBL_QNAN. */
|
35 |
|
|
#ifdef STDC_HEADERS
|
36 |
|
|
#include <float.h>
|
37 |
|
|
#endif
|
38 |
|
|
|
39 |
|
|
#include "ansidecl.h"
|
40 |
|
|
#include "libiberty.h"
|
41 |
|
|
#include "floatformat.h"
|
42 |
|
|
|
43 |
|
|
#ifndef INFINITY
|
44 |
|
|
#ifdef HUGE_VAL
|
45 |
|
|
#define INFINITY HUGE_VAL
|
46 |
|
|
#else
|
47 |
|
|
#define INFINITY (1.0 / 0.0)
|
48 |
|
|
#endif
|
49 |
|
|
#endif
|
50 |
|
|
|
51 |
|
|
#ifndef NAN
|
52 |
|
|
#ifdef DBL_QNAN
|
53 |
|
|
#define NAN DBL_QNAN
|
54 |
|
|
#else
|
55 |
|
|
#define NAN (0.0 / 0.0)
|
56 |
|
|
#endif
|
57 |
|
|
#endif
|
58 |
|
|
|
59 |
|
|
static int mant_bits_set (const struct floatformat *, const unsigned char *);
|
60 |
|
|
static unsigned long get_field (const unsigned char *,
|
61 |
|
|
enum floatformat_byteorders,
|
62 |
|
|
unsigned int,
|
63 |
|
|
unsigned int,
|
64 |
|
|
unsigned int);
|
65 |
|
|
static int floatformat_always_valid (const struct floatformat *fmt,
|
66 |
|
|
const void *from);
|
67 |
|
|
|
68 |
|
|
static int
|
69 |
|
|
floatformat_always_valid (const struct floatformat *fmt ATTRIBUTE_UNUSED,
|
70 |
|
|
const void *from ATTRIBUTE_UNUSED)
|
71 |
|
|
{
|
72 |
|
|
return 1;
|
73 |
|
|
}
|
74 |
|
|
|
75 |
|
|
/* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
|
76 |
|
|
going to bother with trying to muck around with whether it is defined in
|
77 |
|
|
a system header, what we do if not, etc. */
|
78 |
|
|
#define FLOATFORMAT_CHAR_BIT 8
|
79 |
|
|
|
80 |
|
|
/* floatformats for IEEE single and double, big and little endian. */
|
81 |
|
|
const struct floatformat floatformat_ieee_single_big =
|
82 |
|
|
{
|
83 |
|
|
floatformat_big, 32, 0, 1, 8, 127, 255, 9, 23,
|
84 |
|
|
floatformat_intbit_no,
|
85 |
|
|
"floatformat_ieee_single_big",
|
86 |
|
|
floatformat_always_valid,
|
87 |
|
|
NULL
|
88 |
|
|
};
|
89 |
|
|
const struct floatformat floatformat_ieee_single_little =
|
90 |
|
|
{
|
91 |
|
|
floatformat_little, 32, 0, 1, 8, 127, 255, 9, 23,
|
92 |
|
|
floatformat_intbit_no,
|
93 |
|
|
"floatformat_ieee_single_little",
|
94 |
|
|
floatformat_always_valid,
|
95 |
|
|
NULL
|
96 |
|
|
};
|
97 |
|
|
const struct floatformat floatformat_ieee_double_big =
|
98 |
|
|
{
|
99 |
|
|
floatformat_big, 64, 0, 1, 11, 1023, 2047, 12, 52,
|
100 |
|
|
floatformat_intbit_no,
|
101 |
|
|
"floatformat_ieee_double_big",
|
102 |
|
|
floatformat_always_valid,
|
103 |
|
|
NULL
|
104 |
|
|
};
|
105 |
|
|
const struct floatformat floatformat_ieee_double_little =
|
106 |
|
|
{
|
107 |
|
|
floatformat_little, 64, 0, 1, 11, 1023, 2047, 12, 52,
|
108 |
|
|
floatformat_intbit_no,
|
109 |
|
|
"floatformat_ieee_double_little",
|
110 |
|
|
floatformat_always_valid,
|
111 |
|
|
NULL
|
112 |
|
|
};
|
113 |
|
|
|
114 |
|
|
/* floatformat for IEEE double, little endian byte order, with big endian word
|
115 |
|
|
ordering, as on the ARM. */
|
116 |
|
|
|
117 |
|
|
const struct floatformat floatformat_ieee_double_littlebyte_bigword =
|
118 |
|
|
{
|
119 |
|
|
floatformat_littlebyte_bigword, 64, 0, 1, 11, 1023, 2047, 12, 52,
|
120 |
|
|
floatformat_intbit_no,
|
121 |
|
|
"floatformat_ieee_double_littlebyte_bigword",
|
122 |
|
|
floatformat_always_valid,
|
123 |
|
|
NULL
|
124 |
|
|
};
|
125 |
|
|
|
126 |
|
|
/* floatformat for VAX. Not quite IEEE, but close enough. */
|
127 |
|
|
|
128 |
|
|
const struct floatformat floatformat_vax_f =
|
129 |
|
|
{
|
130 |
|
|
floatformat_vax, 32, 0, 1, 8, 129, 0, 9, 23,
|
131 |
|
|
floatformat_intbit_no,
|
132 |
|
|
"floatformat_vax_f",
|
133 |
|
|
floatformat_always_valid,
|
134 |
|
|
NULL
|
135 |
|
|
};
|
136 |
|
|
const struct floatformat floatformat_vax_d =
|
137 |
|
|
{
|
138 |
|
|
floatformat_vax, 64, 0, 1, 8, 129, 0, 9, 55,
|
139 |
|
|
floatformat_intbit_no,
|
140 |
|
|
"floatformat_vax_d",
|
141 |
|
|
floatformat_always_valid,
|
142 |
|
|
NULL
|
143 |
|
|
};
|
144 |
|
|
const struct floatformat floatformat_vax_g =
|
145 |
|
|
{
|
146 |
|
|
floatformat_vax, 64, 0, 1, 11, 1025, 0, 12, 52,
|
147 |
|
|
floatformat_intbit_no,
|
148 |
|
|
"floatformat_vax_g",
|
149 |
|
|
floatformat_always_valid,
|
150 |
|
|
NULL
|
151 |
|
|
};
|
152 |
|
|
|
153 |
|
|
static int floatformat_i387_ext_is_valid (const struct floatformat *fmt,
|
154 |
|
|
const void *from);
|
155 |
|
|
|
156 |
|
|
static int
|
157 |
|
|
floatformat_i387_ext_is_valid (const struct floatformat *fmt, const void *from)
|
158 |
|
|
{
|
159 |
|
|
/* In the i387 double-extended format, if the exponent is all ones,
|
160 |
|
|
then the integer bit must be set. If the exponent is neither 0
|
161 |
|
|
nor ~0, the intbit must also be set. Only if the exponent is
|
162 |
|
|
zero can it be zero, and then it must be zero. */
|
163 |
|
|
unsigned long exponent, int_bit;
|
164 |
|
|
const unsigned char *ufrom = (const unsigned char *) from;
|
165 |
|
|
|
166 |
|
|
exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
|
167 |
|
|
fmt->exp_start, fmt->exp_len);
|
168 |
|
|
int_bit = get_field (ufrom, fmt->byteorder, fmt->totalsize,
|
169 |
|
|
fmt->man_start, 1);
|
170 |
|
|
|
171 |
|
|
if ((exponent == 0) != (int_bit == 0))
|
172 |
|
|
return 0;
|
173 |
|
|
else
|
174 |
|
|
return 1;
|
175 |
|
|
}
|
176 |
|
|
|
177 |
|
|
const struct floatformat floatformat_i387_ext =
|
178 |
|
|
{
|
179 |
|
|
floatformat_little, 80, 0, 1, 15, 0x3fff, 0x7fff, 16, 64,
|
180 |
|
|
floatformat_intbit_yes,
|
181 |
|
|
"floatformat_i387_ext",
|
182 |
|
|
floatformat_i387_ext_is_valid,
|
183 |
|
|
NULL
|
184 |
|
|
};
|
185 |
|
|
const struct floatformat floatformat_m68881_ext =
|
186 |
|
|
{
|
187 |
|
|
/* Note that the bits from 16 to 31 are unused. */
|
188 |
|
|
floatformat_big, 96, 0, 1, 15, 0x3fff, 0x7fff, 32, 64,
|
189 |
|
|
floatformat_intbit_yes,
|
190 |
|
|
"floatformat_m68881_ext",
|
191 |
|
|
floatformat_always_valid,
|
192 |
|
|
NULL
|
193 |
|
|
};
|
194 |
|
|
const struct floatformat floatformat_i960_ext =
|
195 |
|
|
{
|
196 |
|
|
/* Note that the bits from 0 to 15 are unused. */
|
197 |
|
|
floatformat_little, 96, 16, 17, 15, 0x3fff, 0x7fff, 32, 64,
|
198 |
|
|
floatformat_intbit_yes,
|
199 |
|
|
"floatformat_i960_ext",
|
200 |
|
|
floatformat_always_valid,
|
201 |
|
|
NULL
|
202 |
|
|
};
|
203 |
|
|
const struct floatformat floatformat_m88110_ext =
|
204 |
|
|
{
|
205 |
|
|
floatformat_big, 80, 0, 1, 15, 0x3fff, 0x7fff, 16, 64,
|
206 |
|
|
floatformat_intbit_yes,
|
207 |
|
|
"floatformat_m88110_ext",
|
208 |
|
|
floatformat_always_valid,
|
209 |
|
|
NULL
|
210 |
|
|
};
|
211 |
|
|
const struct floatformat floatformat_m88110_harris_ext =
|
212 |
|
|
{
|
213 |
|
|
/* Harris uses raw format 128 bytes long, but the number is just an ieee
|
214 |
|
|
double, and the last 64 bits are wasted. */
|
215 |
|
|
floatformat_big,128, 0, 1, 11, 0x3ff, 0x7ff, 12, 52,
|
216 |
|
|
floatformat_intbit_no,
|
217 |
|
|
"floatformat_m88110_ext_harris",
|
218 |
|
|
floatformat_always_valid,
|
219 |
|
|
NULL
|
220 |
|
|
};
|
221 |
|
|
const struct floatformat floatformat_arm_ext_big =
|
222 |
|
|
{
|
223 |
|
|
/* Bits 1 to 16 are unused. */
|
224 |
|
|
floatformat_big, 96, 0, 17, 15, 0x3fff, 0x7fff, 32, 64,
|
225 |
|
|
floatformat_intbit_yes,
|
226 |
|
|
"floatformat_arm_ext_big",
|
227 |
|
|
floatformat_always_valid,
|
228 |
|
|
NULL
|
229 |
|
|
};
|
230 |
|
|
const struct floatformat floatformat_arm_ext_littlebyte_bigword =
|
231 |
|
|
{
|
232 |
|
|
/* Bits 1 to 16 are unused. */
|
233 |
|
|
floatformat_littlebyte_bigword, 96, 0, 17, 15, 0x3fff, 0x7fff, 32, 64,
|
234 |
|
|
floatformat_intbit_yes,
|
235 |
|
|
"floatformat_arm_ext_littlebyte_bigword",
|
236 |
|
|
floatformat_always_valid,
|
237 |
|
|
NULL
|
238 |
|
|
};
|
239 |
|
|
const struct floatformat floatformat_ia64_spill_big =
|
240 |
|
|
{
|
241 |
|
|
floatformat_big, 128, 0, 1, 17, 65535, 0x1ffff, 18, 64,
|
242 |
|
|
floatformat_intbit_yes,
|
243 |
|
|
"floatformat_ia64_spill_big",
|
244 |
|
|
floatformat_always_valid,
|
245 |
|
|
NULL
|
246 |
|
|
};
|
247 |
|
|
const struct floatformat floatformat_ia64_spill_little =
|
248 |
|
|
{
|
249 |
|
|
floatformat_little, 128, 0, 1, 17, 65535, 0x1ffff, 18, 64,
|
250 |
|
|
floatformat_intbit_yes,
|
251 |
|
|
"floatformat_ia64_spill_little",
|
252 |
|
|
floatformat_always_valid,
|
253 |
|
|
NULL
|
254 |
|
|
};
|
255 |
|
|
const struct floatformat floatformat_ia64_quad_big =
|
256 |
|
|
{
|
257 |
|
|
floatformat_big, 128, 0, 1, 15, 16383, 0x7fff, 16, 112,
|
258 |
|
|
floatformat_intbit_no,
|
259 |
|
|
"floatformat_ia64_quad_big",
|
260 |
|
|
floatformat_always_valid,
|
261 |
|
|
NULL
|
262 |
|
|
};
|
263 |
|
|
const struct floatformat floatformat_ia64_quad_little =
|
264 |
|
|
{
|
265 |
|
|
floatformat_little, 128, 0, 1, 15, 16383, 0x7fff, 16, 112,
|
266 |
|
|
floatformat_intbit_no,
|
267 |
|
|
"floatformat_ia64_quad_little",
|
268 |
|
|
floatformat_always_valid,
|
269 |
|
|
NULL
|
270 |
|
|
};
|
271 |
|
|
|
272 |
|
|
static int
|
273 |
|
|
floatformat_ibm_long_double_is_valid (const struct floatformat *fmt,
|
274 |
|
|
const void *from)
|
275 |
|
|
{
|
276 |
|
|
const unsigned char *ufrom = (const unsigned char *) from;
|
277 |
|
|
const struct floatformat *hfmt = fmt->split_half;
|
278 |
|
|
long top_exp, bot_exp;
|
279 |
|
|
int top_nan = 0;
|
280 |
|
|
|
281 |
|
|
top_exp = get_field (ufrom, hfmt->byteorder, hfmt->totalsize,
|
282 |
|
|
hfmt->exp_start, hfmt->exp_len);
|
283 |
|
|
bot_exp = get_field (ufrom + 8, hfmt->byteorder, hfmt->totalsize,
|
284 |
|
|
hfmt->exp_start, hfmt->exp_len);
|
285 |
|
|
|
286 |
|
|
if ((unsigned long) top_exp == hfmt->exp_nan)
|
287 |
|
|
top_nan = mant_bits_set (hfmt, ufrom);
|
288 |
|
|
|
289 |
|
|
/* A NaN is valid with any low part. */
|
290 |
|
|
if (top_nan)
|
291 |
|
|
return 1;
|
292 |
|
|
|
293 |
|
|
/* An infinity, zero or denormal requires low part 0 (positive or
|
294 |
|
|
negative). */
|
295 |
|
|
if ((unsigned long) top_exp == hfmt->exp_nan || top_exp == 0)
|
296 |
|
|
{
|
297 |
|
|
if (bot_exp != 0)
|
298 |
|
|
return 0;
|
299 |
|
|
|
300 |
|
|
return !mant_bits_set (hfmt, ufrom + 8);
|
301 |
|
|
}
|
302 |
|
|
|
303 |
|
|
/* The top part is now a finite normal value. The long double value
|
304 |
|
|
is the sum of the two parts, and the top part must equal the
|
305 |
|
|
result of rounding the long double value to nearest double. Thus
|
306 |
|
|
the bottom part must be <= 0.5ulp of the top part in absolute
|
307 |
|
|
value, and if it is < 0.5ulp then the long double is definitely
|
308 |
|
|
valid. */
|
309 |
|
|
if (bot_exp < top_exp - 53)
|
310 |
|
|
return 1;
|
311 |
|
|
if (bot_exp > top_exp - 53 && bot_exp != 0)
|
312 |
|
|
return 0;
|
313 |
|
|
if (bot_exp == 0)
|
314 |
|
|
{
|
315 |
|
|
/* The bottom part is 0 or denormal. Determine which, and if
|
316 |
|
|
denormal the first two set bits. */
|
317 |
|
|
int first_bit = -1, second_bit = -1, cur_bit;
|
318 |
|
|
for (cur_bit = 0; (unsigned int) cur_bit < hfmt->man_len; cur_bit++)
|
319 |
|
|
if (get_field (ufrom + 8, hfmt->byteorder, hfmt->totalsize,
|
320 |
|
|
hfmt->man_start + cur_bit, 1))
|
321 |
|
|
{
|
322 |
|
|
if (first_bit == -1)
|
323 |
|
|
first_bit = cur_bit;
|
324 |
|
|
else
|
325 |
|
|
{
|
326 |
|
|
second_bit = cur_bit;
|
327 |
|
|
break;
|
328 |
|
|
}
|
329 |
|
|
}
|
330 |
|
|
/* Bottom part 0 is OK. */
|
331 |
|
|
if (first_bit == -1)
|
332 |
|
|
return 1;
|
333 |
|
|
/* The real exponent of the bottom part is -first_bit. */
|
334 |
|
|
if (-first_bit < top_exp - 53)
|
335 |
|
|
return 1;
|
336 |
|
|
if (-first_bit > top_exp - 53)
|
337 |
|
|
return 0;
|
338 |
|
|
/* The bottom part is at least 0.5ulp of the top part. For this
|
339 |
|
|
to be OK, the bottom part must be exactly 0.5ulp (i.e. no
|
340 |
|
|
more bits set) and the top part must have last bit 0. */
|
341 |
|
|
if (second_bit != -1)
|
342 |
|
|
return 0;
|
343 |
|
|
return !get_field (ufrom, hfmt->byteorder, hfmt->totalsize,
|
344 |
|
|
hfmt->man_start + hfmt->man_len - 1, 1);
|
345 |
|
|
}
|
346 |
|
|
else
|
347 |
|
|
{
|
348 |
|
|
/* The bottom part is at least 0.5ulp of the top part. For this
|
349 |
|
|
to be OK, it must be exactly 0.5ulp (i.e. no explicit bits
|
350 |
|
|
set) and the top part must have last bit 0. */
|
351 |
|
|
if (get_field (ufrom, hfmt->byteorder, hfmt->totalsize,
|
352 |
|
|
hfmt->man_start + hfmt->man_len - 1, 1))
|
353 |
|
|
return 0;
|
354 |
|
|
return !mant_bits_set (hfmt, ufrom + 8);
|
355 |
|
|
}
|
356 |
|
|
}
|
357 |
|
|
|
358 |
|
|
const struct floatformat floatformat_ibm_long_double =
|
359 |
|
|
{
|
360 |
|
|
floatformat_big, 128, 0, 1, 11, 1023, 2047, 12, 52,
|
361 |
|
|
floatformat_intbit_no,
|
362 |
|
|
"floatformat_ibm_long_double",
|
363 |
|
|
floatformat_ibm_long_double_is_valid,
|
364 |
|
|
&floatformat_ieee_double_big
|
365 |
|
|
};
|
366 |
|
|
|
367 |
|
|
|
368 |
|
|
#ifndef min
|
369 |
|
|
#define min(a, b) ((a) < (b) ? (a) : (b))
|
370 |
|
|
#endif
|
371 |
|
|
|
372 |
|
|
/* Return 1 if any bits are explicitly set in the mantissa of UFROM,
|
373 |
|
|
format FMT, 0 otherwise. */
|
374 |
|
|
static int
|
375 |
|
|
mant_bits_set (const struct floatformat *fmt, const unsigned char *ufrom)
|
376 |
|
|
{
|
377 |
|
|
unsigned int mant_bits, mant_off;
|
378 |
|
|
int mant_bits_left;
|
379 |
|
|
|
380 |
|
|
mant_off = fmt->man_start;
|
381 |
|
|
mant_bits_left = fmt->man_len;
|
382 |
|
|
while (mant_bits_left > 0)
|
383 |
|
|
{
|
384 |
|
|
mant_bits = min (mant_bits_left, 32);
|
385 |
|
|
|
386 |
|
|
if (get_field (ufrom, fmt->byteorder, fmt->totalsize,
|
387 |
|
|
mant_off, mant_bits) != 0)
|
388 |
|
|
return 1;
|
389 |
|
|
|
390 |
|
|
mant_off += mant_bits;
|
391 |
|
|
mant_bits_left -= mant_bits;
|
392 |
|
|
}
|
393 |
|
|
return 0;
|
394 |
|
|
}
|
395 |
|
|
|
396 |
|
|
/* Extract a field which starts at START and is LEN bits long. DATA and
|
397 |
|
|
TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
|
398 |
|
|
static unsigned long
|
399 |
|
|
get_field (const unsigned char *data, enum floatformat_byteorders order,
|
400 |
|
|
unsigned int total_len, unsigned int start, unsigned int len)
|
401 |
|
|
{
|
402 |
|
|
unsigned long result = 0;
|
403 |
|
|
unsigned int cur_byte;
|
404 |
|
|
int lo_bit, hi_bit, cur_bitshift = 0;
|
405 |
|
|
int nextbyte = (order == floatformat_little) ? 1 : -1;
|
406 |
|
|
|
407 |
|
|
/* Start is in big-endian bit order! Fix that first. */
|
408 |
|
|
start = total_len - (start + len);
|
409 |
|
|
|
410 |
|
|
/* Start at the least significant part of the field. */
|
411 |
|
|
if (order == floatformat_little)
|
412 |
|
|
cur_byte = start / FLOATFORMAT_CHAR_BIT;
|
413 |
|
|
else
|
414 |
|
|
cur_byte = (total_len - start - 1) / FLOATFORMAT_CHAR_BIT;
|
415 |
|
|
|
416 |
|
|
lo_bit = start % FLOATFORMAT_CHAR_BIT;
|
417 |
|
|
hi_bit = min (lo_bit + len, FLOATFORMAT_CHAR_BIT);
|
418 |
|
|
|
419 |
|
|
do
|
420 |
|
|
{
|
421 |
|
|
unsigned int shifted = *(data + cur_byte) >> lo_bit;
|
422 |
|
|
unsigned int bits = hi_bit - lo_bit;
|
423 |
|
|
unsigned int mask = (1 << bits) - 1;
|
424 |
|
|
result |= (shifted & mask) << cur_bitshift;
|
425 |
|
|
len -= bits;
|
426 |
|
|
cur_bitshift += bits;
|
427 |
|
|
cur_byte += nextbyte;
|
428 |
|
|
lo_bit = 0;
|
429 |
|
|
hi_bit = min (len, FLOATFORMAT_CHAR_BIT);
|
430 |
|
|
}
|
431 |
|
|
while (len != 0);
|
432 |
|
|
|
433 |
|
|
return result;
|
434 |
|
|
}
|
435 |
|
|
|
436 |
|
|
/* Convert from FMT to a double.
|
437 |
|
|
FROM is the address of the extended float.
|
438 |
|
|
Store the double in *TO. */
|
439 |
|
|
|
440 |
|
|
void
|
441 |
|
|
floatformat_to_double (const struct floatformat *fmt,
|
442 |
|
|
const void *from, double *to)
|
443 |
|
|
{
|
444 |
|
|
const unsigned char *ufrom = (const unsigned char *) from;
|
445 |
|
|
double dto;
|
446 |
|
|
long exponent;
|
447 |
|
|
unsigned long mant;
|
448 |
|
|
unsigned int mant_bits, mant_off;
|
449 |
|
|
int mant_bits_left;
|
450 |
|
|
int special_exponent; /* It's a NaN, denorm or zero */
|
451 |
|
|
|
452 |
|
|
/* Split values are not handled specially, since the top half has
|
453 |
|
|
the correctly rounded double value (in the only supported case of
|
454 |
|
|
split values). */
|
455 |
|
|
|
456 |
|
|
exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
|
457 |
|
|
fmt->exp_start, fmt->exp_len);
|
458 |
|
|
|
459 |
|
|
/* If the exponent indicates a NaN, we don't have information to
|
460 |
|
|
decide what to do. So we handle it like IEEE, except that we
|
461 |
|
|
don't try to preserve the type of NaN. FIXME. */
|
462 |
|
|
if ((unsigned long) exponent == fmt->exp_nan)
|
463 |
|
|
{
|
464 |
|
|
int nan = mant_bits_set (fmt, ufrom);
|
465 |
|
|
|
466 |
|
|
/* On certain systems (such as GNU/Linux), the use of the
|
467 |
|
|
INFINITY macro below may generate a warning that can not be
|
468 |
|
|
silenced due to a bug in GCC (PR preprocessor/11931). The
|
469 |
|
|
preprocessor fails to recognise the __extension__ keyword in
|
470 |
|
|
conjunction with the GNU/C99 extension for hexadecimal
|
471 |
|
|
floating point constants and will issue a warning when
|
472 |
|
|
compiling with -pedantic. */
|
473 |
|
|
if (nan)
|
474 |
|
|
dto = NAN;
|
475 |
|
|
else
|
476 |
|
|
dto = INFINITY;
|
477 |
|
|
|
478 |
|
|
if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
|
479 |
|
|
dto = -dto;
|
480 |
|
|
|
481 |
|
|
*to = dto;
|
482 |
|
|
|
483 |
|
|
return;
|
484 |
|
|
}
|
485 |
|
|
|
486 |
|
|
mant_bits_left = fmt->man_len;
|
487 |
|
|
mant_off = fmt->man_start;
|
488 |
|
|
dto = 0.0;
|
489 |
|
|
|
490 |
|
|
special_exponent = exponent == 0 || (unsigned long) exponent == fmt->exp_nan;
|
491 |
|
|
|
492 |
|
|
/* Don't bias zero's, denorms or NaNs. */
|
493 |
|
|
if (!special_exponent)
|
494 |
|
|
exponent -= fmt->exp_bias;
|
495 |
|
|
|
496 |
|
|
/* Build the result algebraically. Might go infinite, underflow, etc;
|
497 |
|
|
who cares. */
|
498 |
|
|
|
499 |
|
|
/* If this format uses a hidden bit, explicitly add it in now. Otherwise,
|
500 |
|
|
increment the exponent by one to account for the integer bit. */
|
501 |
|
|
|
502 |
|
|
if (!special_exponent)
|
503 |
|
|
{
|
504 |
|
|
if (fmt->intbit == floatformat_intbit_no)
|
505 |
|
|
dto = ldexp (1.0, exponent);
|
506 |
|
|
else
|
507 |
|
|
exponent++;
|
508 |
|
|
}
|
509 |
|
|
|
510 |
|
|
while (mant_bits_left > 0)
|
511 |
|
|
{
|
512 |
|
|
mant_bits = min (mant_bits_left, 32);
|
513 |
|
|
|
514 |
|
|
mant = get_field (ufrom, fmt->byteorder, fmt->totalsize,
|
515 |
|
|
mant_off, mant_bits);
|
516 |
|
|
|
517 |
|
|
/* Handle denormalized numbers. FIXME: What should we do for
|
518 |
|
|
non-IEEE formats? */
|
519 |
|
|
if (special_exponent && exponent == 0 && mant != 0)
|
520 |
|
|
dto += ldexp ((double)mant,
|
521 |
|
|
(- fmt->exp_bias
|
522 |
|
|
- mant_bits
|
523 |
|
|
- (mant_off - fmt->man_start)
|
524 |
|
|
+ 1));
|
525 |
|
|
else
|
526 |
|
|
dto += ldexp ((double)mant, exponent - mant_bits);
|
527 |
|
|
if (exponent != 0)
|
528 |
|
|
exponent -= mant_bits;
|
529 |
|
|
mant_off += mant_bits;
|
530 |
|
|
mant_bits_left -= mant_bits;
|
531 |
|
|
}
|
532 |
|
|
|
533 |
|
|
/* Negate it if negative. */
|
534 |
|
|
if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
|
535 |
|
|
dto = -dto;
|
536 |
|
|
*to = dto;
|
537 |
|
|
}
|
538 |
|
|
|
539 |
|
|
static void put_field (unsigned char *, enum floatformat_byteorders,
|
540 |
|
|
unsigned int,
|
541 |
|
|
unsigned int,
|
542 |
|
|
unsigned int,
|
543 |
|
|
unsigned long);
|
544 |
|
|
|
545 |
|
|
/* Set a field which starts at START and is LEN bits long. DATA and
|
546 |
|
|
TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
|
547 |
|
|
static void
|
548 |
|
|
put_field (unsigned char *data, enum floatformat_byteorders order,
|
549 |
|
|
unsigned int total_len, unsigned int start, unsigned int len,
|
550 |
|
|
unsigned long stuff_to_put)
|
551 |
|
|
{
|
552 |
|
|
unsigned int cur_byte;
|
553 |
|
|
int lo_bit, hi_bit;
|
554 |
|
|
int nextbyte = (order == floatformat_little) ? 1 : -1;
|
555 |
|
|
|
556 |
|
|
/* Start is in big-endian bit order! Fix that first. */
|
557 |
|
|
start = total_len - (start + len);
|
558 |
|
|
|
559 |
|
|
/* Start at the least significant part of the field. */
|
560 |
|
|
if (order == floatformat_little)
|
561 |
|
|
cur_byte = start / FLOATFORMAT_CHAR_BIT;
|
562 |
|
|
else
|
563 |
|
|
cur_byte = (total_len - start - 1) / FLOATFORMAT_CHAR_BIT;
|
564 |
|
|
|
565 |
|
|
lo_bit = start % FLOATFORMAT_CHAR_BIT;
|
566 |
|
|
hi_bit = min (lo_bit + len, FLOATFORMAT_CHAR_BIT);
|
567 |
|
|
|
568 |
|
|
do
|
569 |
|
|
{
|
570 |
|
|
unsigned char *byte_ptr = data + cur_byte;
|
571 |
|
|
unsigned int bits = hi_bit - lo_bit;
|
572 |
|
|
unsigned int mask = ((1 << bits) - 1) << lo_bit;
|
573 |
|
|
*byte_ptr = (*byte_ptr & ~mask) | ((stuff_to_put << lo_bit) & mask);
|
574 |
|
|
stuff_to_put >>= bits;
|
575 |
|
|
len -= bits;
|
576 |
|
|
cur_byte += nextbyte;
|
577 |
|
|
lo_bit = 0;
|
578 |
|
|
hi_bit = min (len, FLOATFORMAT_CHAR_BIT);
|
579 |
|
|
}
|
580 |
|
|
while (len != 0);
|
581 |
|
|
}
|
582 |
|
|
|
583 |
|
|
/* The converse: convert the double *FROM to an extended float
|
584 |
|
|
and store where TO points. Neither FROM nor TO have any alignment
|
585 |
|
|
restrictions. */
|
586 |
|
|
|
587 |
|
|
void
|
588 |
|
|
floatformat_from_double (const struct floatformat *fmt,
|
589 |
|
|
const double *from, void *to)
|
590 |
|
|
{
|
591 |
|
|
double dfrom;
|
592 |
|
|
int exponent;
|
593 |
|
|
double mant;
|
594 |
|
|
unsigned int mant_bits, mant_off;
|
595 |
|
|
int mant_bits_left;
|
596 |
|
|
unsigned char *uto = (unsigned char *) to;
|
597 |
|
|
|
598 |
|
|
dfrom = *from;
|
599 |
|
|
memset (uto, 0, fmt->totalsize / FLOATFORMAT_CHAR_BIT);
|
600 |
|
|
|
601 |
|
|
/* Split values are not handled specially, since a bottom half of
|
602 |
|
|
zero is correct for any value representable as double (in the
|
603 |
|
|
only supported case of split values). */
|
604 |
|
|
|
605 |
|
|
/* If negative, set the sign bit. */
|
606 |
|
|
if (dfrom < 0)
|
607 |
|
|
{
|
608 |
|
|
put_field (uto, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1, 1);
|
609 |
|
|
dfrom = -dfrom;
|
610 |
|
|
}
|
611 |
|
|
|
612 |
|
|
if (dfrom == 0)
|
613 |
|
|
{
|
614 |
|
|
/* 0.0. */
|
615 |
|
|
return;
|
616 |
|
|
}
|
617 |
|
|
|
618 |
|
|
if (dfrom != dfrom)
|
619 |
|
|
{
|
620 |
|
|
/* NaN. */
|
621 |
|
|
put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
|
622 |
|
|
fmt->exp_len, fmt->exp_nan);
|
623 |
|
|
/* Be sure it's not infinity, but NaN value is irrelevant. */
|
624 |
|
|
put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
|
625 |
|
|
32, 1);
|
626 |
|
|
return;
|
627 |
|
|
}
|
628 |
|
|
|
629 |
|
|
if (dfrom + dfrom == dfrom)
|
630 |
|
|
{
|
631 |
|
|
/* This can only happen for an infinite value (or zero, which we
|
632 |
|
|
already handled above). */
|
633 |
|
|
put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
|
634 |
|
|
fmt->exp_len, fmt->exp_nan);
|
635 |
|
|
return;
|
636 |
|
|
}
|
637 |
|
|
|
638 |
|
|
mant = frexp (dfrom, &exponent);
|
639 |
|
|
if (exponent + fmt->exp_bias - 1 > 0)
|
640 |
|
|
put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
|
641 |
|
|
fmt->exp_len, exponent + fmt->exp_bias - 1);
|
642 |
|
|
else
|
643 |
|
|
{
|
644 |
|
|
/* Handle a denormalized number. FIXME: What should we do for
|
645 |
|
|
non-IEEE formats? */
|
646 |
|
|
put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
|
647 |
|
|
fmt->exp_len, 0);
|
648 |
|
|
mant = ldexp (mant, exponent + fmt->exp_bias - 1);
|
649 |
|
|
}
|
650 |
|
|
|
651 |
|
|
mant_bits_left = fmt->man_len;
|
652 |
|
|
mant_off = fmt->man_start;
|
653 |
|
|
while (mant_bits_left > 0)
|
654 |
|
|
{
|
655 |
|
|
unsigned long mant_long;
|
656 |
|
|
mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
|
657 |
|
|
|
658 |
|
|
mant *= 4294967296.0;
|
659 |
|
|
mant_long = (unsigned long)mant;
|
660 |
|
|
mant -= mant_long;
|
661 |
|
|
|
662 |
|
|
/* If the integer bit is implicit, and we are not creating a
|
663 |
|
|
denormalized number, then we need to discard it. */
|
664 |
|
|
if ((unsigned int) mant_bits_left == fmt->man_len
|
665 |
|
|
&& fmt->intbit == floatformat_intbit_no
|
666 |
|
|
&& exponent + fmt->exp_bias - 1 > 0)
|
667 |
|
|
{
|
668 |
|
|
mant_long &= 0x7fffffff;
|
669 |
|
|
mant_bits -= 1;
|
670 |
|
|
}
|
671 |
|
|
else if (mant_bits < 32)
|
672 |
|
|
{
|
673 |
|
|
/* The bits we want are in the most significant MANT_BITS bits of
|
674 |
|
|
mant_long. Move them to the least significant. */
|
675 |
|
|
mant_long >>= 32 - mant_bits;
|
676 |
|
|
}
|
677 |
|
|
|
678 |
|
|
put_field (uto, fmt->byteorder, fmt->totalsize,
|
679 |
|
|
mant_off, mant_bits, mant_long);
|
680 |
|
|
mant_off += mant_bits;
|
681 |
|
|
mant_bits_left -= mant_bits;
|
682 |
|
|
}
|
683 |
|
|
}
|
684 |
|
|
|
685 |
|
|
/* Return non-zero iff the data at FROM is a valid number in format FMT. */
|
686 |
|
|
|
687 |
|
|
int
|
688 |
|
|
floatformat_is_valid (const struct floatformat *fmt, const void *from)
|
689 |
|
|
{
|
690 |
|
|
return fmt->is_valid (fmt, from);
|
691 |
|
|
}
|
692 |
|
|
|
693 |
|
|
|
694 |
|
|
#ifdef IEEE_DEBUG
|
695 |
|
|
|
696 |
|
|
#include <stdio.h>
|
697 |
|
|
|
698 |
|
|
/* This is to be run on a host which uses IEEE floating point. */
|
699 |
|
|
|
700 |
|
|
void
|
701 |
|
|
ieee_test (double n)
|
702 |
|
|
{
|
703 |
|
|
double result;
|
704 |
|
|
|
705 |
|
|
floatformat_to_double (&floatformat_ieee_double_little, &n, &result);
|
706 |
|
|
if ((n != result && (! isnan (n) || ! isnan (result)))
|
707 |
|
|
|| (n < 0 && result >= 0)
|
708 |
|
|
|| (n >= 0 && result < 0))
|
709 |
|
|
printf ("Differ(to): %.20g -> %.20g\n", n, result);
|
710 |
|
|
|
711 |
|
|
floatformat_from_double (&floatformat_ieee_double_little, &n, &result);
|
712 |
|
|
if ((n != result && (! isnan (n) || ! isnan (result)))
|
713 |
|
|
|| (n < 0 && result >= 0)
|
714 |
|
|
|| (n >= 0 && result < 0))
|
715 |
|
|
printf ("Differ(from): %.20g -> %.20g\n", n, result);
|
716 |
|
|
|
717 |
|
|
#if 0
|
718 |
|
|
{
|
719 |
|
|
char exten[16];
|
720 |
|
|
|
721 |
|
|
floatformat_from_double (&floatformat_m68881_ext, &n, exten);
|
722 |
|
|
floatformat_to_double (&floatformat_m68881_ext, exten, &result);
|
723 |
|
|
if (n != result)
|
724 |
|
|
printf ("Differ(to+from): %.20g -> %.20g\n", n, result);
|
725 |
|
|
}
|
726 |
|
|
#endif
|
727 |
|
|
|
728 |
|
|
#if IEEE_DEBUG > 1
|
729 |
|
|
/* This is to be run on a host which uses 68881 format. */
|
730 |
|
|
{
|
731 |
|
|
long double ex = *(long double *)exten;
|
732 |
|
|
if (ex != n)
|
733 |
|
|
printf ("Differ(from vs. extended): %.20g\n", n);
|
734 |
|
|
}
|
735 |
|
|
#endif
|
736 |
|
|
}
|
737 |
|
|
|
738 |
|
|
int
|
739 |
|
|
main (void)
|
740 |
|
|
{
|
741 |
|
|
ieee_test (0.0);
|
742 |
|
|
ieee_test (0.5);
|
743 |
|
|
ieee_test (256.0);
|
744 |
|
|
ieee_test (0.12345);
|
745 |
|
|
ieee_test (234235.78907234);
|
746 |
|
|
ieee_test (-512.0);
|
747 |
|
|
ieee_test (-0.004321);
|
748 |
|
|
ieee_test (1.2E-70);
|
749 |
|
|
ieee_test (1.2E-316);
|
750 |
|
|
ieee_test (4.9406564584124654E-324);
|
751 |
|
|
ieee_test (- 4.9406564584124654E-324);
|
752 |
|
|
ieee_test (- 0.0);
|
753 |
|
|
ieee_test (- INFINITY);
|
754 |
|
|
ieee_test (- NAN);
|
755 |
|
|
ieee_test (INFINITY);
|
756 |
|
|
ieee_test (NAN);
|
757 |
|
|
return 0;
|
758 |
|
|
}
|
759 |
|
|
#endif
|